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Multiscale calculations of thermoelectric properties of n-type Mg2Si1−xSnx solid solutions
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The band structure of Mg2Si1−xSnx solid solutions with 0.250 � x � 0.875 is calculated using the first-
principles pseudopotential method. It is found that the low-lying light and heavy conduction bands converge
and the effective mass reaches a maximum value near x = 0.625. Using the semiclassical Boltzmann transport
theory and relaxation-time approximation, we find that the system with x = 0.625 exhibits both higher Seebeck
coefficient and higher electrical conductivity than other solid solutions at intermediate temperatures. By fitting
first-principles total energy calculations, a modified Morse potential is constructed, which is used to predicate the
lattice thermal conductivity via equilibrium molecular dynamics simulations. Due to relatively higher power factor
and lower thermal conductivity, the Mg2Si0.375Sn0.625 is found to exhibit enhanced thermoelectric performance
at 800 K, and additional Sb doping is considered in order to make a better comparison with experiment results.
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I. INTRODUCTION

As fossil fuels are being exhausted and their burning
contributes to the global warming, it is urgently needed to
develop clean and renewable sources of energy. Thermoelec-
tric materials have attracted much attention because they can
directly convert heat into electricity and vice versa. Such
materials utilize the Seebeck effect for power generation
and the Peltier effect for refrigeration. The efficiency of a
thermoelectric material is determined by the so-called figure
of merit

ZT = S2σT /κ, (1)

where S is the Seebeck coefficient, σ is the electrical
conductivity, T is the absolute temperature, and κ is the
thermal conductivity which contains both the lattice (κl) and
electronic components (κe). A high ZT value indicates good
thermoelectric performance, and one therefore should try to
increase the power factor (S2σ ) and/or decrease the thermal
conductivity (κ = κe + κl). 1

Intermetallic compounds Mg2Si, Mg2Sn, and their solid
solutions could be promising thermoelectric materials at
intermediate temperature range between 500–800 K. These
compounds contain nontoxic and environmentally friendly
constituent elements that are inexpensive and abundant in the
Earth’s crust.2,3 Mg2Si can be readily n-type doped, and the
usual donors are Bi and Sb. For example, Tani and Kido4

fabricated the Mg2SiBi0.02 sample which exhibited a ZT value
of 0.86 at 862 K. Akasaka et al.5 obtained a ZT value of 0.65
at 840 K for the Mg2Si:Bi0.01. Bux et al.6 found a ZT value
of 0.7 at 775 K for the Mg2SiBi0.0015. You et al.7 prepared
the Mg2Si:Bi0.02 sample with a ZT value of 0.7 at 823 K.
The Sb-doped sample Mg2SiSb0.02 has a ZT value of 0.56 at
862 K,8 while the Mg2Si0.9Sb0.1 shows a ZT value of 0.55 at
750 K.9 On the other hand, Zaitsev et al.10 investigated n-type
Mg2Si1−xSnx solid solutions in a broad range of compositions,
and found that the large atomic mass difference between Si and

Sn dramatically reduces the thermal conductivity of the solid
solutions, which leads to a high-ZT value of about 1.1 near
800 K. Isoda et al.11 obtained a ZT value of 0.87 at 630 K for
the Bi-doped Mg2Si0.5Sn0.5. Tani and Kido12 found that the
Al-doped Mg2Si0.9Sn0.1 shows a ZT value of 0.68 at 864 K,
which is six times larger than that of the undoped solid solution.
Luo et al.13 fabricated the Mg2Si1−xSnx (0 � x � 1.0) solid
solutions and enhanced the ZT value to 0.1 at 490 K when x =
0.2. Liu et al.14 prepared the low-cost Sb-doped Mg2Si0.6Sn0.4,
and the ZT value can be reached to 1.11 at 860 K. Gao et al.15

reproducibly obtained ZT values larger than 0.9 at 780 K
for their Sb-doped Mg2Si0.5Sn0.5. Based on the symmetry of
energy bands of Mg2Si and Mg2Sn, Zaitsev et al.10 reasoned
that for some particular content of Si and Sn, the two low-
lying conduction bands of Mg2Si1−xSnx solid solutions will
coincide in energy but did not consider consequences of such
a band convergence. Very recently, the positive effect of band
convergence on the Seebeck coefficient and thus the overall
thermoelectric performance of Mg2Si1−xSnx solid solutions
was experimentally demonstrated by our team16 and yielded a
ZT value of 1.3 around 750 K.

The above survey indicates that the measured ZT value
of Mg2Si-based materials varies in the range of 0.1–1.3 and
depends on the condition of synthesis, alloying proportions,
and doping levels. However, the bulk of these works were
focused on experimental studies with little theoretical in-
sight and guidance provided. In this work, we investigate
the thermoelectric properties of n-type doped Mg2Si1−xSnx

(0.250 � x � 0.875) solid solutions by a multiscale approach,
which includes first-principles calculations, semiclassical
Boltzmann transport theory, and empirical molecular dynam-
ics (MD) simulations. We shall see that the Mg2Si1−xSnx with
x = 0.625 exhibits the highest ZT value at 800 K due to
the highest power factor and the lowest thermal conductivity,
which suggests its promising thermoelectric applications.

The rest of this paper is organized as follows. Sec. II
gives the computational details of our multiscale approach.
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In Sec. III, we discuss the electronic, transport, and thermo-
electric properties of n-type Mg2Si1−xSnx (0.250 � x � 0.875)
solid solutions. A summary of our work is given in Sec. IV.

II. METHOD OF CALCULATIONS

A. First-principles calculations and Boltzmann theory

The energy band-structure calculations have been per-
formed using a first-principles plane-wave pseudopotential
formulation17–19 within the framework of density functional
theory (DFT). The exchange-correlation energy is in the
form of Perdew-Wang-91 (Ref. 20) with generalized gradient
approximation (GGA). Ultrasoft pseudopotentials are used for
the Mg, Si, and Sn atoms and the cutoff energy is set as 151 eV.
During the geometry optimizations, both the atomic positions
and the lattice constants are fully relaxed until the magnitude
of the force acting on all atoms becomes less than 0.01 eV/Å,
which also converges the total energy within 1 meV. The
irreducible Brillouin zone (IBZ) is sampled with 10 × 10 × 10
Monkhorst-Pack k meshes. The Mg2Si1−xSnx solid solutions
are modeled by a rhombohedral 2 × 2 × 2 supercell which
has eight equivalent positions for the Si or Sn atoms. The Sn
concentration x can thus be 0.250, 0.375, 0.500, 0.625, 0.750,
and 0.875, which are comparable to those measured in Ref. 16.

In a microscopic model of transport process, the Seebeck
coefficient S, the electrical conductivity σ, and the electronic
thermal conductivity κe can be derived from the calculated
band structure in the IBZ. Here, we use a semiclassical ap-
proach by solving the Boltzmann’s equation in the relaxation-
time approximation.21 The kernel is to find the so-called
transport distribution, which can be expressed as
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where f0 is the equilibrium Fermi function, kB is the
Boltzmann’s constant, and μ is the chemical potential. The
electronic thermal conductivity κe is calculated according to
the Wiedemann-Franz law23

κe = LσT, (5)

where L is the Lorenz number.

B. Empirical potential and molecular dynamics

To study the phonon transport in the Mg2Si1−xSnx solid
solutions, an accurate interatomic potential is necessary. We

FIG. 1. (Color online) The crystal structure of antifluorite com-
pounds Mg2Si and Mg2Sn.

thus develop a modified Morse potential which contains the
two-body bond and three-body angle interactions

U = U1 + U2. (6)

Here, the two-body potential U1 is in the form of24

U1 = D{[1 − e−a(r−r0)]2 − 1}, (7)

where D is the depth of the potential well, a is the bond
elasticity, r represents the interatomic separation, and r0 is the
corresponding equilibrium distance. The three-body potential
U2 is given by24

U2 = 1
2k (cosθ − cosθ0)2 , (8)

where k is the force constant, θ represents the bond angle, and
θ0 is the corresponding angle at equilibrium. These potential
parameters can be determined by fitting the energy surface
from first-principles calculations.

The lattice thermal conductivity κl is then predicted using
MD simulations combined with the Green-Kubo autocorre-
lation decay method.24,25 Such an approach can deal with
phonon-phonon scattering and it is possible to obtain an
accurate κl from the periodic unit cell much smaller than the
phonon mean-free path. In this work, the time step is set as
0.5 fs, and the constant temperature simulation with periodic
boundary conditions runs for 4 000 000 steps, giving a total
time of 2.0 ns. The system reaches an equilibrium state and
the temperature stabilizes around the set value after 0.5 ns.
The data collection is performed from 0.5 to 2.0 ns and the

TABLE I. Calculated lattice constant a (in unit of Å), effective
mass m∗(in terms of electron mass m0), and the energy difference 
E

(in units of eV) between the two low-lying conduction bands (CBL

and CBH) for the Mg2Si1−xSnx solid solutions.

m∗

x a CBL CBH 
E

0.000 6.35
0.250 6.46 0.19 0.38 0.30
0.375 6.52 0.24 0.43 0.18
0.500 6.59 0.26 0.43 0.11
0.625 6.64 0.20 0.61 0.038
0.750 6.70 0.25 0.52 0.15
0.875 6.76 0.28 0.37 0.27
1.000 6.81
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corresponding heat flux J is given by

J =
∑

i

εivi + 1

2

∑
i<j

[fij · (vi + vj )]rij , (9)

where εi is the site energy of atom i, viand vj are, respectively,
the velocities of atoms i and j , fij is their interaction force,
and rij is their separation. The lattice thermal conductivity κl

is thus obtained by

κl = 1

3kBT 2V

∫ ∞

0
〈J (0) · J (t)〉dt, (10)

where V is the volume of the simulation system, and
〈J (0) · J (t)〉 is the so-called heat-flux autocorrelation func-
tion. Our results are carefully tested with respect to the
total MD simulation time and the size of the simulation
box.

III. RESULTS AND DISCUSSIONS

We begin our discussions with the crystal structures of
Mg2Si/Mg2Sn shown in Fig. 1. Pristine Mg2Si (Mg2Sn) has
a face-centered-cubic antifluorite lattice with Fm3̄m space
group. The unit cell contains four primitive cells with the
Mg and Si (Sn) atoms located at the 8c: (0.25, 0.25, 0.25)
and 4a: (0, 0, 0) sites, respectively. The calculated lattice
constants are a = 6.35 and 6.81 Å for the Mg2Si and
Mg2Sn, respectively. These values are very close to those
found experimentally.26 The optimized lattice constants of a
series of Mg2Si1−xSnx (0.250 � x � 0.875) solid solutions
are summarized in Table I, which increases almost linearly
from 6.47 to 6.76 Å as the Sn concentration x is increased.13,27

In particular, the calculated lattice constant (a = 6.59 Å) for
the Mg2Si0.5Sn0.5 agrees well with the measured value (a =
6.56 Å),13 which confirms the reliability of our theoretical
calculations.

FIG. 2. (Color online) Calculated energy band structures for a series of Mg2Si1−xSnx solid solutions. The red and blue lines correspond to
the light and heavy conduction bands, respectively. The Fermi level is at 0 eV.
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A. Energy band structure

Figures 2(a)–2(f) show the calculated energy band struc-
tures for a series of Mg2Si1−xSnx solid solutions. As known,
both Mg2Si and Mg2Sn are indirect gap semiconductors. The
valence-band maximum (VBM) is located at the � point,
while the conduction-band minimum (CBM) at the X point.
However, we see from Fig. 2 that all the Mg2Si1−xSnx solid
solutions become direct gap semiconductors where both the
VBM and the CBM appear at the � point. This is due to the
fact that we are using a 2 × 2 × 2 supercell rather than the
primitive cell and the bands are thus folded. It should be noted
that DFT tends to underestimate the energy gap, therefore, all
the calculated band gaps of the Mg2Si1−xSnx solid solutions
are corrected in this work. We find that the difference between
experimental26 and calculated gap is almost the same for the
Mg2Si and Mg2Sn. For simplicity, we thus make a uniform
shift of the calculated band gaps for all the solid solutions.
If we focus on the two low-lying conduction bands around
the � point, we see that with the Sn content x increasing
from 0.250 to 0.875, the heavy conduction band (CBH, blue)
shifts down while the light conduction band (CBL, red) shifts
up. As a result, these two bands converge at x = 0.625. We
have calculated the band-decomposed charge-density contour
(not shown here), and find that the lowest conduction band
has Si character for the Mg2Si, while Sn character for the
Mg2Sn. In the case of the Mg2Si1−xSnx , the lowest conduction
band exhibits both Si and Sn character; however, the major
contribution comes from Si when 0.25 � x < 0.625, and
from Sn when 0.625 < x � 0.875. This is consistent with

the fact that the lowest conduction band of Mg2Si1−xSnx is
the light band for 0.25 � x < 0.625 but is the heavy band
for 0.625 < x � 0.875 (see Fig. 2). At x = 0.625, the light
and heavy bands converge and the charge-density contour
indicates that the contributions from Si and Sn are nearly
equal to each other. Overall speaking, the effective mass of
the lowest conduction band increases with the Sn content x,
reaches a maximum at x = 0.625, and then decreases. Both
the convergence of the conduction bands and the increased
effective mass lead to a high absolute value of the Seebeck
coefficient,1,28 which is very beneficial to the thermoelectric
performance. We will come back to this point later. The energy
difference between the CBH and CBL as well as their effective
masses are summarized in Table I.

B. Relaxation time and electrical conductivity

Based on the calculated band structures, we are able to eval-
uate the electronic transport coefficients of the Mg2Si1−xSnx

solid solutions by using the semiclassical Boltzmann theory
and the rigid-band approach.29 To get reliable results, we use
a very dense k mesh up to 1000 points in our calculations. It
should be mentioned that the electrical conductivity σ can
only be calculated with respect to the electron relaxation
time τ , that is, what we actually get is σ/τ . The relaxation
time is then determined by comparing the experimentally
measured electrical conductivity σ (Ref. 16) at a particular
carrier concentration and temperature. The fitted relaxation
time for the solid solutions is summarized in Table II. We see

TABLE II. Determining the electron relaxation time τ for the Mg2Si1−xSnx solid solutions by comparing the experimentally measured
electrical conductivity at different carrier concentration and temperature.

τ (fs)

x n (1020 cm−3) 300 K 400 K 500 K 600 K 700 K 800 K

0.25 1.70 11.4 9.28 7.87 6.26 5.22 4.31
2.10 12.3 10.1 8.13 6.85 5.7 4.43

(Mean value) 11.8 9.7 8.0 6.6 5.5 4.4

0.375 1.35 6.74 5.54 4.85 4.17 3.54 2.95
1.80 6.32 5.27 4.31 3.76 3.23 2.74
2.35 6.44 5.41 4.46 3.62 3.10 2.59

(Mean value) 6.5 5.4 4.5 3.8 3.3 2.8

0.5 1.90 5.43 4.62 3.84 3.39 2.74 2.37
2.39 3.99 3.4 2.86 2.57 2.15 1.96
2.84 4.41 3.82 3.26 2.74 2.28 1.99

(Mean value) 4.6 3.9 3.3 2.9 2.4 2.1

0.625 0.63 7.65 6.71 5.58 4.55 4.09 3.73
1.68 6.97 5.80 4.75 4.18 3.59 2.98

(Mean value) 7.3 6.3 5.1 4.4 3.8 3.4

0.75 1.57 6.34 5.09 4.06 3.51 2.83 2.61
1.69 6.99 5.67 4.56 3.93 3.39 2.92
1.72 6.78 5.96 4.79 3.83 3.30 2.84
2.13 6.95 5.58 4.45 3.86 3.13 1.69

(Mean value) 6.8 5.6 4.5 3.8 3.2 2.5

0.875 1.70 7.87 6.44 5.14 4.06 3.41 2.87
2.30 8.21 6.69 5.52 4.58 3.73 2.99

(Mean value) 8.0 6.6 5.3 4.3 3.6 2.9
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that the relaxation time does not vary much in the carrier-
concentration range considered. In contrast, there is obvious
temperature dependence. As a reasonable approximation, in
the following discussions we use an average relaxation time at
each temperature. For a particular x, we see from Table II that
the relaxation time decreases with increasing temperature. This
is reasonable since the electron scattering is more frequent at
high temperatures. At a particular temperature, we see that the
relaxation time decreases before reaching a minimum value at
x = 0.5 and then increases, suggesting that the solid solution
at x = 0.5 is of highest disorder as far as the carrier transport
is concerned.

Figure 3(a) plots the calculated electrical conductivity σ as
a function of temperature for the Mg2Si1−xSnx solid solutions,
where the doping level (or carrier concentration) of each
system is fixed at 1.9 × 1020 cm−3. In the temperature range of
300–800 K, we see that the electrical conductivity decreases
with increasing temperature. This is believed to be caused
by the reduced electron mobility at high temperatures, while
the carrier (electron) concentration remains almost constant
with temperature. It is interesting that the calculated σ of
Mg2Si0.375Sn0.625 decreases relatively slower with increasing
temperature and is higher than those of the other solid solutions
except x = 0.250 and 0.875 at intermediate temperatures.
On the other hand, we plot in Fig. 3(b) the calculated
electrical conductivity σ as a function of carrier concentration,

FIG. 3. (Color online) (a) Calculated electrical conductivity σof
Mg2Si1−xSnx solid solutions as a function of temperature. All systems
have a carrier concentration of 1.9 × 1020 cm−3. (b) Calculated σ as
a function of carrier concentration n (1019–1021 cm−3) at 800 K.

where the temperature is fixed at 800 K. As expected, the
electrical conductivity σ increases with increasing carrier con-
centration n. The electrical conductivity of Mg2Si0.750Sn0.250

and Mg2Si0.375Sn0.625 are higher than those of the other
solid solutions with Mg2Si0.625Sn0.375 and Mg2Si0.500Sn0.500

exhibiting the lowest values.

C. Seebeck coefficient and power factor

Figure 4(a) shows the calculated Seebeck coefficient S as
a function of temperature for the Mg2Si1−xSnx solid solutions
at a carrier concentration of 1.9 × 1020 cm−3. It is found that
the absolute value of the Seebeck coefficient increases with
increasing temperature. Compared with the experimentally
measured result of Mg2Si0.500Sn0.500, the calculated S exhibits
a similar variation with temperature, but the absolute value is
somehow underestimated. In Fig. 4(b), we plot the calculated
Seebeck coefficient at 800 K as a function of carrier concentra-
tion in the range of 1019–1021 cm−3. We see the absolute value
of Seebeck coefficient increases initially, reaches a maximum,
and then decreases as the carrier concentration increases. As
mentioned above, when the two conduction bands converge
and the effective mass increases, one can obtain a very
large absolute value of Seebeck coefficient. Indeed, except
at very low carrier concentrations, Mg2Si0.375Sn0.625 exhibits
the highest absolute value of S among these solid solutions.

FIG. 4. (Color online) (a) Calculated Seebeck coefficient S of
Mg2Si1−xSnx solid solutions as a function of temperature. All systems
have a carrier concentration of 1.9 × 1020 cm−3, and the measured
result of Mg2Si0.500Sn0.500 is also shown. (b) Calculated S as a function
of carrier concentration n (1019–1021 cm−3) at 800 K.
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Although there is some underestimation of the calculated
Seebeck coefficient, it is still more than 250 μV/K for the
Mg2Si0.375Sn0.625 at a carrier concentration of 1020 cm−3,
which is close to those measured previously.10,14,30 We want
to mention that the underestimation of the calculated Seebeck
coefficient indicated in Fig. 4(a) can be attributed to the fact
that in the experiment,16 the sample prepared deviates a little
from the standard nominal formula of Mg2Si0.5Sn0.5 and has
a real composition of Mg2.11Si0.52Sn0.48Sb0.006. Here, the Mg
excess was found to increase the absolute value of the Seebeck
coefficient.33

Figure 5(a) shows the calculated power factor S2σ as a
function of temperature for the Mg2Si1−xSnx solid solutions
at a carrier concentration of 1.9 × 1020 cm−3. As discussed
above, the Mg2Si0.375Sn0.625 exhibits the highest absolute value
of Seebeck coefficient S due to the band convergence and
enhanced effective mass. It also has a relatively higher elec-
trical conductivity σ, especially at intermediate temperatures.
Consequently, the power factor of Mg2Si0.375Sn0.625 is much
higher than those of the other solid solutions in the whole
temperature range from 300 to 800 K. On the other hand,
we plot in Fig. 5(b) the power factor at 800 K as a function
of carrier concentration in the range of 1019–1021 cm−3. As
known, the Seebeck coefficient decreases with increasing car-
rier concentration, while the electrical conductivity increases.
In a broad range of carrier concentrations, the power factor

FIG. 5. (Color online) (a) Calculated power factor S2σ of
Mg2Si1−xSnx solid solutions as a function of temperature. All systems
have a carrier concentration of 1.9 × 1020 cm−3. (b) Calculated S2σ

as a function of carrier concentration n (1019–1021 cm−3) at 800 K.

should therefore increase initially, reach a maximum value, and
then decrease. Within the carrier concentration considered in
this work, we see from Fig. 5(b) that the power factor increases
monotonously. The calculated value of Mg2Si0.375Sn0.625 at
800 K is about 3.1 × 10−3 W/mK2 with a carrier concentration
of 1020 cm−3, which is somehow higher than that of other
Mg2Si-based thermoelectric materials.15,31,32

D. Electronic thermal conductivity

We now discuss the electronic thermal conductivity κe of
the Mg2Si1−xSnx solid solutions. As mentioned before, the
κe can be derived from σ using Eq. (5). Here, the Lorenz
number L for the Mg2Si1−xSnx solid solutions is estimated
based on the Fermi-Dirac statistics noted in Ref. 11 which
attains the fully degenerate value of 2.45 × 10−8 V2/K2 as the
carrier concentration reaches typical metallic densities. For the
Mg2Si1−xSnx solid solutions, the Lorenz number is found to
be 1.8 ∼ 1.9 × 10−8 V2/K2 around the carrier concentration
of 1020 cm−3 (Refs. 11 and 33) and is therefore used in our
calculations. Figure 6(a) shows the temperature dependence
of the calculated κe for the Mg2Si1−xSnx series at a carrier
concentration of 1.9 × 1020 cm−3. The general trend observed
is an initial mild increase followed by a rather undistinguished
maximum and finally a slowly decreasing conductivity. The

FIG. 6. (Color online) (a) Calculated electronic thermal conduc-
tivity κe of Mg2Si1−xSnx solid solutions as a function of temperature.
All systems have a carrier concentration of 1.9 × 1020 cm−3. (b) Cal-
culated κe as a function of carrier concentration n (1019–1021 cm−3)
at 800 K.
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calculated κe of Mg2Si0.375Sn0.625 is 1.17 W/mK at 300 K and
1.31 W/mK at 800 K.

As shown in Fig. 6(b), the carrier-concentration dependence
of the electronic thermal conductivity κe at 800 K mimics
the behavior of the electrical conductivity σ , i.e., it increases
monotonously with increasing carrier concentration. The
Mg2Si0.750Sn0.250 and Mg2Si0.375Sn0.625 solid solutions exhibit
higher κe than the others in the whole carrier-concentration
range from 1019 to 1021 cm−3. Compared with the power
factor shown in Fig. 5(b), the electronic thermal conductivity
of Mg2Si0.375Sn0.625 decreases faster with decreasing carrier

concentration n around 1020 cm−3. For example, as n de-
creases from 2.0 to 1.0 × 1020 cm−3 at 800 K, the κe of
Mg2Si0.375Sn0.625 falls by 48%, while the power factor S2σ is
reduced by only 21%. In the following discussions, we shall see
that such a trend is important for optimizing the thermoelectric
performance of these solid solutions.

E. Lattice thermal conductivity

To deal with the phonon transport, we have performed MD
simulations where a modified Morse potential is constructed

TABLE III. Fitted parameters in the modified Morse potential for the Mg2Si, Mg2Sn, and Mg2Si1−xSnx solid solutions.

Two-body Three-body

D (eV) a (Å−1) r0 (Å) k (eV) θ0 (◦)

Mg2Si Mg-Mg 0.789 0.853 3.17 Si-Mg-Si 1.223 109.47
Mg-Si 0.628 0.399 2.75 Mg-Si-Mg 1.120 109.47
Si-Si 0.460 0.991 4.49 Mg-Si-Mg 1.120 70.53

x = 0.250 Mg-Mg 0.765 0.952 3.232 Si/Sn-Mg-Si/Sn 0.958 109.47
Mg-Si 0.548 0.689 2.799 Mg-Si/Sn-Mg 0.958 109.47
Mg-Sn 0.545 0.686 2.799 Mg-Si/Sn-Mg 0.942 70.53
Si-Si 0.437 0.836 4.571
Sn-Sn 0.436 0.837 4.571
Si-Sn 0.434 0.835 4.571

x = 0.375 Mg-Mg 0.898 0.924 3.257 Si/Sn-Mg-Si/Sn 1.106 109.47
Mg-Si 0.639 0.576 2.821 Mg-Si/Sn-Mg 1.106 109.47
Mg-Sn 0.635 0.574 2.821 Mg-Si/Sn-Mg 1.102 70.53
Si-Si 0.481 0.873 4.606
Sn-Sn 0.481 0.872 4.606
Si-Sn 0.480 0.872 4.606

x = 0.500 Mg-Mg 0.810 0.904 3.284 Si/Sn-Mg-Si/Sn 1.168 109.47
Mg-Si 0.559 0.561 2.844 Mg-Si/Sn-Mg 1.168 109.47
Mg-Sn 0.555 0.560 2.844 Mg-Si/Sn-Mg 1.164 70.53
Si-Si 0.467 0.862 4.644
Sn-Sn 0.469 0.861 4.644
Si-Sn 0.468 0.858 4.644

x = 0.625 Mg-Mg 0.735 0.789 3.316 Si/Sn-Mg-Si/Sn 1.144 109.47
Mg-Si 0.569 0.536 2.872 Mg-Si/Sn-Mg 1.144 109.47
Mg-Sn 0.568 0.538 2.872 Mg-Si/Sn-Mg 1.140 70.53
Si-Si 0.461 0.862 4.489
Sn-Sn 0.462 0.859 4.489
Si-Sn 0.460 0.858 4.489

x = 0.750 Mg-Mg 0.658 0.866 3.350 Si/Sn-Mg-Si/Sn 1.236 109.47
Mg-Si 0.490 0.723 2.901 Mg-Si/Sn-Mg 1.236 109.47
Mg-Sn 0.489 0.723 2.901 Mg-Si/Sn-Mg 1.228 70.53
Si-Si 0.431 0.862 4.738
Sn-Sn 0.430 0.861 4.738
Si-Sn 0.428 0.863 4.738

x = 0.875 Mg-Mg 0.883 0.894 3.380 Si/Sn-Mg-Si/Sn 1.328 109.47
Mg-Si 0.681 0.455 2.927 Mg-Si/Sn-Mg 1.328 109.47
Mg-Sn 0.682 0.452 2.927 Mg-Si/Sn-Mg 1.324 70.53
Si-Si 0.453 0.658 4.780
Sn-Sn 0.454 0.661 4.780
Si-Sn 0.453 0.660 4.780

Mg2Sn Mg-Mg 0.742 0.797 3.41 Sn-Mg-Sn 1.158 109.47
Mg-Sn 0.597 0.356 2.95 Mg-Sn-Mg 1.140 109.47
Sn-Sn 0.329 1.050 4.82 Mg-Sn-Mg 1.140 70.53
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FIG. 7. (Color online) Calculated lattice thermal conductivity κl

of Mg2Si1−xSnx and Sb-doped Mg2Si0.375Sn0.625 solid solutions at a
temperature range from 300 to 800 K.

by fitting the energy surface from first-principles calculations.
Table III lists all the fitted potential parameters used in
this work. Our calculated lattice thermal conductivity κl of
Mg2Si and Mg2Sn is found to be 5.98 and 4.90 W/mK at
300 K, respectively. These values are consistent with those
measured experimentally13,26 and thus confirm the reliability
of our MD simulations. The calculated κl for the Mg2Si1−xSnx

series is plotted in Fig. 7 in a wide temperature range.
We see that the lattice thermal conductivity does not show
strong temperature dependence. At any given temperature,
the thermal conductivity initially decreases with increasing
content of Sn. It reaches a clear minimum at x = 0.625
and then increases. Note that the minimum lattice thermal
conductivity is obtained at x = 0.625 rather than at x =
0.5 where the Si and Sn should be most disordered. The
calculated κl for Mg2Si0.375Sn0.625 is only 1.62 W/mK at
300 K, representing merely 27% of that of the pure Mg2Si.
Such significant reduction in the lattice thermal conductivity is
primarily a result of the large atomic mass difference between
the Sn and Si that gives rise to a strong mass defect scattering.
Our calculated variation of the lattice thermal conductivity as
a function of Sn content is similar to the previously reported
results. 13,16,26

F. Optimized ZT value

With all transport coefficients available, we can now eval-
uate ZT values of the Mg2Si1−xSnx solid solutions according
to Eq. (1). Figure 8(a) shows the carrier-concentration depen-
dence of the calculated ZT values at 800 K. As noted before,
good thermoelectric performance requires a power factor S2σ

as high as possible and a thermal conductivity κ( = κe + κl)
as low as possible. With higher S2σ and lower κ than the other
solid solutions, we see that Mg2Si0.375Sn0.625 exhibits superior
thermoelectric performance in the whole carrier-concentration
range (n = 1019–1021 cm−3). In particular, a ZT value of
1.11 can be achieved at 800 K with a carrier concentration of
1.2 × 1020 cm−3. This is consistent with the conjecture
that band convergence and the maximum effective mass
will lead to enhanced thermoelectric performance. The ZT

FIG. 8. (Color online) (a) Calculated ZT value of Mg2Si1−xSnx

and Sb-doped Mg2Si0.375Sn0.625 solid solutions as a function of carrier
concentration n (1019–1021 cm−3) at 800 K. (b) Calculated ZT

value at optimal carrier concentration of Mg2Si1−xSnx and Sb-doped
Mg2Si0.375Sn0.625 as a function of temperature.

values of other Mg2Si1−xSnx solid solutions, together with the
optimal carrier concentration n, the power factor S2σ , and the
electronic and lattice thermal conductivities κe and κl are listed
in Table IV.

Figure 8(b) plots the ZT values of these solid solutions as a
function of temperature at optimal carrier concentrations. We
see that the ZT values increase from 300 to 800 K, which is
consistent with those found previously.12,14–16 Moreover, all
the Mg2Si1−xSnx solid solutions exhibit higher ZT values at
800 K than at lower temperatures, which indicates that they
could be applied as thermoelectric materials at intermediate
temperatures. The optimized ZT value of 1.11 achieved at
800 K with Mg2Si0.375Sn0.625 is by far the highest value among
all the solid solutions.

Although a ZT value of 1.11 at 800 K is close to
the maximum experimental value reported,10,14,16,33 this is a
very conservative value and we believe the thermoelectric
performance of n-type Mg2Si1−xSnx solid solutions could
be further enhanced. It should be mentioned that up to now,
we were considering electron and phonon transport in pristine
Mg2Si1−xSnx solid solutions. In real experiments, however, the
different carrier concentrations are actually realized by doping
these systems with Bi or Sb. According to previous experi-
mental works,9,16,30,32 appropriate doping not only enhances
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TABLE IV. Optimized ZT values of Mg2Si1−xSnx as well as Sb-doped Mg2Si0.375Sn0.625 solid solutions at 800 K. The corresponding
optimal carrier concentration n, the power factor S2σ , and the electronic and lattice thermal conductivity κe and κl are also indicated.

x n (1020 cm−3) S2σ (10−3 W/mK2) κe (W/mK) κl (W/mK) ZT

0.250 4.5 5.20 3.54 3.79 0.57
0.375 3.6 3.32 1.86 4.00 0.45
0.500 2.7 2.54 1.18 3.66 0.42
0.625 1.2 3.24 0.85 1.48 1.11
0.625 (Sb-doped) 1.1 3.15 0.78 1.25 1.24
0.750 2.1 2.83 1.16 2.27 0.66
0.875 2.0 3.10 1.38 2.77 0.60

the power factor S2σ , but can also significantly reduce the
lattice thermal conductivity κl of Mg2Si-based thermoelectric
materials. To make a better comparison between our theoretical
predications and the experimental results, we have done addi-
tional calculations where the lattice thermal conductivity κl of
properly Sb-doped Mg2Si0.375Sn0.625 is explicitly calculated.
Indeed, it is found that κl is decreased by about 15% (see
Fig. 7). As a result, the optimal carrier concentration is
shifted to a value somewhat smaller than 1.1 × 1020 cm−3

as indicated in Fig. 8(a). At such carrier concentration, the
power factor S2σ is slightly reduced from 3.24 to 3.15 ×
10−3 W/mK2. However, there is a faster decrease of the
corresponding electronic thermal conductivity κe (from 0.85 to
0.78 W/mK), leading to a higher ZT value of 1.24 as indicated
in both Fig. 8(a) and Table IV. We want to emphasize that
the lattice thermal conductivity κl of the Mg2Si1−xSnx solid
solutions could be further reduced by many other means such
as isotope doping34 and embedded nanoinclusions,35–37 which
leave the power factor S2σ less affected. If the lattice thermal
conductivity could be reduced to ∼0.8 W/mK,16 the optimized
ZT values of Mg2Si0.375Sn0.625 should reach 1.61 at 800 K,
which would be very competitive, especially given the low cost
and minimal environmental impact of this material system.

IV. SUMMARY

In summary, we have studied the thermoelectric properties
of Mg2Si1−xSnx (0.250 � x � 0.875) solid solutions using a
multiscale approach. The convergence of the two conduction
bands and the increased electron effective mass lead to a

high value of the Seebeck coefficient for x = 0.625, which
has been confirmed by explicit calculations of the electronic
transport coefficients. On the other hand, Mg2Si0.375Sn0.625

exhibits the lowest lattice thermal conductivity among all the
solid solutions considered due to the high alloy disorder and a
large Sn/Si mass difference scattering. Our theoretical results
indicate that the maximum ZT value of Mg2Si1−xSnx solid
solutions is ∼1.24 at 800 K for x = 0.625 with a carrier
concentration of n = 1.1 × 1020 cm−3. Moreover, we find that
the ZT value is limited by the high lattice thermal conductivity,
which for some solid solutions is as high as 4.0 W/mK.
Therefore, there is still room to improve the thermoelectric
performance of the Mg2Si1−xSnx solid solutions. In any case,
the n-type Mg2Si0.375Sn0.625 is a very promising thermoelectric
material, and major effort should be directed to developing
comparatively effective p-type Mg2Si1−xSnx solid solutions
so that efficient thermoelectric modules based on this inex-
pensive and environmentally friendly material system could
be realized.
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