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First-principles study of nonclassical effects in silicon-based nanocapacitors
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Properties of silicon-based nanocapacitor are studied from first principles. The nanocapacitor consists of
electrodes of the silicon-based material planar polysilane. Nonclassical effects are analyzed by changing both
the electrode spacing and the applied bias simultaneously. Even when the electrode spacing is fixed, the effective
electrode spacing decreases with applied bias because of the quantum capacitance effect. In addition, when
the electrostatic capacitance is analyzed in detail, it is also found that the effective electrode surface changes
complicatedly with electrode spacing and applied bias because of the dielectric polarization effect of the electrode
material. The dielectric polarization effect is one order of the magnitude smaller than the quantum capacitance
effect, which is due to the nature of the electrode material, planar polysilane. It is clarified that a nanocapacitor
is governed by the detailed properties of the electronic states of the electrode materials as well as the geometry.
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I. INTRODUCTION

The physical properties of nanoscale structures are at-
tracting great interest, and various new phenomena have
been discovered. Since any field effect transistor with nanos-
tructures acts as a nanocapacitor, an understanding of the
physical properties of a nanocapacitor is important. In classical
electrostatics, the capacitance is geometrically determined by
the electrode spacing and the dielectric constant between the
electrodes. However, the capacitance of nanocapacitors is not
so simple. It is known that quantum capacitance plays an
important role in nanocapacitors.1–10 The capacitance C of
a nanocapacitor is written as

C = 1

1/Ces + 1/C+ + 1/C− , (1)

where Ces is the geometric capacitance, and C+ and C−
are the quantum capacitances of the positive electrode and
of the negative electrode, respectively.1,7 Since the quantum
capacitance originates from the density of states of the
electrodes, the electronic structure of the electrodes is reflected
in the capacitance. Recent progress in nanofabrication tech-
niques have made experimental observations of such quantum
capacitance possible. Van Hove singularity of the density
of states has been clearly observed for a carbon nanotube
nanocapacitor.11 It has also been revealed that the device
properties of a graphene field effect transistor are governed
by the quantum capacitance.12,13

The physical properties of nanocapacitors have also been
studied theoretically.14–23 Equation (1) is extended for the case
of the single channel contact with leakage current as

C = R

1/Ces + 1/C+ + 1/C− , (2)

where R is the reflecting probability of the contact.14 A clear
quantum capacitance has been reported for nanocapacitors
based on electrodes made of materials like SrTiO3 and carbon
nanotube. In addition, the theories also show another non-
classical behavior of nanocapacitors: The effective electrode
distance is shorter than the real geometrical distance for the
ideal jellium nanocapacitor while the quantum capacitance
effect cannot appear.17 This is attributed to the electron spill
out from the electrodes by the dielectric polarization effect.

Generally speaking, when a bias is applied, charging on the
electrodes and electric field between the electrodes induce
dielectric polarization in the electrode materials. Because of
this polarization, Ces, C+, and C− must be disturbed by the
applied bias, and nonclassical phenomena such as electron
spillout occur.

This suggests that the physical property of nanocapacitors is
also affected by the dielectric polarization, while the detail has
not been sufficiently clarified yet. In this study, we therefore
investigate the relation of the dielectric polarization effect with
the quantum capacitance effect in nanocapacitors with realistic
electrodes consisting of atoms based on the first-principles
approach. We focus on the electronic polarization effect
among the dielectric polarization effect, and neglect the lattice
polarization effect.

Here, we study a nanocapacitor with planar polysilane
electrodes. Planar polysilane is a silicon (Si) atomic sheet
with surface hydrogen (H) termination24–26 [Fig. 1(a)]. It is
two-dimensional and semiconducting with the band gap of
2.21 eV. It is the ultimate structure of silicon (111) thin
film and a prototype of silicon nanodevices, which have been
discussed as a light-emitting silicon.27,28 Because of surface
H termination and strong quantum confinement normal to the
plane, it is difficult to be polarized dielectrically as shown
in its normal dielectric constant about 6.5 lower than that of
bulk Si (about 14) or of ideal metal (∞).29 In addition, since
the two-dimensional semiconductor feature results in a step-
function-like square density of states, large and clear quantum
capacitance is expected. We study both the electrode-spacing
dependence and applied-bias dependence simultaneously to
clarify the physical properties of the nanocapacitor and confirm
nonclassical features for the nanocapacitance coming from the
dielectric polarization of the electrode materials as well as from
the quantum capacitance.

II. METHOD

As the electrodes of the capacitor, we employ planar
polysilane. The area of the lateral unit cell is 12.76 Å2. The
atomic layer spacings of Si-H and Si-Si in the electrode are
1.50 and 0.74 Å. The thickness of the electrode is then 3.74 Å
if the surfaces are determined by the position of the H atoms.
Therefore, the distances from the center of the electrode to
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FIG. 1. Atomic structures and fundamental properties of the
calculated nanocapacitor. (a) Close-up view of the atomic structure of
the electrode, planar polysilane. (b) Side view of the nanocapacitor.
Solid and empty circles indicate H and Si atoms, respectively.
(c) Band dispersion relation of the noncharged electrode. (d) Density
of states of the noncharged electrode.

the H atom for both the positive and negative electrodes [b in
Fig. 1(b)] are 1.87 Å. Our model capacitor is made of an infinite
superlattice alternation of such polysilanes with fixed spacing.
Alternative bias application makes the electrodes positively
and negatively charged one by one [Fig. 1(b)].

We apply bias on the electrodes of the capacitors and
calculate the electronic states and the accumulated charge from
first principles using the enforced Fermi energy difference
(EFED) method we have developed.19,29,30 This EFED method
enables us to apply a relatively high bias between the elec-
trodes, because the method prohibits the flow of the leakage
current between the electrodes. This means that R in Eq. (2)
is kept as 1 even under application of a high bias. We used
norm-conserving pseudopotentials, the plane-wave basis set
to the cutoff of 25 Ry, the generalized gradient approximation
(GGA) with the exchange-correlation functional,31 and 72
sample k points in the first Brillouin zone. For simplicity
of the discussion and the analysis, the atomic positions are
fixed even when bias is applied. We also just consider the zero
electronic temperature case. To make the analysis of quantum
capacitance easier, we use relatively short 4.76, 5.46, 6.58,
or 7.94 Å as the electrode spacing, d, the distance between
the surface H layers of the positive and the negative electrode.
Since we apply the bias μ from zero to 8.2 eV, the electric field
between the electrodes achieves the order of 1 × 1010 V/m in
the maximum.

As shown in the band dispersion relation for the nonbiased
case [Fig. 1(c)], the electrodes are semiconducting with the
indirect band gap Eg of 2.21 eV. Since the confinement is along
the [111] direction, all electron pockets in the conduction band
bottom are projected on the points between � and M . Since
we do not consider the spin-orbit interaction, the valence band
top at the � point is doubly degenerated. At the � point of

the conduction band bottom, a pocket also appears due to the
antibonding of the surface-terminated Si-H bonds. The direct
band gap at the � point is, then, 2.48 eV. The flat dispersion
in the direction perpendicular to the Si plane indicates that the
electronic states of the electrodes are well-separated by the
vacuum between them. The density of states for the nonbiased
case shows a step-function-like square feature at both the con-
duction and the valence band edges, as expected from the
two-dimensional atomic structure. It also shows a larger value
at the conduction band edge than at the valence band edge
[Fig. 1(d)]. This is because the bottom of the conduction band
is six-times degenerated, while the top of the valence band is
doubly degenerated. The band structure indicates that electrons
accumulate in the conduction band bottom at the M point in
the negative electrode, while holes accumulate in the valence
band top at the � point in the positive electrode.

III. CHARGE ACCUMULATION

When a bias μ is applied, positive and negative charges
accumulate on the positive electrode and the negative elec-
trode, respectively. The absolute value of the accumulated areal
charge on the electrode Q can be evaluated as follows:

Q =
∣∣∣∣
∫

L+
�ρ(x)dx

∣∣∣∣ . (3)

Here �ρ(x) represents the laterally averaged distribution at
x of the increase in the electron density from the μ = 0
case. The integral section, L+, starts from the center of the
positive electrode and ends at the middle of the two electrodes
[Fig. 1(b)].

�ρ(x) on the positive electrode and on the negative
electrode are shown as the function of x position for various μ

for d = 7.94 Å in Figs. 2(a) and 2(b). Since holes and electrons
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FIG. 2. Changes in the electron density �ρ(x) at d = 7.94 Å on
(a) the positive electrode and (b) the negative electrode as a function
of x position for various applied biases μ. (c) Accumulated charge
Q as a function of applied bias μ. (d) Extracted V , u−, and u+ as a
function of μ.
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are accumulated in the valence band of the positive electrode
and the conduction band of the negative electrode, respectively,
�ρ(x) of the negative electrode shows a different shape from
that of the positive electrode. Such a difference causes a
nonclassical effect on the nanocapacitance, as discussed below.

The calculated Q is shown in Fig. 2(c) as a function of μ

and d. The charge accumulation occurs when μ > Eg. This is
because electrons at the top of the valence band of the positive
electrode cannot move into the conduction band bottom on the
negative electrode due to the band gap of the semiconducting
electrodes if μ is smaller than the band gap Eg. Figure 2(c) also
shows that Q decreases as d increases. This can be explained
by the weakening of the electric field due to the increase of d

as in the classical theory.
The applied bias μ should not be confused with the

electrostatic potential difference V (see Fig. 4 in Ref. 19).
When a bias is applied, electrons accumulate in the conduction
band bottom and holes accumulate in the valence band top. A
part of the bias is used as the increase of the Fermi energies in
the electrode, u+ and u−. μ is therefore the sum of the band gap
Eg and the electrostatic potential V in addition to u+ and u−:

μ = Eg + eV + u+ + u−. (4)

Here e is the elementary charge. Thus, we decompose μ into
each contribution of u+, u−, and V from the change of the
eigenenergies of the calculated electronic states as μ changes
[Fig. 2(d)]. The results indicate that the contributions of u+
and u− are smaller by one order of magnitude than that of V

and too large to be neglected.

IV. CAPACITANCE AND QUANTUM CAPACITANCE

The areal capacitance C can be calculated as C = edQ/dμ.
The calculated capacitances look like a step function, while
they slowly increase for μ > Eg [Fig. 3(a)]. The increase
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FIG. 3. (a) Capacitance C as the function of applied bias μ.
(b) Capacitance C at fixed μ as a function of d . (c) Effective permittiv-
ity εeff and effective residual electrode spacing d0 as a function of μ.
(d) Comparison of C with its components Ces, C+, and C− as a
function of μ.

is more rapid for smaller d. They also simply decrease
as d increases, which is consistent with the classical
theory.

If we plot 1/C as a function of d, the relationship appears to
be linear, as shown in Fig. 3(b), while it has weak dependence
on μ. We then fit the d dependence of C for each μ by C =
εeff/(d + d0) with fitting parameters εeff and d0 when μ > Eg.
The result is shown in Fig. 3(c). It is clear that the capacitance
C shows nonclassical features. The effective residual electrode
spacing d0 drastically decreases with increasing μ, while the
positive values of d0 indicate that the effective electrode sur-
faces are located between H and Si layers. On the other hand,
the effective permittivity εeff stays around its ideal value of
ε0, while it slightly decreases when μ increases. This means
that Eq. (2) with R = 1 is surely satisfied in our results as we
expected.

To clarify the reason of such nonclassical features, we
decompose C into electrostatic and quantum capacitances. If
we recall Eq. (4), C = edQ/dμ is written as

1

C
= 1

Ces
+ 1

C+ + 1

C− . (5)

This is the same form as Eq. (1). Here, Ces = dQ/dV is the
geometric capacitance, or the electrostatic capacitance. C+ =
edQ/du+ and C− = edQ/du− are the quantum capacitances
of the positive electrode and the negative electrode, respec-
tively. The three components for d = 4.76 Å are evaluated
from the results shown in Fig. 2(c) as a function of μ

[Fig. 3(d)]. The absolute values of quantum capacitances C+
and C− are larger by one order of magnitude than those
of capacitance C and electrostatic capacitance Ces. This is
because the contributions of u+ and u− are smaller by one
order of magnitude than that of eV .

Since u+ and u− are the Fermi energy positions in the
electrodes, the quantum capacitances can be written as C+ =
eD+/2 and C− = eD−/2 by using the electrode density of
states D+ and D−. The factors 1/2 on the right-hand side come
from the periodic geometry of our system. We can evaluate
D+ = 0.019 eV−1 Å−2 and D− = 0.035 eV−1 Å−2 at μ =
3.0 eV. These values show good consistency with the electrode
density of states for μ = 0 shown in Fig. 1(d). D+ and D−
correspond to the density of states at the valence band top
and conduction band bottom, respectively. In addition, the μ

dependence of C+ and C− is also consistent with the density
of states shown in Fig. 1(d).

On the other hand, Ces stays almost constant but slightly
increases when μ > Eg [Fig. 3(d)]. This indicates that the
increase in C with increasing μ mainly comes from the
increase in C+ and C−. This means that the μ dependence of
d0 mainly comes from that of quantum capacitances C+ and
C−, if we recall C = εeff/(d + d0). The contribution from C+
and C− to d0 can be evaluated by dQ = ε0(1/C+ + 1/C−).
The obtained dQ for d = 4.76 Å is consistent with d0

[Fig. 3(c)]. This suggests that d0 can be mostly explained by
the effect of the quantum capacitance even for a relatively high
bias.

It should be noted here that D+ and D− shown in Fig. 3(d)
are, rigorously speaking, different from the density of states
shown in Fig. 1(d). Since bias is applied for D+ and D−,
they are affected by the dielectric polarization of the electrode
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materials. It seems that the slight decrease in εeff with the
increase in μ is also the result of the dielectric polarization.

V. ELECTROSTATIC CAPACITANCE

Next, we analyze the electrostatic capacitance Ces in
detail and discuss the dielectric polarization effect on Ces.
In the classical picture, this part is thought to be determined
solely by the geometry of the electrodes. From the geo-
metrical point of view, the electrostatic potential V can be
described as

V = Q

ε0
(a − d+

es − d−
es). (6)

Here a = d + 2b, as shown in Fig. 1(b). Effective electrode
surface distances d±

es are defined by

d±
es = 1

Q

∣∣∣∣
∫

L±
�ρ(x)(x − x±

0 )dx

∣∣∣∣ , (7)

where x±
0 is the x position of the center of the positive electrode

(+) or the negative electrode (−). �ρ(x) is the laterally
averaged distribution at x of the increase in the electron density
from the μ = 0 case [Figs. 2(a) and 2(b)]. The integral section,
L±, starts from the center of the electrode, positive electrode
(+) or negative electrode (−), and ends at the middle of the
two electrodes [Fig. 1(b)]. Using this d±

es , Ces = dQ/dV can
be written as

Ces = ε0

a − d+
es − d−

es
(8)

if we assume that d±
es does not depend on Q or μ as in

the classical picture. Alternatively, using des = 2b − d+
es − d−

es ,
Ces can be written as

Ces = ε0

d + des
. (9)

Therefore, analyzing d±
es or des leads us to a detailed discussion

of the physical properties of Ces.
The calculated d±

es for our nanocapacitor are shown in
Fig. 4(a) as a function of μ. The results indicate that
electrode surface differs between the positive electrode and
the negative electrode and moves with μ and d on the order of
0.1 Å. This means that, strictly speaking, the classical un-
derstanding of the electrostatic capacitance is not appropriate
for our nanocapacitor. The μ dependence of d+

es and d−
es

for d = 4.76 Å has already been discussed in our previous
work,29,30 where we compared the changes of d+

es and d−
es with

those calculated from the wave functions around the Fermi
energy. We discussed that the relatively high changes of d+

es
and d−

es come from the μ-dependence nature of the dielectric
response of the electrode materials. In this study, however,
we discuss d+

es and d−
es more deeply in terms of physics to

clarify the effect of the dielectric polarization on the electrode
materials.

The figure indicates that d+
es decreases for μ > 3 eV as

μ increases, while it first increases. On the other hand, d−
es

increases for μ > 3 eV as μ increases, while it first decreases.
The μ dependence for the positive electrode is thus opposite
to that for the negative electrode. This relation holds for any d.
We hereafter focus on the range of μ > 3 eV, because the error
in the calculation is considered to be large for μ < 3 eV since
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FIG. 4. Effective electrode surface distances d±
es as a function of

(a) applied bias μ and (b) electrode spacing d . des as a function of (c)
applied bias μ and (d) electrode spacing d .

only little charge Q accumulates on the electrodes. It is thought
that the change of μ affects both the charge Q accumulated on
the electrodes and the electric field E induced between them.
This leads us to discuss the μ-dependent results in terms of
the effects of Q and E.

First, we consider the dielectric polarization effect coming
from Q. On the nanoscale, the electrode consists of atomic
nuclei and electrons, and the change of Q comes from the
change of the total number of electrons on the electrode.
The total number of electrons increases on the negative
electrode, while it decreases on the positive electrode. Since
the amount of positive background of the nuclei does not
change, the Coulomb force more attracts the electrons for the
positive electrode and repulses them for the negative electrode.
Therefore, the increase of Q is considered to result in the
decrease of d+

es and the increase of d−
es .

Next, we consider the dielectric polarization effect coming
from E. Since the opposite charge is located on the opposite
electrode, E has an effect of separating the positive charge
from the positive electrode and the negative charge from the
negative electrode. On the nanoscale, E attracts the electrons
for the positive electrode and repulses the electrons from the
electrode for the negative electrode. Therefore, the increase of
E is considered to result in the decrease of d+

es and the increase
of d−

es . The increase of E thus has the same effect as the increase
of Q. In classical electrostatics, Q is proportional to E. This
is consistent with the discussions here. Since the increase of
μ results in the increase of both Q and E, these discussions
indicate that d+

es decreases and d−
es increases when μ increases.

This is surely consistent with the calculated behaviors of d+
es

and d−
es for μ > 3 eV shown in Fig. 4(a).

In this study, we also successfully calculated the d depen-
dence of d±

es , as shown in Fig. 4(a). The d±
es are also shown in

Fig. 4(b) as a function of d for each of fixed μ. These figures
show that both d±

es are monotonically increasing functions of
d except for d−

es with μ > 7 eV. The d dependence can also be
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discussed in terms of the dielectric polarization effect by the
changes of Q and E. According to classical electrostatics, both
Q and E increase in proportional to 1/d as d increases with
fixing μ. This means that the decrease of d plays the same role
as the increase of μ. This explains almost all calculated results
on the d dependence shown in Figs. 4(a) and 4(b), while it
fails to explain the d dependence of d−

es for μ < 7 eV.
The reason for the unexpected behavior of d−

es for
μ < 7 eV is thought to be an artifact of our EFED
method. In the EFED method, electrons in the negat-
ive electrode are artificially trapped in an additional well with
μ-dependent depth. The width of the well also changes with
d. When d is smaller, electrons in the negative electrode are
trapped more tightly around the center of the electrode. Here,
we should note that d+

es is not affected by this artifact. If
the EFED artifact had the effect, the electrons in the positive
electrode would be more strongly attracted outward from the
electrode for smaller d, and d+

es would be a decreasing function
of d. However, the calculated results show that d+

es is surely an
increasing function of d.

The d dependence also provides interesting information on
the dielectric polarization effect. Since Q is proportional to
E in classical electrostatics, the values of E must coincide
with each other when the values of Q are the same for
different μ and different d. From the above discussion, d+

es
is governed by charge Q accumulated on the electrode and
electric field E in the space between the electrodes. Therefore,
the values of d+

es are expected to also be the same when the
values of Q are the same for different μ and different d.
According to Fig. 2(c), Q = 3 × 10−22 C/Å2 for μ = 4.3 eV
at d = 4.76 Å and for μ = 5.4 eV at d = 7.94 Å. If we check
Fig. 4(a), d+

es = 1.55 Å when μ = 4.3 eV at d = 4.76 Å,
and d+

es = 1.59 Å when μ = 5.4 eV at d = 7.94 Å. Therefore,
the two values of d+

es do not coincide and the classical picture
breaks down. This paradox can be explained by the fact that
smaller d has larger E. This clearly means that the relation
between Q and E is different if d is different, namely, that the
proportionality coefficient, the effective dielectric constant of
the space between the electrodes, ε, is a function of d. This
seems to be related with the slightly decreasing εeff when μ

increases as discussed in the previous section [Fig. 3(c)]. Thus,
simple geometrical theory based on classical electrostatics is
not useful for nanocapacitance.

If we further analyze the calculated results for d±
es more

carefully, we find that the degrees of the μ dependence of
d+

es and of d−
es are different. Since the directions of the μ

dependence of d±
es are opposite, such a difference can be more

clearly found in the dependence of des, which is calculated as
des = 2b − (d+

es + d−
es).

The des is shown in Fig. 4(c) as a function of μ, and in
Fig. 4(d) as a function of d. The des decreases as μ increases.
This means that d−

es changes more rapidly than d+
es . Such

a feature can be explained by the electronic states of the
electrodes. Electrons are added to the conduction band in
the negative electrode and removed from the valence band
in the positive electrode. The wave functions of both the
conduction and the valence bands are localized around the Si
region; dielectric response should occur to reduce the Coulomb
energy. Therefore, electrons move from Si to H in the negative
electrode and from H to Si in the positive electrode. Since

Si-H antibonding states are not occupied, the electrons move
into these states in the negative electrode. In addition, because
the band energy of these states is close to the conduction band
bottom, the electrons might move rather easily. On the other
hand, the electrons move from the occupied Si-H bonding
states in the positive electrode. Since the band energy of
these states is far from the valence band top, the electrons
might move with difficulty. Therefore, the μ dependence of
d−

es is more rapid than that of d+
es because of the dielectric

polarization of the electrode materials. Here, we must also take
into account the artifact of our EFED method. The suppression
effect on d−

es of the EFED well is thought to be large for
small d.

In nanocapacitors, therefore, the classical picture is not
true even for part of the electrostatic capacitance because
of the dielectric polarization of the electrode materials. The
electrode surface positions indicated by d±

es cannot be fixed on
a nanoscale, and it moves with electrode spacing d as well as
with applied bias μ. Since d±

es and des change with Q and μ,
Eqs. (8) and (9) are not correct in nanocapacitors. The nonclas-
sical effect of d±

es and des is one order of the magnitude smaller
than that of d0. These results are attributed to the moderate
density of states and to the relatively low dielectric constant of
the electrode material, planar polysilane, as well as to the nar-
row spacing between the electrodes. If electrodes are made of
materials with larger density of states around the Fermi energy,
or if electrode spacing is just wider, the quantum capacitance
effect must be reduced. If electrodes are made of materials
with a higher dielectric constant, the dielectric polarization
effect must be enhanced. For a general nanocapacitor, the
quantum capacitance effect and/or the dielectric polarization
effect are thus thought to appear depending on the electronic
feature of the electrode materials as well as the geometry of the
nanocapacitor.

VI. CONCLUSION

We studied nonclassical features of a planar polysilane
nanocapacitor by changing both electrode spacing d and
applied bias μ simultaneously. We find that the effective
electrode spacing d0 decreases with μ even if d is fixed
because of the effect of the quantum capacitance C+ and C−. In
addition, when we analyze the electrostatic capacitance Ces in
detail, we also find that the effective electrode surface positions
indicated by d±

es change complicatedly with d and μ because
of the dielectric polarization effect of the electrode material.
The dielectric polarization effect is one order of the magnitude
smaller than the quantum capacitance effect, which is due to
the nature of the electrode material, planar polysilane. We
can conclude that a nanocapacitor is governed by the detailed
properties of the electronic states of the electrode materials as
well as the geometry.
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