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High-order perturbation corrections to the density of states of disordered metals in a magnetic field
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We study the effect of electron-electron interaction on one-particle density of states (DOS) ρ(d)(ε,T ,B) of
weakly disordered metals in magnetic field (B), employing the conventional impurity diagram technique. The
geometric resummation of the most singular self-energy corrections via the Dyson equation is examined. Around
the Fermi level (ε = 0), we obtain that the DOS is linearly dependent on energy, ρ(2)(ε,T = 0,B) ∼ |ε|/B, in
two-dimensional systems while in three dimensions it acquires a power-law behavior, ρ(3)(ε,T = 0,B) ∼ |ε| 3

4 /B.
It is revealed that in both dimensions the DOS depends inversely on magnetic field strength at low energies and
vanishes at the Fermi energy.
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I. INTRODUCTION

To understand the behavior of interacting electrons in
weakly disordered metallic systems,1 much effort has been
made both theoretically2–5 and experimentally.6 In these
systems, where kF l � 1 with kF being the Fermi wave
number and l the elastic mean free path, the Coulomb
interaction was shown to modify the physical properties of the
metals. An impurity scattering mechanism due to the disorder
becomes crucial at low temperatures, kBT < h̄

τ
where T is the

temperature, τ is the impurity scattering time, and kB is the
Boltzmann’s constant. The amount of disorder was found to
enhance the effects of electron-electron (ee) interaction.3,7,8

Examinations of the interference of electron impurity and ee

scatterings have found nontrivial quantum corrections to the
density of states (DOS) and conductivity.4,9

In tunneling experiments10 a strong suppression of the
tunneling conductance at low biases was observed, commonly
referred to as a zero-bias anomaly. It reflects the suppression
of the DOS near the Fermi level.3,11,12 Theoretically, the
suppression of the single-particle DOS at the Fermi surface
was first discussed by Altshuler and Aronov (AA)9 for the
diffusive systems under short range interactions. Quantum
corrections to the DOS strongly depend on the dimension of
the system. In two dimensions (2D), the effect of them on
the DOS was revealed to be logarithmic,2 ρ(2)(ε) ∼ ln(|ε|τ ),
where ε denotes the energy of the electron measured relative
to the Fermi level. This result is related to the enhancement
of the ee interaction due to disorder. On the other hand, in
three dimensions (3D), it was obtained that there was no
singular contribution,13 ρ(3)(ε) ∼ √|ε|τ , due to the interfer-
ence effects which are not as strong as in low-dimensional
systems.

The experimental discovery of a metal-insulator transition
(MIT)14 in 2D semiconductor devices has shown that the cur-
rent theoretical understanding of ee interactions in disordered
electronic systems is incomplete. Thus it has reopened the
problems.15 In the presence of screening, two-dimensional
DOS tuned through the MIT was realized,16 where the DOS
was found to be linearly dependent on energy near the Fermi
level for different magnetic fields and electron densities. The
suppression revealed in Ref. 16 was deeper and wider near the
Fermi level with an increasing magnetic field. It was partially
different from the prior results.2

The effect of a magnetic field on the physical properties
of systems has been studied for a long time.17–21 A strong
magnetic field gives rise to the quantization of electronic states
(Landau orbits). However, a weak magnetic field has a small
effect (≈ω2

cτ
2, where ωc = eB

mc
is the cyclotron frequency, and

e and m are the electron charge and mass, respectively) on the
physical properties of electronic systems at high temperatures,
kBT > h̄

τ
. An arbitrary external weak magnetic field destroys

the electron localization and, as a consequence, gives rise to
an increasing conductivity with an external magnetic field.
This effect, known as negative magnetoresistance, was studied
theoretically by Kawabata22 for 3D disordered systems and
by Altshuler et al.18 for a 2D electron gas. The role of both
the magnetic field and ee interactions in impure systems was
considered by AA.17 In their work, only first-order quantum
contribution to the DOS was taken into account which revealed
an essential energy and magnetic field dependence of the DOS
in classically weak fields.

The purpose of the present paper is a detailed study of the
DOS around the Fermi level (in the vicinity of ε = 0) in 2D and
3D weakly disordered systems within the diagrammatic per-
turbation theory in the presence of both a weak magnetic field
and ee interactions. This study is an extension of our previous
work23 where, in the absence of a magnetic field, we obtained
a nondivergent solution for the DOS at low energies using the
Dyson equation1 in low-dimensional systems, and AA results
were recovered at high energies. In contrast to the AA results3

through the first-order perturbation theory, nonperturbative
calculations led to a nondivergent solution as well for the
DOS at low energies with a power-law behavior.24,25 Here, we
show that the behavior of the DOS at low energies [ρ(2)(ε,B) ∼
|ε|/B and ρ(3)(ε,B) ∼ |ε| 3

4 /B] is evidently distinct from that at
high energies [ρ(2)(ε,B) ∼ B2/ε2 and ρ(3)(ε,B) ∼ B2/|ε| 3

2 ] in
the presence of a finite magnetic field. In both dimensions
we reveal that at zero temperature, the DOS vanishes at
the Fermi energy and depends inversely on magnetic field
strength at low energies. AA results17 in both dimensions
are revised in order to give a systematical analysis for the
DOS. The reanalysis is done by taking into account geometric
resummation of the most singular self-energy corrections
through the Dyson equation. At high energies, when ε � h̄ωc,
AA results in Ref. 17 [ρ(2)(ε,B) ∼ B2/ε2 and ρ(3)(ε,B) ∼
B2/|ε| 3

2 ] are recovered in both dimensions. In the present
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study the obtained nondivergent solution for the DOS in both
dimensions at low energies originates from the summation of
high-order diagrammatic contributions. In Sec. II, employing
the high-order perturbation corrections, the calculation of the
DOS is presented and conclusions are given in Sec. III.

II. HIGH-ORDER PERTURBATION CORRECTIONS

The DOS ρ(d)(ε,T ) can be evaluated explicitly in terms of
Green’s function (GF)

ρ(d)(ε,T ) = − 2

π
Im

∫
ddp

(2π )d
GR(p,iεn)iεn→ε, (1)

where GR = GR(p,iεn) is the finite temperature impurity
averaged total retarded GF in momentum space with p
being the electron momentum. The temperature-dependent
GF coincides with the retarded GF at discrete points on the
positive imaginary semiaxis, i.e., G(εn) = GR(iεn) at εn > 0.
Here εn = πT (2n + 1) stands for the Matsubara frequency1

at temperature T . For a classically weak magnetic field,
satisfying the condition ωcτ � 1 or lH � 1, where l2

H = h̄c
eB

is
the radius of magnetic orbit (Larmour radius), the electron’s
wave function acquires an additional phase. In this case,
GR involves an additional phase and is given, through a
quasiclassical approximation, by

GR(r,r′,iεn) = exp

{
∓ i

eh̄

c

∫ r′

r
A(l)dl

}
GR(r − r′,iεn), (2)

where GR = GR(r,r′,iεn) is the real space representation of
GF and A denotes the vector magnetic potential.

In the weak localization theory,3 the main contributions to
the physical properties of disordered systems originate from
two singularities, known as diffusion pole characterizing an
electron-hole pair and Cooper pole representing the propaga-
tion of an electron-electron pair. For the former (latter) one
difference (summation) of momenta is small, and for both the
energy difference is small. The Cooper pole is significantly
influenced by the external magnetic field as this field breaks
down the time invariance. Hence, significant correction to the
DOS comes from the diagrams containing the Cooper pole,
which is more sensitive to an external magnetic field18 than is
the diffusion pole.

In calculating the DOS the contemplations for the choice
of appropriate diagrams were discussed by AA.3 Here we
follow the well-known route first developed by them for the
electron motion in disordered systems under a weak magnetic
field.17 One can utilize the diagrams in Fig. 1, where the first
order in Coulomb interaction contributions to the self-energy
�(r,r′,ε) are illustrated. High order in Coulomb interaction
corrections to the GF can be taken into account by means of the
Dyson equation, upon involving the most singular self-energy
contributions. In the presence of a magnetic field, GR(r,r′,iεn)
given in the coordinate space in Eq. (2) can be utilized for the
calculation of the Dyson equation. In real space, as depicted
in Fig. 1(a), the Dyson equation reads

GR(r,r′,iεn) = GR
0 (r,r′,iεn) +

∫
GR

0 (r,r1,iεn)

×�(r1,r2,iεn)GR(r2,r′,iεn), (3)

= + Σr1 rr         r′r             r′ (a)2r                                 r′

p n np′,,

p
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FIG. 1. (a) Real space representation of Dyson equation in qua-
siclassical approximation. Real space representation of (b) exchange
and (c) Hartree diagrams for the calculation of �(r,r′,ε). (d) Diagram
equation giving the Cooper pole and (e) that involving effective
interaction. Here the thick wavy lines denote the effective Coulomb
interaction and the dashed line with cross represents the impurity
scattering.

where GR
0 is the bare retarded GF. GF decreases exponentially

in a range of mean free path l in the coordinate space. Therefore
the crucial part of the integration is |r − r′| ≈ l and one may
set r = r′. The self-energy �(r,r′,iεn) in Fig. 1(b) is expressed
as

�(r,r′,iεn)

=
∫

dr1

∫
dr2

∫
dr3

∫
dr4

∫
dr5

∫
dr6

×Cω(r1,r2)GR
0 (r2,r3,iεn)GR

0 (r3,r5,iεn)Cω(r5,r6)

×GA
0 (r2,r4,iεn − iωm)λc(r3,r4)GA

0 (r4,r5,iεn − iωm)

×GA
0 (r6,r1,iεn − iωm), (4)

where GA
0 is the bare advanced GF, Cω denotes the cooperon

representing a diagram equation for the Cooper pole [see
Fig. 1(d)], λc stands for the effective Coulomb interaction,
and ωm = 2πT m is the Matsubara frequency. The magnetic
field dependence of GFs in Eq. (4) can be achieved using
the quasi-classical approximation in Eq. (2). Therefore, in
the equation above the main issue is the calculation of the
cooperon in the magnetic field. Here we are not going to dwell
on the derivation of the cooperon in the magnetic field. The
calculation of Cω in real space was outlined and the detailed
derivation was presented in Ref. 18. Using the procedures in
Ref. 18 together with Ref. 17, we obtain

Cω(r,r′) = 2πρ
(d)
0

( LH
l

)2∑
n,α

∫
dqz

2π

× ψn,α(r)ψ∗
n,α(r′)

−iω + Dq2
z + D

L2
H

(2n + 1)
, (5)

205148-2



HIGH-ORDER PERTURBATION CORRECTIONS TO THE . . . PHYSICAL REVIEW B 85, 205148 (2012)

where ψn,α(r) is the eigenfunction of an electron in a quantized
magnetic field, with n and α being Landau orbit and spin
index, respectively.

∑
ψn,α(r)ψ∗

n,α(r′) = δ(r − r′) satisfies the

orthogonality condition and D = v2
Fτ

d
stands for the diffusion

coefficient of a d-dimensional system with vF being the
velocity at the Fermi level. ρ(d)

0 is the pure DOS corresponding
to a noninteracting electron gas. In 2D and 3D it is given
as ρ

(2)
0 = m

2πh̄2 and ρ
(3)
0 = mpF

2π2h̄2 , respectively. In the equation
above, the applied field is taken along the z direction and the
gauge is chosen to be A = (0,Bx,0). The upper limit of the
summation over n is taken as (LH

l
)2 � 1 with a magnetic length

LH of 2e charge. Note that the expression of the cooperon in
Eq. (5) can be derived from the equation
[
−iω + D

(
− i

∂

∂r
− 2e

c
A

)2]
Cω(r,r′) = δ(r − r′), (6)

where Cω(r,r′) can be expanded over ψn,α(r) as shown in
Ref. 18.

The Coulomb interaction λc is screened by the cooperon in
Eq. (5), which is represented by the diagrammatic equation in
Fig. 1(e). In the presence of a magnetic field, λc = λc(qz,2ε −
ω,B) has the form17

λc(qz,2ε − ω,B) = 1

λ−1
0 − ln

[−i|2ε−ω|+ωc(n+ 1
2 )+Dq2

z

ε0

] , (7)

where λ0 is the bare interaction constant and ε0 = ε → 0 for
the Coulomb repulsion. Through the cooperon in Eq. (5) and
the effective Coulomb interaction in Eq. (7), we can write the
self-energy expression in Eq. (4) in momentum space under
an external field

�(p,iεn,B,T ) = − 2i

τ 2

2eB

h̄c
GA

0 (p,iεn)D
∫ ∞

0

dω

2π

∫
dqz

2π

×
( LH

l
)2∑

n=0

λc(qz,2ε − ω,B)

× tanh
(

ω+ε
2T

) + tanh
(

ω−ε
2T

)
[−iω + Dq2

z + D

L2
H

(2n + 1)
]2 , (8)

where for a 2D system integration over qz disappears.
According to the Dyson equation the total retarded GF in
momentum space, GR(p,iεn), is defined as

GR(p,iεn) =
∞∑

n=0

[
GR

0 (p,iεn)
]n+1

[�(p,iεn,B,T )]n. (9)

Substituting Eq. (8) into Eq. (9) and plugging the latter into
Eq. (1) one can find the following expression for the DOS,
ρ(d) = ρ(d)(ε,B,T ), in the presence of a magnetic field:

ρ(d)(ε,B,T ) = ρ
(d)
0 − 2

π
Im

∫
ddp

(2π )d

∞∑
n=0

[β(ε,B,T )]n

× [
GR

0 (p,iεn)
]n+1[

GA
0 (p,iεn)

]n

= ρ
(d)
0 − 2

π
Im

∞∑
n=0

An[β(ε,B,T )]n. (10)

In the equation above, the quantity β(ε,B,T ) has the same
form as the self-energy in Eq. (8) without GA

0 (p,iεn) and An

is described by

An =
∫

ddp

(2π )d
[
GR

0 (p,iεn)
]n+1[

GA
0 (p,iεn)

]n
. (11)

This integration yields

An = −ρ
(d)
0 2πi τ 2n n(2n − 1)!

(n!)2
. (12)

In order to evaluate the sum in Eq. (10), one can employ the
definition ln[1 + √

1 + x2] = ln 2 − ∑∞
n=1(−1)n (2n−1)!

(n!)222n x
2n.

Plugging Eq. (12) into Eq. (10) and performing the sum over
n gives rise to the following contribution, arising from the
Cooper pole, to the DOS in d dimensions:

ρ(d)(ε,B,T ) = ρ
(d)
0

[
1−Im

{
4α

(1 − 4i α) + √
1 − 4i α

}]
, (13)

where α = −i τ 2β(ε,B,T ). Equation (13) is the main result,
which is found from the Dyson equation by involving most
singular self-energy contributions in a weak magnetic field.
In the case of point-like interactions (i.e., static Coulomb
interactions) λc does not depend on either q or ω (λc becomes
a constant). Using this fixed interaction, the calculation of
α = α(ε,B,T ) can be simplified as the integration in Eq. (8)
becomes straightforward. In 2D and 3D, it is calculated to be

α(ε,B,T ) =
{−iC1λc

B2

max{ε2,T 2} , (d = 2)

−iC2λc
B2

max{|ε|3/2,T 3/2} , (d = 3)
(14)

where C1 and C2 are constants. Substituting Eq. (14) into
Eq. (13), we readily obtain the DOS in both dimensions as

ρ(2)(ε,T ,B) = ρ
(2)
0

1√
1 + 4C1λc

B2

max{ε2,T 2}
,

(15)

ρ(3)(ε,T ,B) = ρ
(3)
0

1√
1 + 4C2λc

B2

max{|ε|3/2,T 3/2}
.

This result gives a deviation from the free electron DOS. It
yields a dip (zero DOS) formed at the Fermi level, ε = 0, in
2D and 3D systems due to correlation effects in the presence
of an arbitrary magnetic field. The zero DOS at the Fermi
level (a signature of the Coulomb gap) can be ascribed to
the fact that the contribution of localized states dominates
over that of the metallic ones. Equation (15) reveals that at
absolute zero, around the Fermi level (i.e, at low energies)
the DOS ρ(d)(ε,T = 0,B) = ρ(d)(ε,B) depends linearly on
energy, ρ(2)(ε,B) ∼ |ε|/B, in 2D; while in 3D it is given
by a power-law behavior, ρ(3)(ε,B) ∼ |ε| 3

4 /B, under a finite
magnetic field. Note that in the presence of magnetic field,
the logarithmic suppression of the DOS disappears in 2D.
It originates from the fact that the magnetic field destroys the
interference of wave functions. Power-law behavior was found
through the nonperturbative calculations in earlier studies.24,25

For instance, in Ref. 24, high-order Coulomb potential contri-
butions were summed up through the renormalization group
theory, giving power-law behavior. In the present study the
obtained power-law behavior originates from the summation
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FIG. 2. (Color online) Correlation effects on ρ(2)(ε,B) and
ρ(3)(ε,B) for various magnetic fields through fixed Coulomb interac-
tion strength. In the inset, the variation of the DOS is shown around
the Fermi level.

of high-order diagrammatic contributions. At high energies,
when ε � h̄ωc, we recover the AA results in Ref. 17 where
ρ(2)(ε,B) ∼ B2/ε2 and ρ(3)(ε,B) ∼ B2/|ε| 3

2 . The DOS as a
function of energy in each dimension is presented for various
magnetic fields, at T = 0, in Fig. 2. We see that in the vicinity
of the Fermi level, in both dimensions, the DOS becomes
reduced by increasing the magnetic field. It can also be
reduced by increasing the impurity strength, i.e., decreasing
τ , through Eq. (13). The suppression around the Fermi energy

and vanishing of tunneling DOS in 2D at ε = 0 was observed
in Ref. 16 in the presence of screening under a magnetic field.
In Ref. 16 it was also found that the suppression becomes
deeper with increasing magnetic field at low energies, which
agrees well with our findings. For various magnetic fields,
the absence of zero bias tunneling conductance has also been
demonstrated experimentally26 in agreement with our results.

III. CONCLUSIONS

In the present paper we provide a diagrammatic pertur-
bation treatment on the disordered interacting problem. We
attempt to describe the role of the magnetic field and ee

interaction in weakly doped metallic disordered systems.
Through the Dyson equation, we examine the most singular
self-energy contributions to the DOS in 2D and 3D disordered
electronic systems influenced by an external magnetic field.
Incorporating high order in Coulomb interaction scattering
corrections does not change the variation of the DOS given
in Ref. 17 at high energies. However, at low energies it is
drastically modified in 2D and 3D, resulting in a strong energy
and magnetic field dependence of the DOS at energies close to
the Fermi energy. We reveal that, in both dimensions, the DOS
depends inversely on magnetic field strength in the vicinity
of the Fermi level and becomes zero at the Fermi energy.
One may argue that, upon employing the Dyson equation,
the interplay of ee interaction and magnetic field in weakly
disordered metallic systems substantially modifies the form of
the DOS in the vicinity of the Fermi level.
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