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Spin splitting of electron states in (110) quantum wells: Symmetry analysis and k·p theory
versus microscopic calculations
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Spin splittings in quantum wells have attracted considerable attention over the past decade due to potential
application of semiconductor spin properties to “spintronic devices.” Recent experimental results stimulate
theoretical investigations of new physical situations like unconventional growth directions. Here we focus
on electron spin properties in (110)-oriented quantum wells that are of particular interest because qualitative
symmetry analysis shows that spin relaxation by the D’yakonov-Perel’ mechanism should be strongly suppressed
in this geometry. We combine symmetry analysis, envelope function theory, and tight-binding calculation and
obtain quantitative description of the in-plane wave vector, well width, and applied electric field dependence of
the spin structure of electron subbands in (110) quantum wells.
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I. INTRODUCTION

Spin-orbit coupling in semiconductor low-dimensional
structures has been attracting much attention since it allows
one to manipulate the spins of charge carriers by affecting
their orbital motion.1,2 A remarkable consequence of spin-orbit
coupling is the splitting of electron states in the absence of
external magnetic field. In quantum wells (QWs) this splitting
is linear in the in-plane wave vector k.3,4 The zero magnetic
field spin splitting determines the majority of spin properties
of n-type QWs and limits the spin lifetime and diffusion
length of electrons in the wide range of temperatures, carrier
densities, and QW designs. At the microscopic level, the spin
splitting of electron states is caused by the lack of space
inversion in the quantum well, which can originate from bulk,
structure, or interface inversion asymmetries (BIA, SIA, and
IIA, respectively).5–10 The role of these contributions was stud-
ied for (001)-oriented QWs grown from zinc-blende-2,5,11–14

and diamond-type10,15 semiconductor compounds as well as
wurtzite-structure QWs.16 However, little attention has been
paid so far to the microscopic calculation of the spin splitting
in QWs with the (110) orientation although the peculiarity of
spin-orbit coupling in such structures4,17 and its potential for
spintronic application are well known. It was shown that the
spin lifetime of electrons in (110) QWs can be much longer
than that in QWs with other crystallographic orientations18–20

reaching tens of nanoseconds at low temperatures21,22 and
allowing for a long-range spin transport.22,23 Besides, the
k-orientation dependency of electron spin splitting for this
specific growth direction gives rise to a number of new
spin effects, including thermal orientation of electron spins,24

coupling of in-plane and out-of-plane spin components,25,26

spin orientation by unpolarized optical pulses,27 etc., which
are absent in (001) structures. In this paper we present a
detailed theory of spin structure in (110) QWs based on
symmetry analysis and envelope function approach. We also

calculate the electronic dispersion using the extended-basis
spds∗ tight-binding framework and extract parameters missing
in other approaches. The spds∗ model28 reproduces bulk
properties, including Dresselhaus spin splitting coefficient γ ,
with unprecedented precision,29 and it allows one to explicitly
account for BIA, SIA, as well as IIA contributions. We focus on
GaAs/AlGaAs quantum well structures which are of common
interest.

II. SYMMETRY ANALYSIS

A single interface with the (110) orientation between two
crystals with zinc-blende structure is sketched in Fig. 1.
The interface is described by the point group Cs and has
only two symmetry elements: identity and the mirror plane
m1 perpendicular to the QW plane. The mirror plane is
normal to the in-plane axis x ‖ [11̄0] and contains the axes
y ‖ [001̄] and z ‖ [110]. It follows that an asymmetric QW
with the (110) crystallographic orientation is described by the
same point-group symmetry. In such structures, the effective
Hamiltonian describing the zero magnetic field spin splitting
of electron states to first order in the in-plane wave vector has
the form

Hso = α1σxky − α2σykx + βσzkx, (1)

where α1, α2, and β are linearly independent constants,17,30

kx and ky are the wave vector components, and σx , σy , and
σz are the Pauli matrices. The parameter β is allowed in both
symmetric and asymmetric (110) QWs, while α1 and α2 are
nonzero only in QWs with structure inversion asymmetry.
Indeed, symmetric (110)-grown QWs have the additional
mirror plane m2 parallel to the interfaces and lying in the
QW center and are described by the higher point group C2v .31

The plane m2 forbids the linear coupling between the in-plane
components of the polar vector k and the axial vector σ , which
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FIG. 1. (Color online) Projection of the atomic arrangement in a
(110) QW onto the m1 ‖ (11̄0) mirror plane. The vertical line at the
well center shows the trace of the m2 mirror plane in the symmetric
QW.31 Single interfaces are described by the Cs point group.

implies the vanishing of both α1 and α2 in symmetric QWs. We
also note that the parameters α1 and α2 are linearly independent
in QWs of the Cs point group. The difference between α1

and α2 cannot be obtained in framework of the Rashba model
which gives α1 = α2. To obtain the difference in a microscopic
calculation of the band structure one has to take into account
both QW asymmetry and the host crystal lattice structure.
Equation (1) can be rewritten in the equivalent form

Hso = α+(σxky − σykx) + α−(σxky + σykx) + βσzkx, (2)

where α± = (α1 ± α2)/2. The first term on the right-hand side
of Eq. (2) describes the Rashba spin-orbit coupling. The second
term is similar to k-linear Dresselhaus coupling in (001)
quantum wells, however, for (110)-grown QWs it requires
structure inversion asymmetry and does not originate from
the k-cubic Dresselhaus terms in the effective Hamiltonian
for bulk crystal. Finally, the third term stands for the usual
k-linear Dresselhaus coupling in (110)-grown QWs. Hence,
the difference between α1 and α2 is clearly related to an
interference effect between cubic structure of the lattice and
SIA.

The eigenspinors χs and energies Es (s = ±1/2) of the
effective Hamiltonian (2) can be readily found in analytical
form. The energies are given by

E±1/2 = ± 1
2�k, (3)

where we introduced the spin splitting

�k = 2
√

(α2+ + α2−)k2 + 2α+α−
(
k2
y − k2

x

) + β2k2
x. (4)

The Cartesian components of the electron spin average value
s = (1/2)Tr χ

†
s σχs for the lower spin branch has the form

sx = −α+ + α−
�k

ky, sy = α+ − α−
�k

kx, sz = − β

�k
kx.

(5)

It is convenient to introduce the spherical coordinate
system, where the spin vector s is defined by the azimuth
ϕ and polar θ angles and the in-plane wave vector k is defined
by the azimuth angle ϕk, see Fig. 2. In this coordinate system,
the spin splitting of electron states is given by

�k = 2k

√(
α2+ + α2− + β2

2

)
+

(
β2

2
− 2α+α−

)
cos 2ϕk.

(6)

x [11̄0]

y [001̄]

z [110]

k
ϕk

ϕ − ϕk

θ

s

FIG. 2. (Color online) The wave vector k and spin vector s defined
by the angles ϕk, ϕ, and θ in the spherical coordinate system.

The azimuth angle ϕ depends on the ratio α−/α+ and the sign
of α+ only and has the form

ϕ = arg(sx + isy)

= ϕk + π

2
signα+ + arg

(
1 − α−

α+
cos 2ϕk + i

α−
α+

sin 2ϕk

)
.

(7)

Particularly, in the case of |α−/α+| � 1, Eq. (7) simplifies to

ϕ ≈ ϕk + π

2
signα+ + α−

α+
sin 2ϕk.

It implies that the deviation of the in-plane vector s‖ = (sx,sy)
from the in-plane axis perpendicular to k is proportional to
α−/α+. The polar angle θ is given by

θ = arctan(sz/s‖)

= arctan

⎛
⎝ −β cos ϕk√

α2+ + α2− − 2α+α− cos 2ϕk

⎞
⎠ . (8)

Fitting the dependence of �k, ϕ, and θ on the angle ϕk obtained
in microscopic calculations by phenomenological Eqs. (6), (7),
and (8) allows us to extract the signs and values of the spin-orbit
coupling parameters α+, α−, and β.

III. TIGHT-BINDING CALCULATION. RESULTS
AND DISCUSSION

We consider GaAs quantum well sandwiched between
Ga0.7Al0.3As barriers. We treat barriers in the virtual crystal ap-
proximation taking all tight-binding parameters as a weighted
linear combination of the corresponding GaAs and AlAs
parameters. This is a common approximation15,32 although it
neglects possible effects of bowing and disorder. The former is
known to be relatively small in GaAs/AlGaAs structures and,
therefore, can hardly affect the results. The study of disorder
effects on spin splitting goes beyond the scope of this paper,
however we note that the tight-binding method implemented
in a large supercell allows in principle such an investigation.

Electron states in the QW structure are calculated applying
the extended basis sp3d5s∗ tight-binding approach.28 The
tight-binding parameters are given in Ref. 28. To calculate
the spin splitting we choose small but finite in-plane wave
vector k and change its direction. At finite k the (double)
degeneracy of quantum-confined electron states is lifted, with
the splitting being proportional to |k|. For each direction of
k we calculate the splitting �k and the vector s of the lower
spin branch. The typical splitting is of the order of meV, see
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FIG. 3. (Color online) Spin splitting �k and the angles ϕ and
θ determining the orientation of the spin vector s as functions
of the azimuth angle ϕk of the wave vector k. Blue dots show
the results of tight-binding calculation for 10-ML width (≈20 Å)
GaAs/Ga0.7Al0.3As QW structure in the electric field Ez = 105 V/cm
and |k| = 5 × 105 cm−1. Red lines are fit after Eqs. (6)–(8) with the
spin-orbit coupling parameters given in the figure.

Fig. 3. We note that the tight-binding method provides high
accuracy of the spin splitting near the band edge15,29 since �k

is determined by the difference between the energies of spin
subbands and possible inaccuracy in the band positions does
not affect its value significantly. The electric field Ez applied
along the growth direction and causing the QW asymmetry is
taken into account in the framework of standard procedure33

by shifting diagonal energies to the local potential at atomic
sites.

The calculation shows that in symmetric QWs the spin
splitting �k is proportional to kx and the vector s points along
the growth direction in accordance with the symmetry analysis
presented above. If the electric field Ez is applied to the QW,
the dependence of �k and s on the direction of k becomes
more intricate and is perfectly fitted by phenomenological
Eqs. (6)–(8) with three parameters α+, α−, and β. An
example of such dependence calculated numerically by the
tight-binding method and the fit after Eqs. (6)–(8) are shown in
Fig. 3. For the given narrow QW (10-ML width) and chemical
composition, the spin splitting is dominated by the Dresselhaus
coupling parameter β even at the electric field Ez = 105 V/cm.
The Rashba parameter α+ is more than an order of magnitude
larger than α−.

Dependence of the spin-orbit coupling parameters β, α+,
and α− on the applied electric field Ez for 10-ML-width QW is
shown in Fig. 4. In accordance with symmetry consideration,
the parameters α± vanish at zero electric field, when the
QW is symmetric, and then increase linearly with Ez. The
Dresselhaus parameter β is almost independent of the electric
field for the given QW width and field range.

Finally, repeating the calculation procedure for different
QW thicknesses, we obtain the dependence of the spin-orbit
coupling parameters on the QW width. It is shown in Fig. 5
for the moderate electric field where the parameters α± are
still linear functions of Ez, while β is almost independent
of Ez. The dependence of the Dresselhaus parameter β on
the QW width is nonmonotonic. This is expected for k-linear

FIG. 4. (Color online) Dependence of the spin-orbit coupling
parameters α+, α−, and β on the electric field Ez calculated for
10-ML-width GaAs/Ga0.7Al0.3As QW structure. The parameter α− is
multiplied by a factor of 10.

splitting mainly caused by k-cubic terms in the bulk crystal.
We discuss this point in more detail in Sec. IV. The Rashba
parameter α+ increases with the QW width and is more than
an order of magnitude larger than α− for the given QW design
and composition. An interesting finding is that α− depends on

FIG. 5. (Color online) Dependence of spin-orbit coupling pa-
rameters α+, α−, and β on the QW width for GaAs/Ga0.7Al0.3As
structure in the electric field Ez = 105 V/cm. Solid curves show
the result of tight-binding calculation, dashed curves are plotted
after Eqs. (10) and (12) based on k· p theory. The dashed curves
are obtained for the conduction band offset V = 0.33 eV, the
effective mass m∗ = 0.067m0 (m0 is the free electron mass), the
bulk Dresselhaus constants γc(GaAs) = 24 eV Å3 and γc(GaAlAs) =
17 eV Å3, λ = 1.65 eV Å2, Eg = 1.52 eV, � = 0.34 eV, E′

g =
2.02 eV, �′ = 0.33 eV, and P = 9.8 eV Å. The above band-structure
parameters are obtained from tight-binding calculation.

205307-3



NESTOKLON, TARASENKO, JANCU, AND VOISIN PHYSICAL REVIEW B 85, 205307 (2012)

the QW width nonmonotonically and even changes the sign,
which occurs at the width ≈50 Å for this particular structure.

IV. ENVELOPE FUNCTION APPROACH

In this section we discuss the envelope function approach
for the description of spin structure of electron states in
(110) QWs and compare it with the results of tight-binding
calculation. We start with the spin splitting caused by bulk
inversion asymmetry of the host crystal. In bulk zinc-blende-
type semiconductors, the zero magnetic field spin splitting of
the conduction band is described by the k-cubic Dresselhaus
term34

Hk3 = γc

[
σx ′kx ′

(
k2
y ′ − k2

z′
) + · · · ], (9)

where γc is the material constant, and x ′‖[100], y ′‖[010], and
z′‖[001] are the cubic axes. The Hamiltonian (9) can be derived
in the framework of k· p theory by considering the mixing of
the conduction �6, valence �8 and �7, and remote conduction
�′

8 and �′
7 band states at finite k. Changing the coordinate frame

from the cubic axes (x ′,y ′,z′) to the axes (x,y,z) connected
with (110)-grown QWs and averaging the Hamiltonian over
the electron envelope function, one obtains the third term on
the right-hand side of Eq. (2) with the parameter4,5

βk p = −1

2

∫ +∞

−∞
u(z) k̂zγc k̂zu(z)dz, (10)

where u(z) is the electron function of size quantization and
k̂z = −i∂/∂z.

The dependence of βk p on the QW width calculated after
Eq. (10) is plotted in Fig. 5 by a dashed curve. The parameter
βk p is determined by the length of electron localization and
depends nonmonotonically on the QW width. In thick QWs
the agreement between the results of tight-binding calculation
and βk p is perfect indicating that the splitting comes from
bulk inversion asymmetry of the QW host crystal. In thin
QWs, where the electron function considerably penetrates into
barriers, the agreement is not that good. Such a discrepancy
may be caused by interface effects like IIA7,8,10 and specific
structure of evanescent states in the barriers,35 which are not
taken into account in Eq. (5). We check that the discrepancy
is not a feature of (110)-grown structures, it occurs in (001)
QWs as well. We also note that, for a symmetric rectangular
QW, Eq. (10) can be rewritten in the approximate form36

βk p = −γcm
∗

h̄2

Ee1

1 + 2/(κa)
, (11)

where Ee1 is the energy of size quantization, a is the QW
width, κ = √

2m∗(V − Ee1)/h̄ is the reciprocal length of the
wave function decay in the barriers, and V is the barrier height.
It is assumed in Eq. (11) that the parameter γc and the effective
mass m∗ are identical for both the QW and barrier compounds.

Now we discuss the isotropic Rashba coupling originating
from the structure inversion asymmetry of the quantum well.
The dominant contribution to the Rashba coupling comes from
the different probabilities to find an electron at the right and left

interfaces of the QW. The corresponding Rashba parameter in
k· p theory has the form (see Ref. 5)

α+,k p = λ

[
u2

(
a

2

)
− u2

(
− a

2

)]
, (12)

where

λ = P 2

3

[
�

Eg(Eg + �)
− �′

E′
g(E′

g + �′)

]
, (13)

P is the Kane matrix element, and Eg , E′
g , �, and �′ are

the band gaps and the energies of spin-orbit splitting of the
valence band at the � point of the Brillouin zone in the QW and
barrier materials, respectively. The Rashba coupling vanishes
for symmetric structures, where u2(a/2) = u2(−a/2), and it
is proportional to the external electric field Ez applied along
the QW normal for small fields. The dependence of α+,k p on
the QW width calculated after Eq. (12) is plotted in Fig. 5 by
a dashed curve and demonstrate the excellent agreement with
the results of tight-binding method.

In contrast to β and α+, the parameter α− requires the
account for both the QW asymmetry and the lattice structure
of host crystal and, therefore, cannot be obtained in the
framework of pure Dresselhaus or Rashba models. Such a
contribution to the spin splitting may come from interface
inversion asymmetry. However, the fact that α− changes the
sign with the increase of the QW width (see Fig. 5) suggests
that it is not solely determined by IIA effects and cannot
be phenomenologically described by an equation similar to
Eq. (12). The analytical calculation of α− in the framework of
k· p theory requires the careful treatment of heterointerfaces
and is a task for the future.

V. CONCLUSION

In conclusion, we have combined symmetry analysis,
atomistic modeling, and envelope function approach to study
the conduction band fine structure in quantum wells grown
along the nonconventional [110] direction. We show that
the zero magnetic field spin splitting is described by three
linearly independent parameters α+, α−, and β and extract the
parameter values from the microscopic calculation. Two of the
spin-orbit coupling parameters, Rashba α+ and Dresselhaus β,
are in good agreement with the prediction of simple envelope
function model. The third one, α−, requires the account for the
interface inversion asymmetry or joint action of both structure
and bulk inversion asymmetry. Small value of α− as compared
to α+ is consistent with weak interface-inversion-asymmetry
effects in common atom quantum wells. Much larger values
may be expected in no-common atom heterostructures like
InAs/AlSb.
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