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We report on theoretical studies of transport through graphene quantum dots weakly coupled to external
ferromagnetic leads. The calculations are performed by exact diagonalization of a tight-binding Hamiltonian
with finite Coulomb correlations for graphene sheet and by using the real-time diagrammatic technique in the
sequential and cotunneling regimes. The emphasis is put on the role of graphene flake shape and spontaneous
edge magnetization in transport characteristics, such as the differential conductance, tunneling magnetoresistance
(TMR), and the shot noise. It is shown that for certain shapes of the graphene dots, a negative differential
conductance and nontrivial behavior of the TMR effect can occur.
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I. INTRODUCTION

Since its discovery,1 graphene has been attracting an
increasing attention due to its exceptional physical prop-
erties and also possibilities of various promising practical
applications.2–4 For example, owing to a very long spin
diffusion length observed in graphene,5 one may expect that
graphene will play an important role in future molecular
spintronics. Moreover, with the advent of new powerful
experimental techniques, it is possible now to engineer and
fabricate graphene structures of various shapes and sizes,
ranging from sheets of large area to extremely small graphene
flakes. The latter can in particular exhibit single-electron
charging effects and, thus, behave as typical quantum dots,
similar to quantum dots based on two-dimensional electron
gas.6–9

In such small graphene flakes, the role of edges is much
increased in comparison to large graphene sheets. It is also well
known on theoretical grounds that zigzag edges of graphene
nanostructures have large densities of states, which in the
presence of strong enough onsite Coulomb repulsions can
result in the appearance of edge magnetism.10–12 Indeed, it
has been confirmed experimentally by scanning tunneling
spectroscopy measurements that graphene nanoribbons and
quantum dots reveal highly enhanced densities of states
(DOS) at the zigzag-type fragments of their edges.13,14 It is
worth noting that the problem of graphene/graphite’s edges
has been recently under intensive studies, as the carbon-
based nanostructures can potentially be used in modern
nanoelectronics, including also spintronics.15–22 Very recently,
it has been demonstrated experimentally that the edge DOSs
in graphene nanostructures are spin-split.23 Following this
line, in an attempt to gain additional insights into the edge
states, we suggest another approach to the problem, namely,
a visualization of the effect of magnetic edges by the analysis
of Coulomb-blockade spectra for graphene dots of different
geometries. To reach this objective, we study the transport
properties of graphene quantum dots coupled to ferromagnetic
leads.

As already mentioned above, in this paper we focus on
the limit of rather small graphene flakes, and address the

transport properties of graphene quantum dots weakly cou-
pled to external ferromagnetic leads. The Coulomb-blockade
phenomena become then relevant. In particular, we study the
effects related with the shape and edges of the graphene flakes
on various spin-resolved transport properties of the system,
including differential conductance, tunnel magnetoresistance
(TMR), and shot noise (Fano factor).

The question as to whether or not edge states can be
probed by electronic transport methods is still a matter of
intensive discussion. On the one hand, the edge magnetism
is critically suppressed in the case of contacts of good
(or even moderate) transparency.24–26 On the other hand,
however, the edge magnetism appears in isolated graphene
flakes and also survives when the flakes are weakly coupled
to electrodes.11,23,27 Additionally, the edge states may be
localized and therefore (very) weakly conducting, which
makes them hardly accessible by transport measurements.
Our studies show that some information on the edge states
can be extracted from transport measurements in the limit of
weak coupling between the graphene flakes and electrodes,
and when lateral dimensions of the flakes are not too large
(comparable to the localization length of the edge states).
The first assumption makes the energy spectra of the flakes
rather independent of the coupling to electrodes, while the
second one makes the edge states accessible in transport
measurements (albeit the corresponding conductance can be
rather small). The Coulomb-blockade spectra provide then
a kind of unique shape-specific “fingerprints”, which also
contain some information on the edge states.

The paper is organized as follows. First, the model as well
as the computational method based on real-time diagrammatic
technique are briefly outlined in Sec. II. Then, the numerical
results are presented and thoroughly discussed in Sec. III.
Summary and final conclusions are in Sec. IV.

II. THEORETICAL FRAMEWORK

The considered system is displayed in Fig. 1. It consists
of a graphene flake that is weakly coupled to external
ferromagnetic leads. The coupling strengths are described
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FIG. 1. (Color online) Scheme of a graphene quantum dot
coupled to external ferromagnetic leads. We consider graphene flakes
of three different shapes: (a) circular, (b) rectangular, and (c) rhombic.
A particular dot is coupled to external leads with coupling strengths
described by �σ

L and �σ
R for the left and right leads. It is assumed that

the system can be in two magnetic configurations: the parallel and
antiparallel ones, as sketched in the figure.

by �σ
L and �σ

R for the left and right leads. We consider
graphene flakes of three different hypothetical shapes: circular,
rectangular, and rhombic. It is assumed that the system can be
in two magnetic configurations: either parallel or antiparallel
one (see Fig. 1).

In order to find the energy levels as well as magnetic
moments of graphene quantum dots (GQDs), we have per-
formed exact diagonalization of the following mean-field
Hamiltonian:

H = −
∑

i,j,σ

ti,j |i,σ 〉 〈σ,j | + 1

2

∑

i,σ

�i,σ |i,σ 〉 〈σ,i| . (1)

Here, ti,j are the hopping integrals, |i,σ 〉 stand for π -electron
orbitals at site i with spin σ , �i,σ = U (niσ − ni−σ ) describes
the Stoner splitting, and niσ are the respective occupation
numbers. The latter have been computed self-consistently by
summing up the squared eigenvectors corresponding to the
eigenvalues not greater than the Fermi energy. The hopping
integrals ti,j are assumed to be nonzero only for nearest
neighbors, and the nearest-neighbor hopping parameter t is set
to be equal t = 2.7 eV. In turn, the Coulomb onsite repulsion
is assumed to be U = 1.2t (see, e.g., Ref. 11). All the GQDs
we consider are of comparable area (∼9 nm2) and consist of
350–400 carbon atoms. Here, we focus on the shapes with
a relatively small number of zigzag-type edge atoms, and
consequently few quasidegenerate edge states in the vicinity
of the Dirac point for U = 0 (for triangular and hexagonal
structures with purely zigzag edges, see Refs. 27 and 28).

Exact diagonalization of the Hamiltonian (1) yields the
eigenvalues εlσ that have been then used as an input to the
mean-field Hamiltonian for the graphene quantum dot

HGQD =
∑

l,σ

εlσ nlσ + EC

2
(N − n0)2 . (2)

Here, EC is the phenomenological charging energy of the dot,
εlσ is the energy of the dot’s orbital discrete level l for spin
σ , nlσ = d

†
lσ dlσ denotes the particle number operator for the

level l, N = ∑
l,σ nlσ , and n0 is the number of electrons in an

electrically neutral quantum dot.

The leads are modeled by the Hamiltonian of noninteracting
quasiparticles

HLeads =
∑

α=L,R

∑

k,σ

εαkσ c
†
αkσ cαkσ , (3)

where c
†
αkσ creates a spin-σ electron with wave vector k in

lead α and εαkσ is the corresponding energy. In turn, tunneling
processes between the dot and the leads are described by

HTun =
∑

α=L,R

∑

k,l,σ

vαl[d
†
lσ cαkσ + c

†
αkσ dlσ ], (4)

with vαl denoting the hopping matrix element between the
dot level l and the lead α. The broadening of the GQD’s
levels can be described by �σ

αl = 2πρσ
α |vαl|2, where ρσ

α is
the spin-dependent density of states in the lead α for spin
subband σ . In the case of ferromagnetic leads, this can be then
written as �

+(−)
αl = (1 ± pα)�αl , with �αl = (�+

αl + �−
αl)/2 and

pα being the spin polarization of lead α. Here, �+
αl (�−

αl)
corresponds to the coupling to the majority (minority) spin
band. In the following, we assume �αl = �α ≡ �/2 and
pα ≡ p. Furthermore, in numerical calculations, for all three
different shapes of the dots, we have also assumed the charging
energy EC = 0.15 eV and the coupling strength � = 0.002 eV.
The EC value has been found from a scaling law (against QD
size) formulated in Ref. 29. Incidentally, this scaling leads also
to acceptable estimations of charging energies in Refs. 7 and 8.

In order to reliably determine the transport properties of
Coulomb-blockade graphene quantum dots weakly coupled
to external leads, we employ the real-time diagrammatic
technique.30–32 This technique relies on systematic perturba-
tion expansion of the reduced density matrix and the operators
of interest in the dot-lead coupling strength �. The calculation
proceeds with the determination of respective self-energy
matrices W, which enables the evaluation of the elements
of the reduced density matrix of GQD by using the following
masterlike equation:31

(W̃pst)χ = �δχχ0 . (5)

Here, pst is the vector containing stationary probabilities, W̃
is the modified self-energy matrix W so as to include the
normalization of probabilities, and χ ≡ lσ labels the states
of the graphene quantum dot. Having found the occupation
probabilities, the current flowing through the system can be
calculated using the following equation:31

I = e

2h̄
Tr{WIpst} , (6)

where WI is the modified self-energy matrix W to account for
the number of electrons transferred through the system.

By performing the perturbation expansion of the respective
self-energies, one is then able to calculate the current order by
order in tunneling processes. In this paper, we have included
the first- and second-order self-energies. The first order of ex-
pansion corresponds to sequential tunneling, which dominates
transport outside the Coulomb-blockade regime, whereas the
second-order self-energies describe the cotunneling processes.
Cotunneling processes occur through virtual states of the
system and are dominant in the Coulomb-blockade regime.33

Thus, to properly describe the transport properties of the
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system in the full range of bias and gate voltages, it is of
vital importance to include both the first- and second-order
terms of the perturbation expansion.

With the aid of the real-time diagrammatic technique,
we have determined the behavior of the current I , differ-
ential conductance G, and tunnel magnetoresistance TMR
of graphene quantum dots in both the linear and nonlinear
response regimes. In addition, we have also calculated the
bias and gate voltage dependence of the shot noise S and the
corresponding Fano factor F .31 The Fano factor is defined
as F = S/(2e|I |), and describes deviation of the shot noise
from the Poissonian value, relevant for uncorrelated tunneling
events.35 The main results and their discussion are presented
in the sequel.

III. RESULTS AND DISCUSSION

In the following, we present numerical results on transport
through graphene quantum dots of similar sizes (in terms of
the number of atoms), but different shapes. For simplicity,
we assume the Fermi level of the leads to be equal to
the Fermi level of a neutral graphene. We show that the
corresponding energy spectra are strongly dependent on the
GQD geometry, and that the emerging magnetic moments
are essentially localized at zigzaglike segments of the dots’
edges. This leads to different transport characteristics of
particular GQDs, as shown and discussed in the following.
More specifically, we show that the size of blockade regions
(blockade diamonds in the bias-gate voltage dependence of the
differential conductance) can be used to gain some information
about the edge states. As it is well known, the size of the
diamonds is determined by the Coulomb charging energy EC

and the level spacing. Therefore, the sequence of diamonds
depends on whether a given level is spin degenerate or not.
The absence of spin degeneracy, in turn, implies the presence
of magnetic states. Since the edge states are either in the center
of the energy gap or close to it, the corresponding diamonds
can be easily identified.

A. Rhombic graphene dots

Let us begin our considerations with the case of graphene
flake of rhombic geometry with exclusively armchair-type
edges. The atomic structure of the graphene dot and the
corresponding energy spectrum measured from the Fermi
level, EF = 0, is shown in Fig. 2. As one can see in this
figure, the rhombic graphene flake has neither low-energy
localized states nor magnetic moments at the edges. Moreover,
the energy levels of the dot are independent of the Coulomb
parameter U , which is a consequence of the absence of
magnetized states. As one can readily see, such a structure has
therefore a quite pronounced energy gap at the Fermi level.
Thus, the armchair-edge rhombic geometry may be suitable
for engineering graphene nanostructures useful for field effect
transistor devices (with a pronounced ON/OFF current ratio).

The bias and gate voltage dependence of the differential
conductance in the parallel and antiparallel configurations
is shown in Figs. 3(a) and 3(b). The central white region
corresponds to zero excess electrons in the dot. This region
is relatively large due to the large energy gap. With sweeping

(a)

(b)

FIG. 2. (Color online) The atomic structure (a) and energy
spectrum (b) of the rhombic graphene quantum dot. There are no
magnetic solutions irrespective of the value of U , instead a quite
pronounced energy gap opens.

the gate voltage, one shifts the position of the graphene dot
levels, changing thus the number of electrons in the dot. Due
to particle-hole symmetry, the spectrum is symmetric with
respect to the central diamond. The second diamond (with
increasing gate voltage starting from Vg = 0) is much smaller
when compared to the middle one, as it is determined only
by the charging energy EC . The next diamond, apart from
the charging energy, also includes the level spacing between
the first and second levels (for positive or negative energies).
Since each level is spin degenerate, every second diamond (to
the left or to the right of the central diamond) is determined
only by the charging energy EC and therefore all of them are
relatively small. The other diamonds include additionally the
level spacing and are therefore larger. Thus, the level spacings
and the energy gap can, in principle, be determined from the
size of the corresponding blockade diamonds.

Except for particular structure of the Coulomb diamonds
related with the energy spectrum of the dot, which is indepen-
dent of the magnetic configuration of the device, one can see
that the differential conductance in the parallel configuration
GP is larger than that in the antiparallel configuration GAP.
This is related with the asymmetry in the couplings to the
spin-majority and spin-minority bands of the ferromagnets.
For the parallel configuration, the majority-majority channel
is most conducting, while in the antiparallel configuration there
are two weakly conducting majority-minority channels. As a
consequence, GP > GAP. The difference between the system
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(a)

(b)

(c)

FIG. 3. (Color online) The bias V and gate Vg voltage dependence
of the differential conductance in the parallel (a) and antiparallel (b)
configurations as well as the resulting TMR effect (c) calculated for
rhombiclike graphene quantum dot. The parameters are the charging
energy EC = 0.15 eV, the coupling strength � = 2 meV, the thermal
energy kBT = 20 meV, and the leads’ spin polarization p = 0.5.

transport properties in these two magnetic configurations
is described by the tunnel magnetoresistance, defined as37

TMR = (RAP − RP)/RP, with RP and RAP denoting the resis-
tance in the parallel and antiparallel magnetic configurations
of the device. The bias and gate voltage dependence of TMR
is shown in Fig. 3(c). First of all, one can see that the
TMR is always positive, as in typical spin-value quantum-dot
devices.36 The TMR is particularly enhanced in the central
Coulomb-blockade diamond [black area in Fig. 3(c)], where
the sequential tunneling is exponentially suppressed while
transport takes place via cotunneling events. In this transport
regime, the dot is empty and the current is driven by elastic
cotunneling processes.32,36 The TMR is then exactly given by
the Julliere value37 TMRJull = 2p2/(1 − p2), which for the as-
sumed parameters yields 2/3. In other Coulomb diamonds, the
inelastic cotunneling processes become relevant and the TMR
is generally smaller than Julliere’s value. Similar behavior can
be observed in the sequential tunneling regime, where the TMR
is much smaller than TMRJull. This is related with the fact that
the information about magnetic configuration of the device is
now transferred by uncorrelated sequential tunneling events
and the nonequilibrium spin accumulation, which builds up in
the graphene quantum dot. This mechanism is less effective

(a)

(b)

FIG. 4. (Color online) The Fano factor in the parallel (a) and
antiparallel (b) magnetic configuration as a function of the bias and
gate voltages for rhombiclike graphene quantum dot. The parameters
are the same as in Fig. 3.

than direct spin-conserving cotunneling between the left and
right leads, thus the TMR is smaller than Julliere’s value.

The Fano factors in the parallel and antiparallel magnetic
configurations of the device are shown in Fig. 4. In both cases,
the shot noise in the blockade regions, where cotunneling
processes dominate, is generally super-Poissonian, i.e., the
corresponding Fano factors are larger than unity, F � 1. This
is related with bunching of inelastic cotunneling events38 and
has already been observed experimentally in transport through
other quantum-dot systems.39,40 Interestingly, in the central
diamond, where elastic cotunneling mediates the current, the
Fano factors in both magnetic configurations approach unity.
This is due to the fact that the elastic cotunneling processes
are uncorrelated in time and the shot noise is Poissonian.
In the regions where transport is dominated by sequential
tunneling processes, the corresponding shot noise is rather sub-
Poissonian with the relevant Fano factors smaller than 1, F <

1. This suppression of the noise is due to Coulomb correlations
between consecutive sequential tunneling processes. We note
that the calculations include also the thermal noise, which is
dominant in the small bias voltage regime. Accordingly, when
V tends to zero, the current and shot noise both tend to zero,
and the noise is dominated by the thermal noise (nonzero also
at V = 0). Thus, the corresponding Fano factor diverges when
V → 0, as marked with a horizontal stripe in Fig. 4.

B. Circular graphene dots

Let us now have a closer look at the circular graphene flake.
In this geometry, the edge atoms have rather short zigzaglike
(and armchairlike) coordinations. Consequently, any complete
compensation of the edge magnetization (antiferromagnetic
alignment) can be hardly realized on geometrical grounds.
Our calculations show that indeed the ground-state magnetic
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(a)

(b)

FIG. 5. (Color online) The atomic structure (a) and energy
spectrum (b) for circular graphene flake. In the case of U = 0, there
are no magnetic edges, while magnetic edges appear for finite U . Note
that in the latter case, an energy gap (�E) opens. The corresponding
magnetic configuration is also displayed in (a). The maximum edge
magnetic moments are equal to approximately 1/5 μB . However, the
total magnetic moment of the dot is equal to 1μB .

configuration of the edges is ferromagneticlike (ferrimag-
netic), but with some admixture of antiparallel magnetic
moments. In this situation, there is no way to control spin-
dependent electric current with external magnetic field, unless
one makes use of ferromagnetic electrodes.

When U = 0 (nonmagnetic dot), there is no gap at the
Fermi level. However, as shown in Fig. 5, the presence of edge
magnetism (U > 0) leads to the opening of an energy gap �E

at the Fermi level. Noteworthy, near the half-band filling, the
highest occupied energy levels are fully spin polarized: the dot
behaves as a magnetic one. The overall magnetic moment of
the dot shown in Fig. 5 is equal to 1μB . This, in turn, affects
the spin-resolved transport properties of the system, which
now show some asymmetry with respect to the bias and gate
voltage reversal.

Incidentally, in accordance with Lieb’s theorem,41 one can
increase the net magnetic moment up to (NA − NB)μB by
modifying the edges so as to increase the imbalance of the
numbers NA and NB of the A(B)-sublattice atoms. Our results
are rather robust against moderate edge disorder. In particular,
when a few edge atoms are removed, then possible implications
are consistent with predictions based on the aforementioned

(a)

(b)

(c)

FIG. 6. (Color online) The bias and gate voltage dependence of
the differential conductance in the parallel (a) and antiparallel (b)
configurations as well as the resulting TMR effect (c) calculated for
circular graphene quantum dot. The parameters are the same as in
Fig. 3 except for thermal energy, which is kBT = 10 meV.

theorem. Noteworthy, the asymmetry seen in Fig. 6 provides
direct visualization of the presence of GQD’s uncompensated
spin. In another context as the present one, the edge-state
effects on the electronic structure as well as charge and spin
transport have been studied in Refs. 42 and 43.

The differential conductance spectra in both magnetic
configurations are shown in Fig. 6. First, we note that in
equilibrium, all the states of negative energy are occupied
and the dot has one unpaired spin-down electron. The addition
of a new electron costs then the charging energy plus half the
level spacing �E (see Fig. 5). Note that the added electron is
a spin-up one. This corresponds to the large central diamond
in Fig. 6. The subsequent electron occupies spin-down level
and the corresponding addition energy includes the Coulomb
charging energy plus the spacing between the first and second
levels of positive energy. Since the latter spacing is much
smaller than �E, the corresponding diamond is smaller than
the central one, but it is still larger than the diamond determined
by EC only. It indicates that this state is magnetic. The
next electron occupies again the spin-down level, which is
almost degenerate with the previous level. The corresponding
diamond is determined practically by the charging energy
EC and is therefore smaller than the preceding one. The
following two electrons occupy the two spin-up states (also
almost degenerate), so the corresponding two diamonds are
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determined by the charging energy plus the level spacing and
charging energy, respectively. Similar scenario holds for higher
gate voltages, when higher energy levels become occupied by
electrons, as well as to negative gate voltages.

It is also worth noting that now the spectra are significantly
different from the corresponding ones for U = 0 (see Fig. 5).
Since for U = 0 there is no gap at the Fermi level, the central
diamond should be then determined by the charging energy
only and therefore should be small. The second diamond
should be relatively large while the three subsequent diamonds
should be small and determined by the charging energy. Thus,
the conductance spectra can be used to distinguish the situation
with nonzero U from that with U = 0.

Apart from the typical Coulomb-blockade diamonds de-
scribed above, the transport characteristics display an asym-
metry with respect to the bias reversal (see Fig. 6). This is
due to the spin splitting of the GQD’s levels. In addition, in
certain transport regimes, one can find a negative differential
conductance, which is present in both magnetic configurations.
This effect is basically related with the fact that for certain
transport voltages, electrons participating in transport are
mainly spin-down (minority-spin) ones and the current is thus
decreased.

The difference between the currents flowing through the
system in the two magnetic configurations of the device
results in the TMR effect shown in Fig. 6(c). Because now
the energy eigenstates of the graphene dot are no longer spin
degenerate, one can observe a nontrivial behavior of the TMR
as a function of both the bias and gate voltages. First of all,
it can be seen that in certain transport regimes, the TMR can
take values much larger than those given by Julliere’s model.
Furthermore, there are transport regimes where TMR changes
sign and becomes negative. To explain this behavior, we will
refer to approximate formulas for sequential tunneling and
cotunneling currents. Suppose the temperature is much larger
than the coupling strength �, but still smaller than the charging
energy EC (EC > kBT � �). Then, transport is mainly
determined by thermally activated sequential tunneling. The
current is thus proportional to I seq ∼ ∑

σ �σ
L�σ

R/(�σ
L + �σ

R). If
transport occurs through the spin-up level of the dot, the current
in the parallel configuration is I

seq
P ∼ (1 + p)�/2, while for

the antiparallel configuration one finds I
seq
AP ∼ (1 − p2)�/2,

which yields, for the TMR, TMRseq = p/(1 − p). If, in turn,
the current is related with tunneling through spin-down levels,
one gets I

seq
P ∼ (1 − p)�/2 and I

seq
AP ∼ (1 − p2)�/2 for the

parallel and antiparallel configurations, respectively, and the
TMR is now negative, TMRseq = −p/(1 + p). On the other
hand, if the temperature is comparable to the coupling strength
kBT ≈ � 	 EC , the current is mainly due to cotunneling
processes. Its dependence on the spin polarization of the leads
can be found if one considers elastic cotunneling regime,
where I ∼ ∑

σ �σ
L�σ

R . Then, if cotunneling occurs through
spin-up levels, the currents in the two configurations are
proportional to IP ∼ (1 + p)2�2, IAP ∼ (1 − p2)�2, yielding
TMR = 2p/(1 − p), which for the assumed parameters (p =
0.5) gives TMR = 2. Note that now TMR = 3 × TMRJull,
i.e., one obtains maximum TMR three times larger than
in the case of rhombiclike graphene flake discussed in the
previous section. However, if cotunneling occurs through
spin-down levels, the current in the antiparallel configuration

(b)

(a)

FIG. 7. (Color online) The Fano factor in the parallel (a) and
antiparallel (b) magnetic configuration as a function of the bias and
gate voltages for circular graphene quantum dot. The parameters are
the same as in Fig. 6.

is the same as above, while the current in the parallel
configuration becomes IP ∼ (1 − p)2�2, which results in
TMR = −2p/(1 + p). For the assumed parameters, one then
finds TMR = −2/3 = −TMRJull, i.e., the system exhibits a
large-magnitude negative TMR. Because the calculations are
performed for EC > kBT > �, one finds that the TMR in the
Coulomb diamonds is much enhanced compared to Julliere’s
value, with 2p/(1 − p) � TMR � p/(1 − p), if transport is
due to spin-up states of the graphene dot. On the other hand, if
spin-down states are active in transport, a negative TMR occurs
with −p/(1 + p) � TMR � −2p/(1 + p). These values of
the TMR can be clearly seen in Fig. 6(c).

The corresponding Fano factors in both magnetic con-
figurations are shown in Fig. 7. In both cases, the shot
noise is generally super-Poissonian in the Coulomb-blockade
regions, where cotunneling processes dominate, and bunching
of inelastic events enhances the noise. In other regimes,
transport is dominated by sequential tunneling processes and
the corresponding shot noise is sub-Poissonian, F < 1. As
before, this is due to the Coulomb correlations between
sequential tunneling events and the Pauli exclusion principle,
resulting in suppressing of the noise.

C. Rectangular graphene dots

In this section, transport through a rectangular graphene
quantum dot with zigzag and armchair edges is studied. In
contrast to the cases discussed earlier, with either nonmagnetic
edges (rhombus dot) or nearly ferromagnetically aligned ones
(circular dot), the present case corresponds to a spontaneous
antiparallel alignment of magnetic edges. This device may
therefore act as an effective spin valve or a magnetoresistive
sensor, and appears potentially useful for spintronics.16,34

Figure 8 presents atomic structure of the considered
graphene flake and the corresponding energy spectrum. It
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(a)

(b)

FIG. 8. (Color online) The same as in Fig. 5 but for the rectangular
graphene quantum dot. Now, the maximum edge magnetic moments
are equal to approximately 1/3 μB .

can bee seen that for a sufficiently large onsite Coulomb
repulsion parameter U , an energy gap opens in the energy spec-
trum, resulting in a metal/semiconductor (zero-gap/finite-gap
semiconductor) transition. Moreover, the energy levels of this
graphene dot remain spin degenerate (perfect compensation of
the net magnetization), in contrast to the case of the circular
dot.

The subsequent figures show the corresponding bias and
gate voltage dependence of the differential conductance and
TMR (see Fig. 9) as well as the Fano factor (see Fig. 10).
Since there is a gap at the Fermi level, the central diamond in
the differential conductance is now rather large and includes
the charging energy plus a half of the energy gap. Because
the energy levels are now spin degenerate, every second
diamond is smaller, as it is determined merely by the charging
energy EC . Moreover, because of the spin degeneracy of the
levels, the differential conductance in the parallel configuration
is always larger than that in the antiparallel configuration,
yielding positive TMR (see Fig. 9). The behavior of TMR
resembles that in the case of the rhombic graphene flake. The
TMR is given by Julliere’s value in the Coulomb diamonds
where elastic cotunneling drives the current, and is much
more suppressed in the other diamonds with either inelastic
cotunneling or sequential tunneling.

The bias and gate voltage dependence of the Fano factor in
both magnetic configurations of the device is shown in Fig. 10.
The general features of these spectra are qualitatively similar to
those discussed earlier in the case of the rhombiclike graphene
dots: F ≈ 1 in the Coulomb-blockade regions when elastic

(a)

(b)

(c)

FIG. 9. (Color online) The bias and gate voltage dependence of
the differential conductance in the parallel (a) and antiparallel (b)
configurations as well as the resulting TMR effect (c) calculated for
rectangular graphene quantum dot. The parameters are the same as
in Fig. 6.

(a)

(b)

FIG. 10. (Color online) The Fano factor in the parallel (a) and
antiparallel (b) magnetic configuration as a function of the bias and
gate voltages for rectangular graphene quantum dot. The parameters
are the same as in Fig. 6.
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cotunneling is relevant, F � 1 in the blockade regions when
inelastic cotunneling is present, and F < 1 in the sequential
tunneling regime.

IV. CONCLUSIONS

In this paper, we have analyzed transport properties of
graphene quantum dots of different geometries in the presence
of the onsite Coulomb repulsion. Characteristic features due to
GQD edges are shown to be reflected in the Coulomb-blockade
diamonds and other transport characteristics. It has been
demonstrated that the TMR effect in graphene quantum dots
may be quite large, much larger than the corresponding Jul-
liere’s value of TMR. In turn, the shot noise was found to take
both sub-Poissonian as well as super-Poissonian values. Out of
the three graphene flake shapes studied here, the armchair-edge
rhombus flake shows no magnetism, the circular flake has
uncompensated ferrimagnetic edge configuration, whereas
the rectangular flake displays antiparallelly aligned zigzag-
edge magnetizations. All these features manifest themselves
in transport characteristics, providing information about the
geometry and edge states of graphene dots.

In frame of the model assumed, the conductance spectra can
be used to check whether the energy spectrum includes zero
energy levels or not. If they do, then the first diamonds are
determined only by the charging energy and are small. If not,
then the central diamonds are large as they include not only
the charging energy, but also the level separation due to the

size quantization. However, the model is not free from some
limitations, so the conductance spectra in real situations may be
different. Accordingly, the conclusions concerning magnetic
edge states should rather be regarded as indicative only. First
of all, the description is based on mean-field approximation
for charging energy EC and also for the coupling parameter
�. In reality, both parameters may depend on the particular
states taking part in transport. As already mentioned in the
Introduction, this may be especially important for �, when
transport occurs via localized edge states. As the variation of
EC has some influence on the size of the Coulomb diamonds,
the variation of � modifies mainly the conductance and TMR,
leaving the size of the diamonds unchanged. Being aware of
all the underlying assumptions, we believe our results present
a sound starting point aimed at transport characterization
of the electronic states (including also the edge states) of
graphene flakes. Since both the crucial parameters (especially
the coupling parameter �) depend on a particular experimental
realization, a more accurate description can be performed
when the relevant experimental data are available.
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