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Theory of hopping conduction in arrays of doped semiconductor nanocrystals
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The resistivity of a dense crystalline array of semiconductor nanocrystals (NCs) depends in a sensitive way
on the level of doping as well as on the NC size and spacing. The choice of these parameters determines
whether electron conduction through the array will be characterized by activated nearest-neighbor hopping or
variable-range hopping (VRH). Thus far, no general theory exists to explain how these different behaviors arise at
different doping levels and for different types of NCs. In this paper, we examine a simple theoretical model of an
array of doped semiconductor NCs that can explain the transition from activated transport to VRH. We show that
in sufficiently small NCs, the fluctuations in donor number from one NC to another provide sufficient disorder
to produce charging of some NCs, as electrons are driven to vacate higher shells of the quantum confinement
energy spectrum. This confinement-driven charging produces a disordered Coulomb landscape throughout the
array and leads to VRH at low temperature. We use a simple computer simulation to identify different regimes
of conduction in the space of temperature, doping level, and NC diameter. We also discuss the implications of
our results for large NCs with external impurity charges and for NCs that are gated electrochemically.
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I. INTRODUCTION

Arrays of semiconductor nanocrystals (NCs) have great
promise for optoelectronic and photovoltaic devices. The use-
fulness of NC arrays comes from the ability to tune both their
optical properties—generally, by choosing the size or shape of
NCs1,2—and their electronic properties, usually through the
addition of dopants or surface ligands that control the spacing
between NCs.3,4 Recent experiments have demonstrated that
dense crystalline arrays of spherical semiconductor NCs can be
reliably produced with diameter in the range 4–10 nm and with
less than 5% dispersion.1,5 Thus optoelectronic or photovoltaic
devices made from NCs can be designed to operate precisely
in any chosen region of the optical spectrum.

From a practical standpoint, however, the development of
NC-based devices is slowed by the high resistivity of the
NC arrays. In their undoped state, semiconductor NCs are
insulators, and in order to reduce their large resistivity, it is
necessary to bring additional electrons (or holes) to the NCs
either through chemical doping6 or electrochemical gating.7

In this paper, we focus primarily on the former, although we
comment on electrochemical gating at the end of the paper.

In particular, we consider the case where each NC is made
from a semiconductor that is heavily doped, for example, by
donor impurities. In this case, all donor electrons reside in the
conduction band of the NC. In order to conduct across the
array, these electrons must tunnel between NCs under the high
barrier associated with the insulator (such as the ligands shown
in Fig. 1) that fills the space between them.

In the presence of even a relatively small amount of disorder
in the array, the large tunneling barriers imply that donor elec-
trons experience Anderson localization due to fluctuations in
the electron energy from one NC to another.8 In this situation,
conduction proceeds only by phonon-assisted tunneling, or
“hopping,” between localized electron states. This hopping is a
thermally activated process in which electron tunneling occurs
simultaneously with the absorption or emission of a phonon
whose energy accounts for the difference between the initial
and final electron states. (While metallic conduction through

the array is, in principle, possible, and has been reported,9 it
requires the characteristic disorder energy in the system to be
smaller than the hopping integral t between neighboring NCs.
Since t decays exponentially with the separation d between
NCs and with the height of the tunneling barrier them, the
condition for metallic conductivity is difficult to meet, and in
this paper, we assume that electron conduction proceeds by
hopping.)

If one assumes that in the global ground state of the array all
NCs are neutral, then hopping transport requires an electron to
be thermally excited to jump from one neutral NC to another.
This process produces two oppositely charged NCs, each of
which has a corresponding Coulomb self-energy εc = e2/κD,
where κ is the effective dielectric constant of the NC array and
D is the NC diameter. This charging energy plays the role of
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FIG. 1. (Color online) Schematic drawing of spherical semicon-
ductor NCs (large light-colored circles) with diameter D arranged in
a crystalline lattice with lattice constant D′. Each NC is coated in a
thin layer of insulating ligands (curvy lines) that maintain a separation
d = D′ − D between NCs and prevent them from sintering. Each NC
has a random number of donors in its interior (small black circles).
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an activation energy for resistivity in the case where all NCs
are neutral in the global ground state. Equivalently, one can
say that the distribution of electron ground-state energies, or
the “density of ground states” (DOGS) of NCs, has a gap of
width 2εc centered at the electron Fermi level. As a result, the
resistivity ρ follows the Arrhenius law: ln ρ ∝ εc/kBT , where
kBT is the thermal energy. We emphasize that the activation
energy for hopping conduction is sensitive only to the ground-
state energies of electrons and holes that are added to NCs. For
this reason, when calculating the resistivity, it is sufficient to
consider the DOGS, which does not include excited electron
states with additional kinetic energy.

In experiments, however, one often observes a temperature
dependence of the resistivity that is different from simple
activation: ln ρ ∝ T −γ , with the temperature exponent γ <

1. Such “stretched exponential” behavior is believed to be
possible only if the disorder is so strong that a substantial
fraction of NCs is charged in the global ground state. Such
charging creates a random Coulomb potential landscape that
shifts up and down the electron energy spectra at different NCs.
As a result of this shifting, the gap in the DOGS is smeared
and filled. This smearing means that some electron states have
energies very close to the Fermi level, and as a result, one can
find a pair of empty and filled electron states separated by an
energy �ε that is much smaller than εc. At small temperature
kBT � εc, it is hopping between such pairs that are close in
energy that dominates the conduction.

Of course, for small �ε, the typical separation r between
the corresponding NC pair is much larger than the spacing
D′ between neighboring NCs. Thus, at small temperature T ,
electron conduction relies on tunneling between distant NCs.
To understand how such long-range tunneling is possible,
consider first the tunneling of an electron between nearest-
neighboring NCs. When the electron tunnels through the insu-
lating gap of thickness d between NCs, it accumulates an action
h̄d/a, where a is the decay length of the electron wave function
outside of the NC. Thus the tunneling amplitude between
nearest neighbors is suppressed by a factor ∼exp(−d/a). On
the other hand, when an electron tunnels to a NC at a distance
x � D′, the path of least action for the electron is to travel
primarily through nearest-neighboring NCs, making hops
only through the small gaps between neighbors and thereby
accumulating an action ∼h̄(d/a)(x/D′), plus an additional
much smaller term corresponding to action accumulated across
the interior of each NC. Thus the tunneling amplitude to the
distance x is suppressed by a factor ∼exp(−xd/D′a). The
exponential decay of the tunneling amplitude is described by
defining the localization length ξ , such that tunneling between
NCs with separation r is suppressed by the factor exp(−2r/ξ ).
By the argument above, one cannot simply equate ξ with a,
but rather ξ ∼ aD′/d � a.10 It is this enhanced localization
length, made possible by tunneling through intermediate NCs,
that allows for long-range hopping. In the remainder of this
paper, we consider the limit where d and a are both very small
compared to the NC diameter, so that D′ � D while ξ remains
finite.

If the temperature T is made increasingly small, the
corresponding energy difference �ε of electron hops becomes
increasingly small due to the scarcity of available high-energy
phonons, and as a result, the typical hop length increases.

Such behavior is known as variable range hopping (VRH) and
is responsible for the stretched exponential behavior γ < 1
in the resistivity. When the DOGS is constant near the Fermi
level, the resistivity follows the Mott law of VRH:11 ln ρ ∝
T −1/4. However, in systems where the long-ranged Coulomb
potential is not screened, electron correlation effects produce
a DOGS that vanishes quadratically with energy at the Fermi
level.12 Such a vanishing DOGS results in the Efros-Shklovskii
(ES) law of VRH: ln ρ ∝ T −1/2. In principle, all three of
these conduction behaviors—Arrhenius (γ = 1), Mott VRH
(γ = 1/4), and ES VRH (γ = 1/2)—are possible in arrays of
semiconductor NCs, depending on the magnitude and type of
disorder present. In this paper, we focus our description on
the fundamental role played by inherent fluctuations in donor
number among doped NCs.

Experiments probing the resistivity of NC arrays have
reported that the resistivity depends in a sensitive and
qualitative way on the level of doping.7 Specifically, as the
average number ν of dopant electrons per NC is varied, the
dependence of the resistivity ρ on the temperature T changes
between Arrhenius-type activated conduction (γ = 1) and
VRH (γ < 1). VRH has been reported in a variety of granular
semiconductor systems,2,7,13,14 but thus far there is no general
theory to explain how these different types of conduction can
coexist and why they appear in particular ranges of the electron
“filling factor” ν.

In this paper, we present such a theory, based on a
first-principles description of the ground state arrangement
of electrons within an array of doped NCs. We focus on a
simple model of identical spherical NCs that are covered by
a thin layer of insulating ligand (or some other insulator) and
arranged in an ideal crystalline lattice, as depicted in Fig. 1.
We show that the presence of fluctuations in donor number
between different NCs is sufficient to produce charging of
NCs, which results in a disordered Coulomb landscape that
encourages VRH. This charging is driven by the large gaps
between shells of the electron quantum energy spectrum in
NCs with large Bohr radius aB . Specifically, these intershell
gaps drive electrons to depart from NCs with a large number
of donors, where maintaining electroneutrality would require
placing electrons in higher quantum energy shells, and reside
instead on nearby NCs with small donor number. In this way,
some NCs spontaneously acquire a positive or negative charge,
and it is this charging that leads to VRH when the temperature
is not too large.

Using this model, we explain how the different regimes of
resistivity observed in experiment arise based on the interplay
between the charging spectrum of NCs, the long-ranged
Coulomb interactions between charged NCs, and the discrete
quantum energy levels of confined electrons. We supplement
our theory with a simple computer simulation, which we use
to calculate the DOGS and the resistivity.

Our main result is that VRH appears when the average
number ν of electrons per NC, the NC diameter D, and
the temperature T satisfy the following three conditions:
(i) ν � 0.6, (ii) D � 34κaB/κNC, and (iii) kBT �0.5e2ξ/κD2.
Here, κNC is the internal dielectric constant of NCs. When
these three conditions are satisfied, the resistivity follows the
ES law. In situations where any of the three criteria is not
met, the conduction is activated. This result is depicted at
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FIG. 2. (Color online) Phase diagram indicating regimes of
activated and ES resistivity as a function of doping level ν and
the dimensionless quantum energy gap � ≡ 20.64κaB/κNCD at
low temperature kBT � e2ξ/κD2. Symbols correspond to simulated
systems: filled (light blue) circles indicate systems that exhibited ES
resistivity and open squares indicate systems that exhibited activated
resistivity. The simulation method is described in detail in Sec. III.
The thick (red) curve is an approximate boundary between these
two regimes, which are labeled “ES” and “A,” respectively. Dashed,
horizontal lines indicate the value of � corresponding to Si NCs with
D = 5 nm (as in Ref. 1) and to CdSe NCs with D = 6.2 nm (as in
Ref. 7). This phase diagram is discussed more thoroughly in Sec. IV.

low temperature, kBT � e2ξ/κD2, in the phase diagram of
Fig. 2.

The remainder of this paper is organized as follows.
In Sec. II, we define the theoretical model to be studied.
Section III describes our computer simulation, including our
methods for numerically calculating the DOGS and resistivity.
Results are presented in Sec. IV, along with a discussion of why
Arrhenius and VRH resistivity appear in particular regimes of
ν, D, and T . We also discuss interesting features of the DOGS
in this model, including the appearance of “reflected Coulomb
gaps” at either side of the Fermi level.

In Sec. V, we discuss the implications of our theory for large
NCs with external impurity charges. We present a modified
model appropriate for this case, and we arrive at a single con-
dition for VRH associated with the concentration of external
impurity charges. Section VI presents some speculation on
how our results can be applied to electrochemical gating of NC
arrays using ionic liquids, and this is followed by concluding
remarks in Sec. VII.

II. MODEL OF NC ARRAYS WITH RANDOM NUMBER
OF DOPANTS

In this paper, our goal is to describe the resistivity of a
dense array of semiconductor NCs and capture its dependence
on doping level, temperature, and NC diameter. To this end, we
adopt the following simplified theoretical model. We consider
NCs to be identical spheres of diameter D with large internal
dielectric constant κNC � κ . These spheres are arranged in a
regular, three-dimensional (3D) lattice, with each lattice site
i located at the center of a NC. For simplicity, we consider a

cubic lattice with lattice constant D′ just barely larger than D,
so that d � D (see Fig. 1). Our choice of a cubic lattice does
not qualitatively affect any of the results we present below.

We further assume that the radius D/2 of the NCs is
comparable to or smaller than the effective electron Bohr
radius aB = h̄2κNC/me2 of the semiconductor, where e is the
electron charge and m is the effective electron mass. As an
example, NCs made from Si have aB ≈ 2.4 nm, and for CdSe
NCs, aB ≈ 5 nm. Under this condition the wave function of a
donor electron is extended across the entire volume of a NC,
rather than localized around a donor impurity, and the energy
of the electron is strongly affected by quantum confinement
within the NC. As an example, a single donor in the center of a
NC has a delocalized electron state when D < 6aB .15,16 This
condition can be used as a somewhat conservative estimate for
how small the diameter should be to produce electron states
that are extended across the NC.

In order to obtain the quantum energy spectrum in NCs,
one can make the approximation that each NC is an infinite
3D square well. Such an approximation is valid because of
the NCs’ relatively large work function. The resulting energy
spectrum can be described by defining the energy EQ(n) of the
nth lowest electron, which gives for the first few energy levels,

EQ(n) = h̄2

mD2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, n = 0

19.74, n = 1,2

40.38, 3 � n � 8

66.43, 9 � n � 18

. (1)

These first three nonzero energy levels can be labeled 1S, 1P ,
and 1D, respectively. Higher electron shells have thus far not
been examined by experiment, since they correspond to very
large doping, and will not be discussed in this work. We focus
primarily on the case where the spacing between quantum
energy levels ≈20h̄2/mD2 is larger than the characteristic
scale of Coulomb energies, e2/κD. The expression of
Eq. (1) ignores the weak perturbation of quantum energy
levels resulting from electron-electron interactions. This
approximation is justified because of the large internal
dielectric constant κNC, as explained below.

During the doping process, each NC i acquires some
number Ni of positively charged donors that it contains within
its interior. These are assumed to be fixed, while the number of
electrons ni within the NC can change due to electron tunneling
between NCs. We assume that donors are added randomly to
each NC by some high-temperature process, so that if the
average number of donors per NC is ν, then the probability
that a given NC will have exactly N donors is given by the
Poisson distribution:

P (N ) = νN

N !
e−ν . (2)

This randomness in the number of donors is the only form of
disorder that we include in our model. We show in Sec. IV
that this disorder is sufficient to produce random charging of
NCs, which leads to VRH. As mentioned in the introduction,
the spontaneous charging of NCs is the result of the large gaps
between quantum kinetic energy shells, which drive electrons
away from NCs with many donors (emptying higher shells)
and into NCs with few donors (filling lower shells), so that
the number of electrons in a given NC is not generally equal
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to the number of donors. Additional disorder arising from
fluctuations in the NC size is not considered explicitly in this
paper. The possible effect of such size fluctuations is discussed
at the end of Sec. IV, but we note here that fluctuation of NC
size alone cannot produce spontaneous charging of NCs in the
global ground state, which, as we show below, plays a crucial
role for VRH.

In addition to the quantum kinetic energy of the system,
transport through the array is also greatly affected by long-
ranged Coulomb interactions, which must be taken into
account. In general, one could expect that calculating the
total Coulomb energy of the system is a difficult problem,
since the positions of negative electrons within each NC are
described by their corresponding quantum wave functions and
the positions of positive donors are random within the NC’s
volume. For our problem, however, a significant simplification
is available because the internal dielectric constant κNC is
much larger than both the external dielectric constant κi of
the insulator in which the NCs are embedded and the overall
effective dielectric constant κ of the assembly. Specifically,
the large internal dielectric constant κNC implies that any
internal charge e is essentially completely compensated by
the dielectric response, with the great majority of that charge,
e(κNC − κ)/κNC, becoming distributing across the surface of
the NC. In this way, each NC can be thought of as metallic in
terms of its Coulomb interactions. This allows us to write that
the Coulomb self-energy of a NC with net charge q is given
approximately by q2/κD, irrespective of how its constituent
internal charges are arranged. The interaction between two
NCs i and j at a distance rij can also be approximated
as qiqj /κrij . These approximations are equivalent to the
so-called constant interaction model, which is commonly used
for individual quantum dots.17

It should be noted that the effective dielectric constant κ of
the NC array is not simply equal to the dielectric constant κi

of the insulating medium between NCs, but also includes the
effect of polarization of NCs in response to an applied field.
This polarization effectively decreases both the Coulomb self-
energy of a single NC and the interaction between neighboring
NCs. Generally speaking, the renormalization of the dielectric
constant is not very strong, so that κ is not very different
from κi even when κNC � κi. The canonical Maxwell-Garnett
formula gives the approximate relation18

κ � κi
κNC + 2κi + 2f (κNC − κi)

κNC + 2κi − f (κNC − κi)
, (3)

where f = πD3/[6(D′)3] is the volume fraction occupied by
the NCs; for f < 0.4, this expression is accurate to within
8%.19 As an example, for the case of a cubic lattice with D =
5 nm and D′ = 6 nm (so that f = 0.3) and for κNC/κi = 5,
one has κ ≈ 1.6κi.

Given this model, we can write down the Hamiltonian for
our system as

H =
∑

i

[
e2(Ni − ni)2

κD
+

ni∑
k=0

EQ(k)

]

+
∑
〈i,j〉

e2(Ni − ni)(Nj − nj )

κrij

. (4)

Here, the first term describes the electrostatic self-energy of
NC i, which has charge qi = e(Ni − ni), the second term
describes the total quantum energy of the ni electrons on NC
i, and the last term indicates the Coulomb interaction between
different NCs.

The ground state for a particular system (a set of donor
numbers {Ni}) is defined by the set of electron occupation
numbers {ni} that minimizes the Hamiltonian H . Given the
ground-state configuration, one can determine the energy of
the highest filled electron level, ε

(f )
i , and the lowest empty

electron level, ε
(e)
i , at each NC i. Specifically,

ε
(f )
i = EQ(ni) + e2[(Ni − ni)2 − (Ni − ni + 1)2]

κD

−
∑
j �=i

e(Nj − nj )

κrij

(5)

and

ε
(e)
i = EQ(ni + 1) + e2[(Ni − ni − 1)2 − (Ni − ni)2]

κD

−
∑
j �=i

e(Nj − nj )

κrij

. (6)

For the global ground-state configuration, ε
(f )
i < ε

(e)
j for all

i and j . As alluded to in the introduction, the definitions of ε
(f )
i

and ε
(e)
i describe only the lowest energy state of an electron or

hole added to the site i. For this reason, we refer to the density
of states of these energy states ε

(e,f )
i as the DOGS.

The resistivity of the NC array is largely determined by
the set of these ground-state single-particle energies {ε(f )

i }
and {ε(e)

i }. In the following section, we show how these
energy states can be used to calculate both the ground state
electron DOGS g(ε) and the resistivity ρ as a function of
temperature and doping level. Note that in this problem,
every site is represented by two energies, in contrast to the
canonical impurity band of lightly doped semiconductors,20

where every donor has only one relevant excitation
energy.

It is also important to note that in our model, these donor
electrons are assumed to be responsible for all conduction. In
other words, we assume that the temperature T is low enough
(and the doping level ν is high enough) that donor electrons
are much more abundant than electrons activated from the
valence band. In practical cases, this assumption is easily met:
it requires only that the thermal energy kBT be much smaller
than the band gap energy Eg . More exactly, it requires that
kBT � Eg/ ln(κNCD2Eg/e

2aBν2/3).

III. COMPUTER MODELING

In this section, we describe our computational method for
calculating the density of states and the resistivity at a given
value of ν, T , and D. These calculations are based on a
computer simulation of a finite, cubic array of L × L × L

NCs, which proceeds as follows. First, we specify the doping
level ν. The simulation then assigns the donor number Ni for
each NC i according to Eq. (2). The initial values of the electron
numbers {ni} are then assigned randomly in such a way that
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the system is overall electroneutral, i.e.,
∑

i ni = ∑
j Nj . The

simulation then searches for the ground state by looping over
all NC pairs 〈ij 〉 and attempting to move one electron from i to
j . If the move lowers the Hamiltonian H , then it is accepted,
otherwise it is rejected. Equivalently, one can say that for each
pair i and j , we check that two ES ground-state criteria are
satisfied:

ε
(e)
j − ε

(f )
i − e2

κrij

> 0 (7)

and

ε
(e)
i − ε

(f )
j − e2

κrij

> 0. (8)

If either one of these criteria is violated, then an electron is
transferred. This process continues until all sites i,j satisfy
Eqs. (7) and (8).

It should be noted that this procedure does not, in general,
find the exact ground state, but only a “pseudoground state”
that is stable with respect to single-electron transfers. In
principle, the system energy can be lowered further by
some multielectron transfers. The effect of these higher-order
relaxation processes on the properties of the pseudoground
state has been examined for similar models,21,22 and they are
generally beyond our intended accuracy in this paper, so we
do not consider them here.

Once the pseudoground state occupation numbers {ni} have
been found, one can define the single-particle energies ε

(f )
i

and ε
(e)
i for each NC i using Eqs. (5) and (6). These energies

are tabulated and then histogrammed in order to calculate the
single-particle DOGS g(ε). In the results presented below, we
define electron energies ε relative to the Fermi level μ, which
is calculated for each realization of the simulation as μ =
(min{ε(e)

i } − max{ε(f )
i })/2. In this way, ε < 0 corresponds to

filled electron states ε(f ), while ε > 0 corresponds to empty
states ε(e). (See, for example, Fig. 4 below.)

Once the pseudoground state energies {ε(f )
i } and {ε(e)

i }
are determined, we calculate the resistivity of the system
by mapping the simulated NC array to an effective resistor
network. The equivalent resistance Rij between NCs i and
j can be determined by writing down the time-averaged rate
of electron transfer between sites i and j in the presence of
an electric field and expanding in the limit of small field,
as in the canonical Miller-Abrahams resistor network.20,23 In
calculating Rij , we consider only electron transfer among the
highest filled states, ε(f ), and the lowest empty states, ε(e),
which is appropriate when the temperature is small enough
that T < e2/κD, so that thermal excitation of multielectron
transitions is exponentially unlikely.

Since each NC has two energy levels that can participate in
conduction, ε(f ) and ε(e), one can say that there are four parallel
conduction processes that contribute to the resistivity between
two NCs i and j : one for each combination of the initial energy
level at site i (either ε

(f )
i or ε

(e)
i ) and the final energy level at

site j (either ε
(f )
j or ε

(e)
j ). Each of these four processes has a

corresponding effective resistance R
(αβ)
ij , where α,β = (f ),(e).

These four resistances can be said to be connected in parallel
between NCs i and j , and their value can be written compactly

as

R
(αβ)
ij = R0 exp

(
2rij

ξ
+ ε

(α,β)
ij

kBT

)
, (9)

where R0 is a prefactor that has only a relatively weak
power-law dependence on temperature. The first term in the
exponential of Eq. (9) describes the exponential suppression
of the tunneling rate with distance r , as explained in the
introduction, and the second term describes thermal activation
by exponentially rare phonons of energy ε

(α,β)
ij . Since we are

interested only in identifying the exponential component of
the dependence of resistivity on temperature, we take R0 to be
a constant. The energy ε

(α,β)
ij in Eq. (9) is defined as follows:20

ε
(α,β)
ij =

{∣∣ε(β)
j − ε

(α)
i

∣∣ − e2

κrij
, ε

(β)
j ε

(α)
i < 0

max
(∣∣ε(α)

j

∣∣,∣∣ε(β)
j

∣∣), ε
(β)
j ε

(α)
i > 0

. (10)

The net resistance Rij between NCs i and j is the parallel
sum of the four resistances R

(αβ)
ij . Since the exponential factor

in Eq. (9) provides a sharp differentiation between these
four parallel resistances, at relatively low temperatures and
to within the accuracy of our calculations we can equate Rij

with the minimum of the four parallel resistances. That is,

Rij � min
{
R

(αβ)
ij

}
. (11)

After calculating all resistances Rij for a given simulated
array, we find the dimensionless resistivity of the network
ρ/ρ0, where ρ0 = R0D

′, using a percolation approach.20

Specifically, we find the minimum value Rc such that if all
resistances Rij with Rij < Rc are left intact while others are
eliminated (replaced by Rij = ∞), then there exists a pathway
connecting the left and right faces of the simulation volume
(the “infinite” percolation cluster). The resistivity ρ/ρ0 is
approximated as Rc/R0.

In our analysis below, we make use of the following
dimensionless units, which reduce the number of free variables
in the problem. We introduce the dimensionless distance
between the centers of NCs i and j ,

r∗
ij = rij

D
, (12)

the dimensionless temperature

T ∗ = 2D2κkBT

e2ξ
, (13)

the dimensionless electron energy

ε∗ = ε

e2/κD
, (14)

the dimensionless electron DOGS

g∗(ε∗) = e2D2

κ
g(ε∗), (15)

and the dimensionless resistivity

ln ρ∗ = ξ

2D
ln(ρ/ρ0). (16)

In these units, Eq. (9) can be written more simply as

ln ρ∗
ij = r∗

ij + ε∗
ij /T ∗, (17)
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and the problem loses any explicit dependence on the diameter
or the localization length. It is also convenient to discuss the
energy gap between the 1S and 1P shells in terms of the
dimensionless parameter

� ≡ EQ(3) − EQ(2)

e2/κD
= 20.64

κh̄2

me2D
= 20.64

κaB

κNCD
. (18)

We use our simulation to examine the resistivity at various
values of ν, T ∗, and �.

Results below correspond to a simulated system of size
L = 25 with open boundaries, averaged over 100 realizations.
Simulations at smaller system size, 15 � L < 25, do not
produce noticeably different results for either the DOGS or
the resistivity, which allows us to avoid having to extrapolate
our results to infinite system size.

IV. RESULTS AND DISCUSSION

Our goal is to determine which conditions produce VRH in
the NC array. To this end, we calculated the resistivity ρ and
the electron density of ground states g(ε) for a range of values
of the doping level ν, the temperature T ∗, and the quantum
energy scale �. (Varying � is equivalent to considering
different values of the NC diameter.) Before proceeding
to present general results, however, we first illustrate the
most important features of the problem by discussing the
hypothetical case where all NCs have the same number of
donors, so that there is absolutely no disorder in the system.
Say, for example, that ν = 5 and Ni = 5 for all i. In this
situation, the ground-state arrangement of the system is for
electrons to uniformly neutralize all donors: ni = Ni = 5. The
result, by Eqs. (5) and (6), is that every NC has the same
two energy levels, ε(f ) = EQ(5) − e2/κD and ε(e) = EQ(5) +
e2/κD, and the system’s Fermi level μ = EQ(5). Equivalently,
one can say that the single-particle DOGS for this hypo-
thetical system corresponds to two δ-function peaks at ε =
±e2/κD.

As explained in the introduction, conduction in this
uniformly neutral system requires the excitation of a posi-
tive/negative NC pair. Specifically, such an excitation produces
one positive NC containing four electrons and one negative NC
containing six, and as such it has an excitation energy equal
to the sum of the two Coulomb self-energies. Equivalently,
one can say that conduction requires the production of a hole
in the filled δ-function DOGS peak at ε = −e2/κD and an
electron in the empty DOGS peak at ε = e2/κD, and so
the conduction has an activation energy εA = εc = e2/κD.
Thus this hypothetical system without disorder has activated
conduction: ρ = ρ0 exp(εA/kBT ).

On the other hand, once the randomness in donor number is
taken into account, one can no longer say, in general, that the
ground-state arrangement of electrons is uniformly neutral,
ni = Ni . Indeed, when Ni can take a wide range of values,
then those NCs with very large N may become ionized so that
their electrons can occupy lower-energy shells on other NCs
with small N . In this way, the presence of a discrete quantum
energy spectrum instigates the production of positively and
negatively charged NCs. It is this spontaneous charging that
allows for VRH, as we will show below.

Still, it is straightforward to see that the system remains
nearly uniformly electroneutral in the ground state under either
of two conditions: (i) very small quantum energy gap, � � 1,
or (ii) very small doping level, ν � 1. In the former case, the
difference between quantum energy levels becomes negligibly
small compared to the energy required to produce charging
of NCs. Thus the NCs remain neutral and the conduction is
activated, as explained above. In the limit of very small doping,
ν � 1, the system also remains nearly uniformly neutral due to
an extreme scarcity of donors with Ni > 2. Indeed, by Eq. (2),
at small ν the fraction of donors with Ni > 2 is �ν3/6. Thus
neutrality of the system can be maintained without requiring
any significant number of electrons to occupy the 1P shell,
and there is essentially no charging of NCs. Therefore, in the
limit of very small ν, the conduction is also activated.

In situations where either � or ν is not small, one can expect
spontaneous charging of NCs in the ground state, and it is not
trivial to predict the DOGS or the temperature dependence of
the resistivity. We explore these situations using our simulation
method, outlined in Sec. III. Before proceeding to present
results for a wide range of ν and �, we first focus on the
illustrative cases of ν = 5 and 2, taking for the quantum energy
gap � = 5.

At ν = 5, the Fermi level resides in the middle of the 1P
shell. Thus, since the gap between quantum energy levels is
relatively large, in the ground state, essentially all NCs satisfy
2 � ni � 8. According to Eq. (2), however, roughly 11% of
NCs have a donor number satisfying Ni < 2 or Ni > 8. Such
NCs become charged in the ground state, driven by the large
gaps in the quantum energy spectrum that induce electrons to
leave the 1D shell and to fill the 1S shell. Thus the ground-state
configuration of the system consists of randomly distributed
fixed charges, which correspond to those NCs with Ni < 2
(which become negatively charged) or Ni > 8 (positively
charged), and mobile electrons and holes in the partially filled
1P shell. The mobile electrons and holes arrange themselves in
such a way that the ES criteria of Eqs. (7) and (8) are satisfied.
It is these criteria that give rise to the vanishing DOGS near
the Fermi level.12,20

This process of charging of NCs is illustrated schematically
in Fig. 3, which shows the energy levels of isolated NCs with
donor numbers 0 � N � 10. In the neutral state, a NC with
N donors has N filled electron energy levels [see Fig. 3(a)].
When the system contains a mixture of NCs with different
N , however, electrons abandon high energy levels in NCs
with large N and fill empty states in NCs with small N .
This process is shown for the case ν = 5 in Fig. 3(b). The
resulting charged NCs produce a random Coulomb potential
throughout the system that smears the single electron energy
levels and produces a finite density of states near the Fermi
level.

The DOGS for ν = 5 and � = 5, as calculated by our
numerical simulation, is plotted in Fig. 4(a). One can see the
quadratic Coulomb gap near the Fermi level, as proscribed
by the ES theory. As compared to the conventional Coulomb
gap problem in lightly doped semiconductors,20 this Coulomb
gap is remarkably well preserved, with the DOGS remaining
quadratic until ε∗ ≈ 1. This strong Coulomb gap suggests that
the resistivity should follow the ES law for all temperatures
T ∗ � 1. Specifically, at these small temperatures, the
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FIG. 3. (Color online) Schematic depiction of the charging
process in a system with NCs with varying donor number N . (a) The
single-electron energy levels (horizontal line segments) are shown
for isolated NCs. The Coulomb self-energy of charged NCs produces
a spectrum where different charge states have a separation 2e2/κD.
The quantum confinement energy provides a gap between subsequent
shells, e.g., 1S and 1P states or 1P and 1D states. In the neutral state,
a NC with N donors has N filled energy levels (indicated by filled
blue dots). ε∗

1S indicates the quantum kinetic energy of the 1S shell,
ε∗

1S = EQ(1)/(e2/κD). (b) A depiction of the charging process at
ν = 5. Electrons in the 1D shell of NCs with N > 8 abandon these
NCs and instead fill empty energy levels in the 1S shell of NCs with
N < 2. In this way, NCs with N > 8 become positively charged and
NCs with N < 2 become negatively charged. The resulting Fermi
level μ is shown by the dashed line. For NCs with N = 5, it resides
in the center of the 1P shell. The relative abundance of different
donor numbers at ν = 5 is shown at the bottom of the figure as a
percentage.

resistivity is described by

ρ(T ) = ρ0 exp

[(
TES

T

)1/2
]

, (19)

where

TES = Ce2

kBκξ
(20)

and C is a numerical coefficient of order unity.
This behavior can indeed be seen in Fig. 4(b), where ln ρ∗

is plotted as a function of (T ∗)−1/2. The linear relationship
at large (T ∗)−1/2 suggests that, as expected, the resistance
follows the ES law at small temperatures. We find that the
numerical coefficient C ≈ 8.1, as compared to the typical
value C ≈ 2.8 in lightly doped bulk semiconductors.20 At
larger temperatures T ∗ > 1 [or (T ∗)−1/2 < 1], the resistivity
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FIG. 4. (Color online) Density of states and resistivity at ν = 5
and � = 5, as found by computer simulation. (a) Density of states as a
function of electron energy. Filled electron states are shaded. Dashed
red lines show, schematically, the quadratic Coulomb gap near the
Fermi level, ε∗ = 0, and the “reflected Coulomb gaps” at ε∗ = ±2.
Note that the total shaded and unshaded areas under the g∗(ε∗) curve
are both normalized to unity, since each NC has one electron and
one hole excitation. The inset shows the DOGS over a wider energy
range, with small, distant peaks indicating rare NCs whose highest
filled electron state is in the 1S shell or whose first empty state is
in the 1D shell. (b) The dimensionless logarithm of the resistance,
ln ρ∗, as a function of (T ∗)−1/2, which illustrates the existence of ES
resistivity at small temperature.

saturates at ln ρ∗ = 1. At such large temperatures, the factor
ε∗
ij /T ∗ in Eq. (17) typically becomes smaller than unity, which

indicates that electrons tunnel relatively easily between nearest
neighbors, and VRH is abandoned in favor of nearest-neighbor
hopping. At these large temperatures, the resistivity can be
expected to have only a relatively weak power-law dependence
on temperature, which is beyond the accuracy of our numerical
calculations.

In addition to the parabolic Coulomb gap near the Fermi
level, another salient feature of the DOGS in Fig. 4(a) is
that it has strong maxima at ε∗ = ±1 and collapses nearly
to zero at ε∗ = ±2, as if there were additional Coulomb
gaps that constrain the density of states around ε∗ = ±2.
These “reflected Coulomb gaps” are in fact the product of
an approximate symmetry in the system, which can be seen by
examining Eqs. (5) and (6). At ν = 5, the great majority of NCs
have 2 < ni < 8. For such NCs, EQ(ni) = EQ(ni + 1); both
the highest filled and lowest empty electron states are in the 1P
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shell. In this case, one can subtract Eqs. (5) and (6) to show that
ε

∗(e)
i = ε

∗(f )
i + 2. Thus the great majority of NCs contribute to

the density of states two energy levels—one filled and one
empty—separated by 2e2/κD. This creates an approximate
discrete translational symmetry in the density of states, so
that g∗(ε∗) ≈ g∗(ε∗ − 2) for 0 < ε∗ < 2. As a consequence,
the Coulomb gap at the Fermi level implies the existence
of reflected Coulomb gaps at ε∗ = ±2. In other words, one
can say that because of the discrete charging spectrum of
NCs the conventional quadratic bound on the DOGS near the
Fermi level also produces (approximate) quadratic bounds on
the DOGS near ε∗ = ±2. The contribution of rare NCs with
ni = 2 or 8 to the DOGS can be seen in the small peaks at
ε∗ = −6 and 7, as shown in the inset of Fig. 4(a).

The presence of reflected Coulomb gaps is not unique to
the doping level ν = 5. Indeed, for all ν that are sufficiently
removed from the quantum energy gaps at ν = 2, 8, etc., the
relation ε

∗(e)
i = ε

∗(f )
i + 2 is valid for most NCs in the system

and the resulting DOGS is essentially identical to that of
Fig. 4(a). Consequently, the resistivity plot shown in Fig. 4(b)
accurately describes the resistivity at most values of ν > 1.
The reflected Coulomb gaps in Fig. 4(a) appear even more
dramatically for large NCs with external impurity charges, as
will be shown in Sec. V.

On the other hand, one could expect qualitatively different
behavior at ν = 2, where there are precisely enough electrons
to fill the 1S shell of every NC, and the Fermi level sits
in between the 1S and 1P shells. In this case, there is no
“discrete translational symmetry” in the density of states,
since the empty and filled energy levels for most NCs, ε

(e)
i

and ε
(f )
i , sit on opposite sides of the quantum energy gap, as

shown schematically in Fig. 5. This produces a DOGS that is
qualitatively different from what is shown in Fig. 4(a). One
could therefore expect that the dependence of the resistivity
on temperature is also qualitatively different. Such thinking is
supported by a recent experiment on electrochemically gated
NCs,7 which reported that when ν is very close to 2 there
appears an appreciable temperature window over which the
resistivity follows the Mott law. Given these differences, it is
worth giving some special consideration to the case ν = 2.

*
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FIG. 5. (Color online) Schematic depiction of the filled and empty
energy levels at ν = 2. Energy levels are shown for NCs in the absence
of any Coulomb potential, similar to Fig. 3. At ν = 2, some electrons
leave the 1P shell of NCs with N > 2 and fill empty states in the 1S

shell of NCs with N < 2. The resulting Fermi level μ is aligned with
the first(second) energy level of the 1P shell in NCs with N = 4(5),
which is partially filled.
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FIG. 6. (Color online) Density of ground states and resistivity at
ν = 2 and � = 5, as found by computer simulation. (a) DOGS as
a function of electron energy. Filled electron states are shaded. The
dashed red curve is the same parabolic curve shown in Fig. 4(a).
The inset shows the DOGS very close to the Fermi level. (b) The
dimensionless logarithm of the resistance, ln ρ∗, as a function of
(T ∗)−1/2, which shows ES resistivity at T ∗ � 1.

The DOGS for ν = 2 is shown in Fig. 6(a). Unlike at ν = 5,
where the DOGS collapses at ε∗ = ±2, the DOGS at ν = 2
is much broader, with a width � + 2. This broad DOGS can
be seen as a consequence of the large gap between 1S and
1P energy shells, which implies that the energy of electron or
hole excitations ε

(f )
i and ε

(e)
i can take a wide range of values,

depending on the donor number Ni . Alternatively, one can
say that since both 1S and 1P electron states contribute to
the DOGS near the Fermi level, the density of states has a
characteristic width similar to that of the gap �.

As at ν = 5, the DOGS vanishes at the Fermi level [see the
inset of Fig. 6(a)], but in this case it can only be described
as parabolic over the fairly narrow range of energies |ε∗| <

0.2. In the intermediate range of energies 0.2 < |ε∗| < 1, the
DOGS grows roughly linearly with energy. At larger energies
1 < ε∗ < �, the DOGS becomes roughly constant.

In spite of this relatively complicated DOGS, Fig. 6(b)
shows that the resistivity is in excellent agreement with the
ES law, with a coefficient C ≈ 5.7 [see Eq. (20)], at all but
very large temperatures. This is somewhat surprising, since it
suggests that the system exhibits ES resistivity even when
the temperature is large enough that the band of energies
over which VRH occurs is much larger than the width of the
parabolic Coulomb gap. This behavior would be impossible if
states were randomly distributed in space. Our observation of
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ES resistivity suggests that at ν = 2 spatial correlations emerge
that somehow preserve ES resistivity even in the absence of a
parabolic DOGS.

To illustrate how this might be possible, let us first recall
that in a disordered two-dimensional (2D) system, the DOGS
is linear in energy near the Fermi level rather than parabolic,
but the ES law of VRH is still obeyed.12 One can now imagine
a 3D system in which sites with energies close to the Fermi
level are arranged in a 2D fractal subspace embedded in the
system volume. In such a system, one would still have a linear
DOGS near the Fermi level accompanied by ES resistivity,
even though the system as a whole is three dimensional. Using
this reasoning, one can speculate that the results shown in
Fig. 6 are indicative of such a fractal arrangement of sites
near the Fermi level, driven in some way by the long-ranged
Coulomb potential. More broadly, these results hint at the idea
that in a disordered system of localized states dominated by
Coulomb interactions, one should be able to derive the ES
law without explicit reference to the DOGS or the system’s
dimensionality. Such an argument was, in fact, first put forward
by Larkin and Khmelnitskii.24 Our system at ν = 2 may be a
good application of this argument. It remains unclear, however,
in which situations this argument is applicable a priori. This
general question and its application to the case ν = 2 will be
the subject of a future publication.

By conventional thinking, the relatively constant DOGS at
|ε∗| > 1 would seem to suggest a regime of temperature in
which the resistivity follows the Mott law, which describes
VRH in the presence of a constant DOGS. However, unlike
the experiments of Ref. 7, we see no noticeable region of Mott
VRH. The Mott resistivity observed in Ref. 7 at ν = 2 is likely
the result of some additional disorder that is outside the model
considered in this section, and is discussed further in Sec. VI.

Having considered the specific cases of ν = 5 and 2, we
now turn our attention to a general description of VRH at differ-
ent values of ν and �. In order to identify more precisely which
conditions produce VRH, we used our simulation to measure
the resistivity as a function of T ∗, ν, and � over the range
0.01 � T ∗ � 10, 0.2 � ν � 2, and 0.5 � � � 5. For each
case, we found the exponent γ of the temperature dependence
of resistivity by calculating the “reduced activation energy”
w(T ∗) = −d(ln ρ∗)/d(ln T ∗) ∝ T −γ .25 The exponent γ was
identified by making a power law best fit to w(T ∗). Those
values of T ∗, ν, and � that produce γ = 0.5 ± 0.1 were
identified with ES resistivity; domains where γ > 0.6 were
identified with activated resistivity. As discussed above, no
significant regimes were identified that showed Mott behavior.
We use this data to construct an approximate phase diagram in
the space of T ∗, ν, and � that identifies which behavior can
be expected.

Our result is plotted in Fig. 2 for T ∗ � 1. Generally
speaking, the results indicate that for ν > 0.6 and � > 0.5
one can expect ES resistivity, while for other conditions, the
resistivity is activated. These conditions are equivalent to the
conditions (i) and (ii) that were announced in the introduction.
Dashed horizontal lines indicate, as an example, the values
of � corresponding to CdSe NCs with D = 6.2 nm, as in
Ref. 7, and Si NCs with D = 5 nm, as in Ref. 1. Both of these
dashed lines assume that κNC/κi = 5. At temperatures T ∗ > 1,
VRH is gradually replaced by nearest-neighbor hopping. The

condition T ∗ < 1 is equivalent to the condition (iii) from the
introduction.

As mentioned above, the model considered in this section
does not account explicitly for any sources of disorder other
than fluctuations in donor number. For example, in real
NC arrays, the diameter D varies from one NC to another,
which introduces variations in the quantum spectrum between
NCs [see Eq. (1)]. Nonetheless, the presence of these size
fluctuations in addition to fluctuations in donor number does
not destroy ES VRH, since the Coulomb gap near the Fermi
level is a universal result of the ES stability criteria [see Eqs. (7)
and (8)] and is independent of the source of disorder in the
system. Whether size fluctuations or other sources of disorder
enhance the role of VRH or significantly affect the magnitude
of the resistivity remains yet to be studied. Generally speaking,
however, one can expect that the phase diagram of Fig. 2 is
accurate whenever the typical magnitude of size fluctuations
δD satisfies (δD)/D � 1/�. We further expect that even
larger size fluctuations do not greatly affect VRH in regimes
where the ES law applies, since in such cases the DOGS is
already saturated by the disorder in donor number. In regimes
where the resistivity is activated, the presence of a large
additional disorder should generally promote the existence of
VRH, which decreases the resistivity at small T ∗.

V. VRH IN ARRAYS OF LARGE NCS WITH EXTERNAL
IMPURITY CHARGES

In the previous sections, we showed that the spontaneous
charging that leads to VRH is driven by the relatively large
gaps between degenerate shells of the electron quantum energy
spectrum. In large NCs, the gap � becomes small and this
charging disappears, which leads to activated resistivity (see
Fig. 2). A similar effect can be expected when the NC shape is
not symmetric. In this case, the electron energy levels are not
degenerate, so that the bunch of energy levels corresponding
to a particular shell in a spherical NC is dispersed, and as a
consequence the gaps between subsequent energy levels are
reduced. Thus large or highly asymmetric NCs tend to remain
neutral in the ground state and exhibit activated transport even
at ν > 1.

In this section, however, we show that if donor impurities
are located outside of NCs, ES VRH can still be observed. The
presence of ES VRH in large NCs can be understood using an
argument that was first put forward by Ref. 10 in the context of
granular metallic films. The argument from Ref. 10 is briefly
repeated here.

Consider an array of spherical semiconductor NCs with
large internal dielectric constant κNC, each of which is coated
with a thin layer of width w of insulator, such as the
semiconductor’s own oxide or the ligands shown in Fig. 1.
Suppose further that donor impurity charges +e are embedded
in this insulator, as shown schematically in Fig. 7, with some
overall concentration Nimp. If some particular donor resides at
a location within the insulator shell that is well-separated from
the points of contact between neighboring NCs, then this donor
simply donates its electron to the NC on which it resides. The
resulting positive impurity charge induces a negative image
charge on the NC surface because of the dielectric response,
and together the donor and its image charge make a compact
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FIG. 7. (Color online) A schematic depiction of the fractional-
ization of the charge of a donor impurity between large NCs (see
also Fig. 11 of Ref. 10). Semiconductor NCs (tan/gray circles) have
a thin coating of insulator (yellow/light gray), with embedded donor
impurities (small black circles). Each positive donor induces negative
image charges (small white circles) that neutralize it, while equal and
opposite positive images are conveyed to the center of the NC. Those
donors that are located close to the point of contact between two NCs
create noninteger image charges in the two surrounding NC surfaces.
In this way, NCs are given a “fractional donor charge” Qi .

neutral pair. In this way, donors that are not near the point
of contact between two NCs produce a negligible Coulomb
potential that plays no role in charging the system.

On the other hand, when a donor is located close to the
point of contact between two NCs, labeled A and B, it induces
negative image charges −qA and −qB in the surfaces of NCs
A and B, respectively. In order to maintain overall neutrality
of the NCs, an equal and opposite image charge appears at
the center of each NC: +qA and +qB . (These “image charges
at the center” represent a uniform electronic charge at the
NC surface.) The values of qA and qB are such that together
the image charges −qA and −qB neutralize the donor charge:
qA + qB = e. Their respective magnitudes are determined by
the distance between the impurity and each NC surface. For
example, if the impurity sits exactly along the line connecting
the centers of NCs A and B and if the gap 2w between NCs
satisfies w � D, then the NCs can be approximated as infinite
planar metallic surfaces and qAxB = qBxA, where xA and xB

are the distances between the impurity and the surface of
NCs A and B, respectively. More generally, when w � D,
the image charges −qA and −qB sit very close to the donor
impurity and essentially neutralize it, so that the screened
impurity does not directly contribute to any Coulomb potential
at length scales of D or larger. Instead, the net effect of the
image charges is to “fractionalize” the donor impurity charge,
such that +qA is relayed to the center of NC A and +qB is
relayed to the center of B. This process is depicted in Fig. 7.

In this way, each NC gets a number of random, positive
fractional donor charges created by those donors located near
the contact points between NCs. We denote the sum of all
fractional charges at NC i by Qi . The proportion of all

donor charges that sit at these contact points is ∼w/D, so
that of the total number ∼NimpwD2 of donor impurities in
the insulator shell covering a given NC, only ∼Nimpw

2D of
these become fractionalized. When the average total number
of fractionalized charges per NC Nimpw

2D � 1, the central
limit theorem guarantees that the distribution of the random
variable Qi/e can be approximated as a Gaussian with mean
∼Nimpw

2D and root mean-square fluctuation ∼(Nimpw
2D)1/2.

Donor electrons respond to the potential created by frac-
tional charges by arranging themselves on NCs in integer
number and in such a way that the total electrostatic energy
of the system is minimized. In other words, in the ground
state, the set of electron occupation numbers {ni} is that which
minimizes the Hamiltonian

H =
∑

i

(Qi − eni)2

κD
+

∑
〈i,j〉

(Qi − eni)(Qj − enj )

κrij

. (21)

Unlike in the Hamiltonian of Eq. (4) of Sec. II, here the
quantum energy gaps are negligibly small and disorder is
provided by the fractional charges {Qi}.

Equation (21) implies that the corresponding electron
energy levels at NC i are given by

ε
(f )
i = (Qi − eni)2 − (Qi − eni + e)2

κD
− e

∑
j �=i

Qj − enj

κrij

(22)
and

ε
(e)
i = (Qi − eni − e)2 − (Qi − eni)2

κD
− e

∑
j �=i

Qj − enj

κrij

,

(23)

for the highest filled and lowest empty states, respectively.
By subtracting Eqs. (22) and (23), it can be seen that ε(e) =
ε(f ) + 2e2/κD for all NCs. This has important implications
for the DOGS, as will be shown below.

As explained above, the values of the fractional charges
Qi can be assigned using a Gaussian distribution with mean
Q̄ ∼ eNimpw

2D and standard deviation σQ = (eQ̄)1/2. One
can notice, however, that in the Hamiltonian of Eq. (21) the
variables Qi and ni appear only in the combination Qi − eni ,
which by electroneutrality of the system must satisfy 〈Qi −
eni〉 = 0. Thus, when calculating the DOGS and resistivity,
one can adopt a somewhat simpler model where Qi is chosen
from a distribution with mean zero and ni is allowed to take
any integer value (positive or negative).

In fact, an even further simplification of the model is
available when the standard deviation σQ/e � 1. Namely,
when Qi can take such a wide range of values, one can
approximately replace the broad distribution for Qi/e with
a uniform distribution Qi/e ∈ [−1/2, + 1/2]. The validity
of this approximation can be understood by considering that
each NC minimizes its Coulomb self-energy by minimizing
the magnitude of its net charge, |Qi − eni |. Since ni can take
any integer value, it is generally true that in the ground state
−e/2 � Qi − eni � e/2. This random spatial arrangement of
net charges produces a fluctuating Coulomb potential that leads
to ES VRH.26 All results below correspond to this choice of a
uniform distribution for Qi .
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FIG. 8. (Color online) Electron DOGS and resistivity for an
array of large semiconductor NCs with fractional donor charges
corresponding to Qi/e ∈ [−1/2, +1/2]. (a) The DOGS, which
vanishes at ε∗ = 0 and at ε∗ = ±2 because of the ES stability criteria
and the relation between filled and empty energy states at each NC:
ε

∗(e)
i = ε

∗(f )
i + 2. (b) Resistivity versus (T ∗)−1/2, which shows ES

behavior at temperature T ∗ � 1.

It is worth noting that while so far we have focused
on positive donor impurities, acceptors embedded in the
insulating layer can play the same role. Random charging of
NCs can also result from the simultaneous presence of both
donors and acceptors. For the sake of argument, however, we
focus our discussion around positive donor charges.

Results for the DOGS and resistivity are given in Fig. 8, as
calculated using the simulation method described in Sec. III
and the definition of single-particle energies given in Eqs. (22)
and (23). One can note that the DOGS shown in Fig. 8(a)
vanishes at the Fermi level ε∗ = 0, as required by the ES
criteria [see Eqs. (7) and (8)], as well as at ε∗ = ±2. Because
of the lack of a quantum energy term in the Hamiltonian,
the DOGS also has a perfect discrete translational symmetry:
g∗(ε∗) = g∗(ε − 2) for ε∗ > 0. The strong “reflected Coulomb
gaps” in Fig. 8 are a result of the relation ε

∗(e)
i = ε

∗(f )
i + 2.

The resistivity for this system is plotted in Fig. 8(b) as
a function of (T ∗)−1/2. As expected, the resistivity follows
the ES law at T ∗ � 1 due to the strongly preserved quadratic
Coulomb gap near the Fermi level. The dashed line in Fig. 8(b)
corresponds to the ES law with a coefficient C ≈ 9.6 [see
Eq. (20)].

We have also verified that our results for the DOGS and
resistivity are practically identical if Qi/e is chosen not from
a uniform distribution [−1/2,+1/2] but from a Gaussian
distribution with three-times larger variance.

In the opposite limit, where fractionalized donor charges are
very rare, Nimpw

2D � 1, each NC remains essentially neutral,

and there is no random Coulomb potential. This uniformity
leads to activated nearest-neighbor hopping, since without
disorder long-range electron hops cannot reduce the energy
required for the hop.27

Finally, it can be noted that in our discussion above, we have
ignored the possible presence of deep electronic states at the
NC surface. Such trap states can play the role of compensating
impurity centers, which remove a percentage of electrons from
the conduction band. In this case, only the uncompensated
donor electrons contribute to conduction, and the value of
ν is effectively renormalized downward. Repulsion between
uncompensated donor electrons and electrons in trap states
may also produce a small shift in electron energies and is
outside the scope of our treatment here.

VI. GATING OF A NC ARRAY BY AN IONIC LIQUID

In Secs. I–V, we discussed systems of NCs doped by
random impurities, and we explored the dependence of the
resistivity on the doping level. In such systems, the doping
level is established during the fabrication of NCs. In many
cases, however, it is desirable to have a doping level that
can be continuously tuned, so that the resistivity of a single
device can be set to a wide range of values. For this purpose,
electrochemically gated arrays of semiconductor NCs are
actively being studied.4,7

In such systems, conduction electrons are introduced into
the system via a voltage source, which drives electrons from
a top gate to a bottom gate that is in electrical contact with
the NC array. Generally, in between the top gate and the NC
array is a room-temperature ionic liquid that provides large
capacitance and therefore allows for a high density of electrons
to be introduced to the NC array at a relatively small voltage.28

The cations from this ionic liquid intercalate into the spaces
between NCs, penetrating deep into the array through the
percolating network of pores between NCs, and thus provide a
neutralizing charge for the conduction electrons. A schematic
picture of this system is given in Fig. 9.

The large internal dielectric constant of NCs and the
relatively small diameter of cations suggests the presence of
strong image charge forces that bind cations electrostatically
to their image charges in the NC surface. In this way, one
can expect that cationic charges are located primarily on the
surface of each NC. If one assumes that the position of cations
on the NC surfaces is random, then one again arrives at a
model of fractionalized cation image charges, similar to what
is suggested in Sec. V.

For this model, one can use a Hamiltonian that includes both
a prominent quantum kinetic energy spectrum, as in Sec. II,
and a fluctuating, fractionalized donor charge, as in Sec. V:

H =
∑

i

[
(Qi − eni)2

κD
+

ni∑
k=0

EQ(k)

]

+
∑
〈i,j〉

(Qi − eni)(Qj − enj )

κrij

. (24)

Here, the fractional charge Qi/e can be chosen uniformly from
the interval [ν − 1/2,ν + 1/2].
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FIG. 9. (Color online) A schematic picture of an array of
semiconductor NCs (large circles) gated by an ionic liquid. Cations
(small circles with +’s) are driven by a voltage source to intercalate
between NCs. Because of the large NC dielectric constant κNC, the net
effect of positive ions is to provide a fractional donor charge Qi at a
given NC i, similar to what is shown in Fig. 7. Neutralizing electrons
occupy NCs in order to neutralize ionic charges. Ligands separating
NCs are shown as curvy lines.

Using our computer simulation method, we have briefly
investigated the DOGS and resistivity of the system described
by this Hamiltonian at various values of ν � 1. We find that
ES VRH appears at low temperature for all values of ν > 1. In
fact, when |ν − 2| > 1 and |ν − 8| > 1, the DOGS is exactly
the same as in Fig. 8(a), and the resistivity is also identical.

We note that the model defined by Eq. (24), where the
fractional donor charge is completely random, is unlikely to be
accurate when ν is at the boundary between two quantum en-
ergy shells. At ν = 2, for example, random fractional charges
lead to a fluctuating Coulomb potential with characteristic
amplitude much larger than kBT /e at room temperature.
However, such a large Coulomb potential induces cations,
which are mobile during the gating process, to rearrange in
order to screen the potential. In this way, the cation positions
become correlated and the typical amplitude of the Coulomb
potential is reduced to kBT /e, which is not large enough to
produce charging of NCs. As a result, the typical amplitude of
fluctuations in Qi is likely much smaller than e, so that one
should not expect a finite DOGS near the Fermi level. Rather,
in the absence of any other disorder, the resistivity should be
large and activated.

Experiments with ionic liquid gating confirm that, as
expected, the resistivity is much larger at ν = 2 than at other
filling factors.7 However, the resistivity is generally shown to
correspond to VRH rather than activated behavior, with ES
resistivity seen at very small temperature and Mott resistivity
at larger temperatures. This VRH is likely the result of some
other source of disorder, unrelated to the positions of cations,
which produces finite DOGS near the Fermi level even at
ν = 2. For example, if the NC diameters are not uniform,
but are drawn from some distribution with finite width, then
the energy levels corresponding to the 1S and 1P states are
smeared. If the distribution of NC diameters has wide tails,

electron energy

de
ns

ity
 o

f s
ta

te
s

electron energy
de

ns
ity

 o
f s

ta
te

s

(b)

(a)

1S 1P

FIG. 10. (Color online) Schematic picture of the density of states
at ν = 2 in the presence of fluctuations in the NC diameter D.
(a) If D has some wide-tailed distribution, then the 1S and 1P energy
levels are broadened and have a finite overlap. (b) Spatial correlations
between rare 1S and 1P energy states near the Fermi level produce a
Coulomb gap, so that ES resistivity is seen at very small temperatures
and Mott resistivity is seen at larger temperatures.

then the 1S and 1P energy levels can be smeared as far as the
Fermi level, producing a finite DOGS near the Fermi level, as
shown schematically in Fig. 10.

The overlap between some 1S and 1P energy levels
produces rare NCs with n = 3 or 1 whose energy is very
close to the Fermi level. Such rare, mobile electrons are free
to rearrange themselves in order to satisfy the ES stability
criteria, and in doing so they produce a small Coulomb gap
at the Fermi level (see Fig. 10). As a result, the resistivity
follows the ES law at very small T and the Mott law at larger
T , where the DOGS sampled by electron hops is essentially
constant. This is precisely what is seen in experiment.7

It is worth mentioning that ionic liquid gating of NC
arrays allows one to measure the total electronic charge Q

as a function of applied gate voltage, or, in other words, the
differential capacitance of the array C = dQ/dV . In arrays
of small spherical NCs, where the quantum gaps � dominate
over Coulomb energies, most electrons enter the array when
the voltage coincides with the energies of a quantum energy
shell (1S or 1P , for example). At such voltages the differential
capacitance should have prominent peaks. Between these volt-
ages the capacitance should be small, reflecting the small elec-
tron DOGS. We are not aware of any such experimental data.29

VII. CONCLUSIONS

In this paper, we have used a simple theoretical model and a
computer simulation to show how both activated transport and
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VRH arise in arrays of doped semiconductor NCs. Our primary
result is illustrated in the phase diagram of Fig. 2: when the
doping level ν and the quantum confinement energy � are
sufficiently large and when the temperature T ∗ is sufficiently
small, the resistivity of the array is characterized by ES VRH.
Such VRH is driven by the fluctuations in donor number from
one NC to another, which lead to spontaneous charging of NCs
as electrons depopulate higher quantum energy shells and fill
lower ones.

We have also identified a striking feature of the DOGS
in NC arrays: the presence of “reflected Coulomb gaps” at
electron energies ±2e2/κD, which are a consequence of the
ES stability criteria and the discrete charging spectrum of NCs
(see Fig. 4). This feature is even more prominent in large NCs
with external impurity charges (see Fig. 8).

The effect of additional disorder, such as fluctuations in NC
size, remains yet to be explored quantitatively. We conjecture,

however, that for chemically doped NCs our results will be
largely unaltered by the addition of such disorder. For the case
of NCs gated by ionic liquid, this external disorder seems
crucial only for explaining the presence of Mott VRH at
particular values of ν (see Fig. 10).
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