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Effect of strong disorder in a three-dimensional topological insulator:
Phase diagram and maps of the Z2 invariant
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We study the effect of strong disorder in a three-dimensional topological insulator with time-reversal
symmetry and broken-inversion symmetry. First, using level-statistics analysis, we demonstrate the persistence
of delocalized bulk states even at large disorder. The delocalized spectrum is seen to display the levitation and
pair annihilation effect, indicating that the delocalized states continue to carry the Z2 invariant after the onset
of disorder. Second, the Z2 invariant is computed via twisted boundary conditions using an efficient numerical
algorithm. We demonstrate that the Z2 invariant remains quantized and nonfluctuating even after the spectral gap
becomes filled with dense localized states. In fact, our results indicate that the Z2 invariant remains quantized
until the mobility gap closes or until the Fermi level touches the mobility edges. Based on such data, we compute
the phase diagram of the Bi2Se3 topological material as a function of disorder strength and position of the Fermi
level.
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I. INTRODUCTION

Topological insulators represent a new class of materials
where the topology of the bulk electronic structure induces
highly nontrivial effects.1–8 One such effect is the emergence
of metallic states along the edges of planar [two-dimensional
(2D)] topological insulating structures or on the surface of
three-dimensional (3D) topological insulators. These materials
became a reality after a topological insulator from the class
of quantum spin-Hall insulators and one from the class of
strong 3D topological insulators with time-reversal symmetry
have been theoretically predicted and then engineered and
characterized in laboratories.4–8 Since then, many additional
topological materials have been discovered (the reader can find
a survey of the field in Refs. 9–12).

For topological insulators with time-reversal symmetry, it
has been argued that the edge/surface states maintain their
metallic character even in the presence of weak disorder2,3

due to the cancellation of the backscattering amplitudes.
This robustness against disorder can be the key to many
technological applications,9–11 and because of that, a great
deal of effort has been dedicated to understanding the behavior
of the topological materials in the presence of disorder.13–26

One important question, which is still open for 3D topological
insulators, is if the robustness against disorder extends into
the strong-disorder regime, particularly into the regime where
the insulating gap is filled with dense localized spectrum. The
theoretical argument based on the time-reversal symmetry is
perturbative and therefore it breaks down in this regime. As
such, one must seek a new argument that combines topology
(an index theorem) and symmetry, and this has become an
extremely active area of research.26–28 While searching for
such an argument, it became apparent to us that a numerical
exploration of the matter will be of great help. Notable efforts
paralleling ours are the numerical computations of a newly de-
fined Bott index in Ref. 28, carried out for a disordered model
of a 3D strong topological insulator. The explicit equivalence
between the Bott index and the strong Z2 invariant remains

to be established in the strong-disorder regime considered
here. We also want to mentioned the scattering approach for
disordered topological insulators reported in Ref. 29.

Our discussion will be restricted to 3D topological insula-
tors. In the presence of time-reversal symmetry, the insulators
follow a Z2 topological classification. The strong Z2 invariant
that renders an insulator as either trivial or topological was
computed in various ways, but in general the computations
were quite demanding because they had to be carried out
with special smooth gauges. The difficulty introduced by this
requirement has been documented in our previous work.30 For
example, the original expressions of the Z2 invariant3,7,31,32

require special smooth gauges and were computed only for
analytically solvable band models. These expressions have
been reformulated in an almost gauge-invariant fashion by
Fukui and his collaborators.33,34 The method still requires a
time-reversal adapted gauge at the boundary of half of the
Brillouin zone, but nevertheless it became the method of choice
when computing the Z2 invariant.15,35–39 Still, an application
of the method to the disordered case exists only in 2D.15

The Chern-Simons integral of the quantized magnetoelectric
polarization also requires a globally smooth gauge.40 The
difficulties introduced by this requirement were highlighted
in Ref. 41, where the best effort to evaluate the Chern-Simons
integral only led to a value of 0.3 for a disorder-free topological
case where the result should have been quantized to 1. To date,
there is no successful direct evaluation of this Chern-Simons
integral for clean tight-binding models.

The issue was recently reconsidered and gauge-independent
formulations of the weak and strong Z2 invariants are now
available.30,37,42–44 Here, we will follow Ref. 30 and we will
argue here that these new formulations bring certain numerical
advantages, which open the possibility of directly computing
the Z2 invariants for systems with extremely large unit cells,
particularly for disordered samples (as opposed to indirectly
inferring the Z2 invariants from other types of calculations
such as transport simulations of the surface states). We present
a numerical analysis of the strong Z2 invariant for a system
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without inversion symmetry, computed in the weak- and
strong-disorder regimes via the twisted boundary conditions
technique combined with the new formulation of the invariant.
The use of the twisted boundary conditions was advocated
by Kane and Mele in their original discussion of the 2D
Z2 invariant as an effective procedure for tackling the effect
of disorder and electron-electron interaction.3 Numerically,
this method is equivalent to computing the Z2 invariant for a
periodic system with a very large unit cell, leading to thousands
of occupied energy bands. Finding smooth special gauges for
such complex band structures is prohibitively difficult, which
is why the Z2 invariant is notoriously difficult to compute
for disordered 3D topological insulators (the parity analysis
was accomplished in Ref. 23 for a system and disorder with
inversion symmetry).

Working with a tight-binding model appropriate for the 3D
topological material Bi2Se3, we provide compelling evidence
that the strongZ2 invariant remains well defined and quantized
even after the insulating gap becomes filled with dense
localized spectrum. In fact, our various mappings of the Z2

invariant indicate that the quantization holds as long as the
Fermi level remains in the mobility gap. Furthermore, we
use level-statistics analysis to map the localized or extended
character of the energy spectrum for a wide range of disordered
strengths. We provide compelling evidence that there are bulk
metallic states that persist even at very large disorder, and we
derive the phase diagram of the 3D model as function of Fermi
level and disorder strength. The phase diagram consists of
the strong topological phase, which is completely surrounded
by a metallic phase, which is again surrounded by the trivial
insulating phase. Computations of the Z2 invariant along paths
that cross from the topological into the trivial insulating phase
reveal strict quantization of the invariant to ±1 values in the
topological/trivial insulating phases, respectively, and strong
fluctuations between ±1 inside the metallic phase.

The motivation behind this study was twofold. First, there
is no theory of the Z2 invariant for aperiodic systems (except
for the trivial case when the Fermi level is in a spectral gap,
i.e., a region that is void of any energy spectrum). For example,
for the Chern and spin-Chern invariants, we have theories that
provide explicit and specific conditions, which can be written
in one line, that tell us when these invariants take quantized
values even if the Fermi level is not in a spectral gap.26,45

Furthermore, we have real-space formulations of these two
invariants,22,26 which allows one to compute them in “one shot”
without involving twisted boundary conditions. Nothing like
that exists for the strong Z2 invariant, despite some sustained
efforts. This makes one to question that such a theory will
ever be achieved, and in fact to question that the strong Z2

invariant does indeed remain quantized once the spectral gap
is closed. Our numerical study provides direct evidence that
the strong Z2 invariant behaves similarly to these other two
invariants, which can be a strong motivation for people to
continue searching for a theory of the strong Z2 invariant for
aperiodic systems.

Second, it is known that disorder can strongly deform the
phase boundary of the topological state.18,19,24,25 As such,
it is highly desired to devise quantitative methods that can
accurately pinpoint the extent of the topological phases.
Previously, the strong topological phase was identified by

probing the metallic character of the surface states via transport
calculations in a long bar geometry.23 For the special case
when the system and the disorder have inversion symmetry,
the topological phase was identified using the parities of the
states.23 Ideally, however, it will be to directly map the strong
Z2 invariant, and our study demonstrates that this is indeed
possible for 3D materials.

Last, we want to state explicitly that our numerical
simulations probe situations which are not covered by the
existing theories. As discussed in the next sections, our
method, and for that matter all the established methods, are
easily seen to produce quantized and nonfluctuating Z2 values
if a spectral gap between the occupied and nonoccupied levels
remains open at all times while twisting of the boundary
conditions. However, at strong disorder, the spectral gap not
only closes but the levels can change their ordering when
twisting the boundary conditions. Thus, levels that once
were occupied become unoccupied and vice versa. Moreover,
different disorder configurations can no longer be connected
adiabatically. While our numerical procedure can still be
applied in these situations, the available theoretical arguments
can no longer assure us that the output remains the same from
one disorder configuration to another (this also applies to the
Bott index of Refs. 27 and 28). Still, if the states near the Fermi
level are localized, one expects the value of the invariant to
remain unaffected by this phenomenon. This is exactly what
we are trying to verify in this work.

II. TWISTED BOUNDARY CONDITIONS

In the first half of the paper, we will carry the discussion at a
general level. We consider a generic 3D quantum lattice model
with many quantum states ξ per site n. The Hilbert space H is
spanned by |n,ξ 〉 and the periodic Hamiltonian is given by

H0 =
∑

n, p,ξ,ξ ′
|n,ξ 〉hξξ ′

p 〈n + p,ξ ′| =
∑
n, p

|n〉ĥ p〈n + p|, (1)

where p runs over first, second, etc., neighbors of the origin,
|n〉 denotes the one-column matrix with the entries |n,ξ 〉, 〈n|
represents its dual, and ĥ p is the matrix of elements h

ξξ ′
p . We are

interested in the properties of a disordered Hamiltonian Hω =
H0 + Vω, and to be specific we consider an onsite random
potential

Vω = W
∑
n,ξ

ωnξ |n,ξ 〉〈n,ξ | = W
∑

n

|n〉v̂ω〈n|, (2)

where ωnξ are randomly independent amplitudes uniformly
distributed in the interval [− 1

2 , 1
2 ].

The twisted boundary conditions method for disordered
systems consists basically in considering a large supercell S,
containing many unit cells of the clean system, specifically the
states |n,ξ 〉, 0 � n1,n2,n3 � N − 1, and a random potential is
placed inside this supercell. The supercell is then periodically
repeated in space. We will continue to use Hω to denote the
resulting approximate Hamiltonian. Since we are dealing with
a periodic system, we can construct a dual k-space represen-
tation via the Bloch transformation. This transformation is
given by the isometry U from the Hilbert space H of the
infinitely repeated system into a continuum direct sum of
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copies of the supercell’s Hilbert space H0 spanned by |n,ξ 〉,
0 � n1,n2,n3 � N − 1 (T = 3D torus):

U : H →
⊕
k∈T

H0, U |n + mN ,ξ 〉= 1

(2π )3/2

⊕
k∈T

e−ik·m|n,ξ 〉

(3)

for any n in S and arbitrary m in Zd . Note that any point from
Zd can be uniquely written as n + mN . The inverse of the
isometry is

U−1

⎛
⎝⊕

k′∈T
δk′k|n,ξ 〉

⎞
⎠ = 1

(2π )3/2

∑
m∈Z3

eik·m|n + mN ,ξ 〉.

(4)

Note that we wrote the transformation so that all the states
inside the supercell get the same phase factor, in which case
the 2π periodicity in the k variables is automatically satisfied.
Under this transformation, we have

UHωU−1 =
⊕
k∈T

Hω(k), (5)

where the Bloch Hamiltonians Hω(k) : H0 → H0 are defined
by

Hω(k) =
∑
n∈S

∑
p

|n〉 ĥ′
n p(k) 〈(n + p)modN |

+W
∑
n∈S

|n〉v̂ω〈n| (6)

with

ĥ′
n p(k) = e

i
3∑

α=1
kα(δnα+pα ,N −δnα+pα ,−1)

ĥ p. (7)

These are precisely the twisted boundary conditions since the
phase factor above occurs only for the lattice points n at
the boundary. At this point, we obtained a family of Bloch
Hamiltonians indexed by a point on the 3D torus. The same
construction can be achieved by wrapping the supercell S into
a 3D torus and by threading magnetic fluxes through the 2D
sections of this torus. The effect of such magnetic fluxes is
captured by the same twisted boundary conditions.

One should note that the twisted boundary conditions
method is defined for a finite volume, whereas one is really
interested in the infinite bulk samples. Strictly speaking, one
has to take the volume of the supercell to infinity and carefully
investigate the stability of the results. In practice, of course,
we will have to stop the limit at some point.

III. Z2 INVARIANTS

We start our discussion of the Z2 invariant with a brief
review of the formulation given in Ref. 30. The connection
between this formulation and the previously existing ones has
been exhaustively discussed in this reference and will not be
addressed here. Instead, we will give a detailed discussion of
the numerical advantages brought in by this new method.

Briefly, the method goes as follows. Let Pk denote the
projector on to the states of Hω(k) below the Fermi level EF ,
and let θ denote the time-reversal operation and assume the

(0,- )

(0,+ )

k0
k1

kn

-k1

-kn

(+ ,+ )

(+ ,- )(- , - )

(- ,+ )

FIG. 1. Example of a time-reversal-invariant path in the Brillouin
torus and its discretization.

time-reversal invariance

θHω(k)θ−1 = Hω(−k). (8)

One considers a closed, time-reversal-invariant path (i.e., a
path which is mapped into itself by θ ) on the Brillouin torus

[−π,π ] � k → k(k), (9)

parametrized by the variable k (we chose the notation on
purpose because in practice this variable will often be kz, for
example). Then, one integrates the differential equation (with
the initial condition Uk′,k′ = Pk(k′))

i
d

dk
Uk,k′ = i[Pk(k),∂kPk(k)]Uk,k′ . (10)

We will use the simplified notation Pk(k) = Pk . The result of
the integration gives the unitary time evolution operator Uk,k′

corresponding to the process of adiabatically changing the
k vector along the chosen path in the Brillouin torus. It is
assumed that the path starts (k = −π ) and closes (k = π ) at a
time-reversal-invariant k point. Necessarily, the path will cross
another time-reversal-invariant point at midway k = 0 (see
Fig. 1). Next, one considers arbitrary bases {e0

α} and {eπ
α } for

the occupied spaces at the time-reversal-invariant points k = 0
and π , respectively, and one defines the following matrices:

Ûαβ = 〈
eπ
α

∣∣Uπ,0

∣∣e0
β

〉
, θ̂0

αβ = 〈
e0
α

∣∣θ ∣∣e0
β

〉
, θ̂π

αβ = 〈
eπ
α

∣∣θ ∣∣eπ
β

〉
.

(11)

These matrices satisfy the following fundamental relation:30

Pf{θ̂π }−1 det{Û}Pf{θ̂0}√
det{Uπ,−π } = ±1. (12)

The left-hand side of Eq. (12) will be called a pseudo-Z2

invariant for the following reasons. The left-hand side is gauge
independent. Indeed, given the transformation properties of
the Pfaffians and determinants under the conjugation with
unitary matrices, one can easily see that the numerator is
independent of the bases {e0

α} and {eπ
α }.30 At the denominator,

inside the square root, Uπ,−π maps the k = ±π occupied space
into itself, so at a change of {eπ

α } basis, we have Uπ,−π →
EUπ,−πE−1, with E a unitary matrix, so the determinant
remains unchanged. However, the sign in Eq. (12) depends
on which branch of the square root is used, but once a choice
is made, the value of the left-hand side can not be changed by
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smooth deformations of the Bloch Hamiltonians that keep the
insulating gap opened.

In practice, the adiabatic evolution operators are computed
by discretizing the paths and taking the product of projectors
onto the occupied spaces at these discrete k points. Since the
path is time-reversal invariant, we can choose the discretization
points so as k0, k1, ..., kn discretizes the path from k = 0 to π ,
while −kn, −kn−1,...,k0 discretizes the path from k = −π to
0. In this case,

Uπ,−π = lim
n→∞ Pkn

Pkn−1 . . . Pk0 . . . P−kn−1P−kn
. (13)

In practice, however, we have to stop the limit at some n = n̄

and work with an approximation

Uπ,−π = Pkn̄
Pkn̄−1 . . . Pk0 . . . P−kn̄−1P−kn̄

, (14)

and similar for Uπ,0:

Uπ,0 = Pkn̄
Pkn̄−1 . . . Pk0 . (15)

We are going to show in the following that the quantization in
Eq. (12) remains exact even for finite n̄’s.

Indeed, using the elementary fact that θPkj
θ−1 = P−kj

, we
have

Uπ,−π = Pkn̄
Pkn̄−1 . . . Pk0θPk0 . . . Pkn̄−1Pkn̄

θ−1. (16)

Inserting the identity operator
∑

α |e0
α〉〈e0

α| at the appropriate
places, we obtain〈

eπ
α

∣∣Uπ,−π

∣∣eπ
β

〉 = 〈
eπ
α

∣∣Pkn̄
Pkn̄−1 . . . Pk0

∣∣e0
δ

〉〈
e0
δ

∣∣θ ∣∣e0
γ

〉
×〈

e0
γ

∣∣Pk0 . . . Pkn̄−1Pkn̄

∣∣eπ
ξ

〉〈
eπ
ξ

∣∣θ−1
∣∣eπ

β

〉
= 〈

eπ
α

∣∣Pkn̄
Pkn̄−1 . . . Pk0

∣∣e0
δ

〉
(θ̂0)δγ

×〈
eπ
ξ

∣∣Pkn̄
Pkn̄−1 . . . Pk0

∣∣e0
γ

〉(
θ̂−1
π

)
ξβ

. (17)

Summation over repeating indices was assumed above. At this
step, the conclusion is

Uπ,−π = Û θ̂0Û
T θ̂−1

π . (18)

Taking the determinant and using the elementary properties of
the determinants and Pfaffians, we obtain

det{Uπ,−π } = [Pf{θ̂π }−1 det{Û}Pf{θ̂0}]2, (19)

which is precisely Eq. (12).
The significance of the above conclusion for the numerical

calculations is that it allows us to use a relatively small number
of discretization points when evaluating Eq. (12). One question
that could be asked is if the result of such calculation, while
indeed quantized, really equals the result in the n̄ → ∞ limit?
To answer this question, we imagine a calculation with a
dense number of discretization points and then adiabatically
collapsing pairs of adjacent discretization points into a single
discretization point. In this way, we can adiabatically transform
the original computation into a computation with half the
number of discretized points. Repeating the same action, we
can adiabatically reduce the number of discretization points
even further by 4, 8, and so on. Since Eq. (12) is quantized, it
can not change its value during such adiabatic deformations,
if all the quantities remain well defined. So what can go
wrong? In the n̄ → ∞ limit, Uπ,−π is a true unitary operator
so its determinant is a complex number on the unit circle. For
finite n̄, Uπ,−π is no longer unitary and its determinant moves

inside the unit circle. As the number of discretization points
is reduced, the determinant moves closer to the origin so there
is the possibility that det{Uπ,−π } actually becomes equal to
zero. At such instance, the calculation breaks down and the
quantized value of Eq. (12) can change. So, the conclusion is
that Eq. (12) can be indeed evaluated using a relatively small
number of discretization points, as long as one makes sure that
det{Uπ,−π } does not touch the origin. In practice, we choose
the number of discretized points so that | det{Uπ,−π }| ≈ 0.5,
which reduces the number of required k points by an order of
magnitude in our calculations, when compared with the case
when | det{Uπ,−π }| ≈ 0.9.

Equation (12) is fundamental for the formulation of the Z2

invariant, but it can not define an invariant by itself. That is
because we do not have a canonical way to choose the branch
of the square root at the denominator of Eq. (12). However, the
important observation is that if one considers a pair of paths,
then there is a canonical way to choose the same branch of the
square root and genuine Z2 invariants can be defined. This has
been detailed in Ref. 30. The following lines explain how the
procedures were explicitly implemented in our calculations.

For a 3D system, we consider four independent time-
reversal-invariant paths. If Pkx ,ky

denotes the path along the
kz direction that intersects the plane kz = 0 at (kx,ky), then we
choose the following four paths:

P0,0 : (0,0, − π ) → (0,0,π ),

P0,π : (0,π, − π ) → (0,π,π ),
(20)

Pπ,0 : (π,0, − π ) → (π,0,π ),

Pπ,π : (π,π, − π ) → (π,π,π ).

We interpolated between the paths P0,0 and P0,π using the
process

[0,π ] � ky → P0,ky
. (21)

By computing the adiabatic evolution

U(0,ky ,−π)→(0,ky ,π) (22)

for the path P0,ky
, we continuously interpolate between the

determinants

det{U(0,0,−π)→(0,0,π)} ↔ det{U(0,π,−π)→(0,π,π)}, (23)

using the process

[0,π ] � ky → det{U(0,ky ,−π)→(0,ky ,π)}. (24)

This allows us to monitor how the determinant moves on
the Riemann surface of the square-root function, and to
determine the location of det{U(0,π,−π)→(0,π,π)} relative to
the location of det{U(0,0,−π)→(0,0,π)} on the Riemann surface.
If det{U(0,ky ,−π)→(0,ky ,π)} crosses the semiaxis (−∞,0) an
odd number of times, then the determinants are located
on opposite Riemann sheets and we have to use different
branches of the square root, that is, we will have to use ±√

z

for one determinant and ∓√
z for the other determinant in

Eq. (23) when we evaluate the denominator of Eq. (12). If
det{U(0,ky ,−π)→(0,ky ,π)} crosses the semiaxis (−∞,0) an even
number of times, then the determinants are located on the same
Riemann sheet and we have to use ±√

z for one determinant
and the same ±√

z for the other determinant. As one can see,
there is still a sign ambiguity remaining (originally we had two
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sign ambiguities), but that becomes irrelevant if we form the
product of two pseudoinvariants. Indeed, the quantity

�0 = Pf{θ̂(0,0,π)}−1 det{Û(0,0,0)→(0,0,π)}Pf{θ̂(0,0,0)}√
det{U(0,0,−π)→(0,0,π)}

× Pf{θ̂(0,π,π)}−1 det{Û(0,π,0)→(0,π,π)}Pf{θ̂(0,π,0)}√
det{U(0,π,−π)→(0,π,π)}

is a genuine invariant taking the quantized values ±1, which
are independent of the branch of the square roots used in the
calculation, as long as they are chosen consistently using the
interpolating procedure described above. We can repeat the
same construction for the pair of paths Pπ,0 and Pπ,π and
define the invariant

�π = Pf{θ̂(π,0,π)}−1 det{Û(π,0,0)→(π,0,π)}Pf{θ̂(π,0,0)}√
det{U(π,0,−π)→(π,0,π)}

× Pf{θ̂(π,π,π)}−1 det{Û(π,π,0)→(π,π,π)}Pf{θ̂(π,π,0)}√
det{U(π,π,−π)→(π,π,π)}

.

The invariants �0 and �π are two of the four independent
weak Z2 invariants. We can define two more weak invariants
by pairing the paths in different ways, but that is not necessary
because at this point we can define the strong Z2 invariant as

� = �0�π. (25)

If we count the strong Z2 invariant, then there are only
three independent weak Z2 invariants remaining. We will
concentrate entirely on the strong invariant.

We have already discussed the numerical aspects related
to computing the Z2 pseudoinvariants for each of the four
paths of Eq. (20). There is another important numerical aspect
about determining the correct branch of the square roots. One
should note that computing the pseudoinvariants involves one-
dimensional calculations, in the sense that we only need to
integrate along the kz direction and not on a surface as it is
the case when applying, for example, the popular algorithm of
Fukui et al. from Ref. 34. However, we still have to perform the
interpolation along the ky direction, so the calculations become
two dimensional. The key observation is that the number of ky

points required by a successful interpolation is usually an order
of magnitude smaller than the number of kz points needed in
the computation of the pseudoinvariants. This is because all
we need is to determine how the determinants wind around
the origin during the interpolation, and to trace these paths,
one can indeed use a relatively small number of ky points.
Therefore, our algorithm, while not strictly one dimensional,
can be regarded as quasi-one-dimensional.

To summarize, the application to the disordered system was
possible because of the following numerical advantages of the
present algorithm:

(i) The algorithm is gauge independent. Finding a smooth
gauge for a unit cell containing thousands of quantum states
would have been practically impossible.

(ii) The quantization of the pseudoinvariants remains exact
when the paths are discretized, allowing a drastic reduction of
the number of the discretization points.

(iii) The interpolation between the different time-reversal-
invariant paths can be accomplished with a small number

of k points, transforming the algorithm into a quasi-one-
dimensional one.

IV. MODEL

The model used in our numerical simulations is an effective
lattice Hamiltonian fitted to the topological material Bi2Se3.
The starting point is a Hamiltonian H0 which, in the clean limit,
can accurately describe the empirical energy band spectrum
around the insulating gap. This H0 was used in the previous
studies of disordered Bi2Se3 in Refs. 23 and 24. The H0

has inversion symmetry and, since we want to exemplify the
algorithms for systems without such symmetry, we will include
an additional term in the Hamiltonian that strongly breaks the
inversion symmetry. This term can be thought as the effect of
a mechanical strain applied along the z axis.

In the momentum space,

H0(k) = d4(k) +

⎛
⎜⎜⎜⎝

d0(k) d3(k) 0 d−(k)

dz(k) −d0(k) d−(k) 0

0 d+(k) d0(k) −d3(k)

d+(k) 0 −d3(k) −d0(k)

⎞
⎟⎟⎟⎠ ,

(26)

where

cd0(k) = ε − 2t
∑

i

cos ki, di(k) = −2λ sin ki, i = 1,2,3

d4(k) = 2γ

(
3 −

∑
i

cos ki

)
(27)

and

d±(k) = d1(k) ± id2(k). (28)

The added term that preserves the time-reversal symmetry but
breaks the inversion symmetry is

VI = R

⎛
⎜⎜⎜⎝

0 0 0 e−ik3

0 0 −eik3 0

0 −e−ik3 0 0

eik3 0 0 0

⎞
⎟⎟⎟⎠ . (29)

The following parameters will be fixed at these values
throughout the paper: ε = 134 meV, λ = 30 meV, γ = 16
meV, R = 15 meV. We will use t = 40 meV for the topological
insulator and t = 14 meV for the trivial insulator (the two
values lead to comparable insulating gaps). The insulating gap
in our study is larger than the empirical insulating gap of the
Bi2Se3 material, and the reason we chose to proceed this way
was to be able to better showcase the behavior of the strong
Z2 invariant in the presence of disorder (the insulating and
the mobility gaps would have closed too fast if the gap was
fixed at the empirical value). This modification does not break
the bridge with the experimental reality because it is known
that a mechanical strain may increase the insulating gap of the
material.

The real-space representation of the translational-invariant
Hamiltonian can be constructed on a cubic lattice where each
vertex n carries four quantum states |n,α,σ 〉. Here, α = ±1
(=isospin) labels the s or the p angular momentum character
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of a state and σ = ±1 the spin-up and -down configurations.
On the Hilbert space spanned by |n,α,σ 〉, we define di,j,k ,
σ̂ , α̂, rα , and rσ as the translation, spin, isospin, and flipping
operators as follows:

d̂i,j,k|n1,n2,n3,α,σ 〉 = |n1 + i,n2 + j,n3 + k,α,σ 〉,
σ̂ |n,α,σ 〉 = σ |n,α,σ 〉, α̂|n,α,σ 〉= α|n,α,σ 〉,
rσ |n,α,σ 〉 = |n,α, − σ 〉, rα|n,α,σ 〉 = |n, − α,σ 〉.

(30)

Then, the real-space representation of H0 takes the form

H0 = εα̂ + 6γ + λ
∑
s=±1

sd̂0,s,0rασ̂ rσ

+ iλ
∑
s=±1

s(d̂s,0,0rαrσ + d̂0,0,srασ̂ )

− t(α̂ + γ )
∑
s=±1

(d̂s,0,0 + d̂0,s,0 + d̂0,0,s). (31)

The term breaking the inversion symmetry takes the form

VI = R

2
σ̂ (α̂ − 1)(d̂0,0,1rα − d̂0,0,−1)rσ . (32)

As it is now well established, the topological properties
of the clean model are revealed when restricting the total
Hamiltonian H0 + VI on a slab: 0 < n3 < N , where N is taken
large enough so that the tunneling between the two surfaces of
the slab is negligible. The slab Hamiltonian takes the form

H0(k1,k2) = −t
∑
s=±1

d̂00s α̂ + iλ
∑
s=±1

sd̂00srασ̂

− γ
∑
s=±1

(d̂00s) + d ′
4(k1,k2) + d ′

0(k1,k2)α̂

+ d1(k1)rαrσ − id2(k2)rασ̂ rσ , (33)

where d ′
4(k1,k2) = 2γ [3 − ∑

1,2 cos(ki)] and d ′
0(k1,k2) = ε −

2t
∑

1,2 cos(ki). For such configuration, the parallel compo-
nent to the surfaces of the momentum is conserved, so one
can plot the energy spectrum as function of k1 and k2. In
Figs. 2(a)–2(c) we show sections of such plots by holding k2

at k2 = 0 for three different values of t . The dense band spectra
seen in all three plots correspond to the bulk and one can see a
bulk energy gap in Figs. 2(a) and 2(c). The bulk gap is closed
in Fig. 2(b) and that marks the transition from the trivial to
the topological insulator. Indeed, in Fig. 2(c), one can observe
chiral bands connecting the valence and the conduction bands,
and in Fig. 2(a) these bands are missing entirely. The chiral
bands in Fig. 2(c), if plotted as function of k1 and k2, will give
rise to a Dirac cone. The transition point between the phases
is at t = 22.6 meV.

A straightforward test of the algorithm described in the
previous section consists of computing the strong Z2 invariant
for the clean system as a function of parameter t , and
comparing the output with the appearance or disappearance
of the surface states in the slab calculations in Fig. 1. Figure
1(d) reports these calculations and indeed both theZ2 invariant
and the slab calculations predict a trivial insulator for t <

22.6 meV and a topological insulator for t above this value. The
strong Z2 invariant was computed using the twisted boundary
conditions on a 4×4×4 lattice. The size of the lattice is

k1 k1 k1

Z2 invariant

t (meV)

(a) (b) (c)

(d)

FIG. 2. (Color online) (a)–(c) The band structure of the model
for a slab configuration 0 < n3 < 30, plotted as function of k1 with
k2 fixed at k2 = 0. The hopping parameter t takes the values t = 14
meV in panel (a), t = 22.6 meV in panel (b), and t = 40 meV in
panel (c). Panel (d) reports a calculation of the strong Z2 invariant as
t was varied from 14 to 40 meV.

irrelevant for the clean systems, and we just chose a convenient
lattice size in order to test the twisted boundary conditions
method. We used 100 number of kz points to compute
the pseudoinvariants, in which case | det{Uπ,−π }| ≈ 1, and
20 number of ky points to perform the interpolations.

V. EFFECT OF DISORDER: LEVEL-STATISTICS
ANALYSIS

The total Hamiltonian will include a random potential

H = H0 + VI + Vω, (34)

where Vω is a nonmagnetic random potential

Vω = W
∑
n,α,σ

ωnα|n,α,σ 〉〈n,α,σ | (35)

with ωnα random entries uniformly distributed in the interval
[− 1

2 , 1
2 ].

For level-statistics analysis, we diagonalized the disordered
Hamiltonian on a 14×14×14 lattice with periodic boundary
conditions and for 500 random disorder configurations. We
sampled the energy spectrum at 100 equally spaced energy
levels E. For each such E, we identified, for each disorder
configuration, the unique energy levels Ei and Ei+1 satisfying
Ei < E < Ei+1, and we recorded the level spacings �E =
Ei+j+1 − Ei+j , letting j take consecutive values between −5
and 5. Note that j indexes the levels and that each level is
doubly degenerate. In this way, we have generated ensembles
containing 5500 level spacings for each energy E. Figure 3
reports the variance 〈s2〉/〈s〉2 − 1 of these ensembles as a
function of energy E and disorder strength W . It also reports
the integrated density of states (IDOS), which counts the
number of eigenvalues below an energy E and normalizes this
number by the dimension of the Hilbert space. When plotted
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FIG. 3. (Color online) Level statistics analysis for (left column)
the topological insulator t = 40 meV and (right column) the trivial
insulator t = 14 meV. Each panel displays the variance of the
level-spacings ensembles as a function of the energy where the level
spacings were collected. The gray lines in each panel represent the
integrated density of states (IDOS), which can be used to assess
the evolution of the spectral gap, corresponding to the flat IDOS,
and especially to determine when the gap is closing and becoming
completely filled with localized states. The horizontal dash lines mark
the value 0.104, the variance of the GSE ensemble. The vertical range
in each panel goes from 0 to 1. The shaded regions represent the
emerging phase diagram of the topological model.

as function of E, the IDOS remains flat in the spectral gaps,
so it is a useful and effective tool for identifying the spectral
gaps in the energy spectrum. We will be particularly interested
to see when the insulating gap is closing.

The level spacings follow a Poisson distribution when E

is in the localized spectrum and the localization length is
smaller than the size of the system. The Poisson distribution
has a variance equal to 1. In the spectral regions where
the localization length exceeds the size of the system, the
statistics of the level spacings coincides with that of a random
Gaussian symplectic ensemble (GSE) (Refs. 46 and 47):

PGSE(s) = 218

36π3 s
4e− 64

9π
s2

. The variance of this distribution is
0.104. One can study the trends as the system size is increased,
and if the size of the system reached a limit where the variance
is seen to stabilize (which we have verified that it does), the
level-spacing analysis can be used quite effectively to identify
the regions of the localized and delocalized spectrum. This
will be done after we discuss the qualitative behavior of the
energy spectrum in response to disorder.

In three dimensions, extended states can exist even in trivial
disordered models. The qualitative behavior of the spectrum
in trivial models is as follows. Usually, the edges of the bands
start to localize the moment the disorder is turned on (for
systems displaying large variations in the density of states,
additional patches of localized spectrum can occur deep inside
the band). At moderate disorder, extended states still survive
deep within the bands. As such, there are usually two mobility
edges forming per band, flanking the region of extended states,
and these mobility edges move toward each other when the
disorder is increased until they merge and disappear. At that
point, all the states become localized, as it should be the case
at large disorder.48

In a topological model, the behavior of the spectrum is
markedly different. The edges of the bands are still the first
parts of the spectrum to become localized and the extended
states are still located in the middle of the bands. But, if a band
carries a nontrivial topological number that is robust against
disorder, the two mobility edges flanking the extend states in
a band can not merge and disappear like in the trivial case
because that will lead to a sudden change of the topological
number carried by the bands, from a nontrivial to a trivial
value. So what happens when increasing the disorder? The
energy spectrum will eventually become entirely localized
as the disorder is being steadily increased,48 and the only
way this can happen is through a scenario where the bands
carrying topological numbers collide with each other and in
the process they neutralize their topological numbers. This
leads to one of the hallmarks of the topological models where,
when increasing the disorder, the spectral regions of extended
states are seen to drift toward each other until they merge
and disappear, usually at very large disorder strengths. The
levitation of the Chern-number carrying extended states in the
integer quantum-Hall effect is well known from the works of
Halperin and Laughlin,49,50 and the pair annihilations of the
topological states in lattice models of IQHE was discussed in
Refs. 51 and 52. The levitation and pair annihilation picture
was instrumental for the understanding of the global phase
diagram of IQHE,53 and that will also be the case for our study.

In Fig. 3, we report the variance of the level-spacings
ensembles collected at various energies and for increasing
disorder strengths. We do not show here the actual histograms
of the level spacings because of the large volume of data al-
ready contained in this figure. However, the level statistics have
been exhaustively researched for topological models,22,26,54,55

and the correlation between the histograms and the value of the
variance has been already firmly established. Panels (a1)–(a11)
refer to the topological case where t = 40 meV and panels
(b1)–(b11) refer to the trivial case where t = 14 meV. These
two values were chosen such that the insulating energy gaps
are practically the same (see Fig. 1).

205136-7



BRYAN LEUNG AND EMIL PRODAN PHYSICAL REVIEW B 85, 205136 (2012)

FIG. 4. (Color online) Illustration of the phase diagram of the
model as derived in Fig. 3, and the two paths used in the mapping of
the Z2 invariant.

Examining the panels in Fig. 3, one can observe energy
regions where the variance is large (and becomes unity at
large disorder) but also energy regions where the variance
remains pinned at the 0.104 value. These later regions will be
identified with the spectral regions of extended states, while
the former ones with the spectral regions of localized states. In
panels (a1)–(a11), we can clearly see the two extended states
regions drifting and merging with each other as the disorder is
increased. The extended states survive even at extreme values
of disorder W = 1000 meV; this value is about twice the
width of the entire clean energy spectrum. No such behavior
is observed for the trivial case in panels (b1)–(b11), where the
valence band is seen to become entirely localized already at
W ’s as small as 200 meV, and the whole spectrum becomes
localized before W reaches 700 meV.

Based on the data presented in Figs. 3(a1)–3(a11), we can
draw the phase diagram of the topological model in the (W,EF )
plane with quite accurate precision. It consists of a strong
topological insulating phase surrounded by a metallic phase,
which at its turn is surrounded by a trivial insulating phase
(see Fig. 3). One could be inclined, by just looking at this 2D

phase diagram, to call this later phase the Anderson insulating
phase rather than the trivial insulating phase, but this is not
correct because if we consider a third dimension to the phase
diagram along the parameter t , one will easily see that this
phase is connected to the trivial insulating phase such as, for
example, the t = 14 meV and w = 0 case shown in Fig. 2. As
such, this phase should be called simply the trivial insulating
phase. Now, examining the integrated density of states, we can
see that the spectral gap is already closed at W = 300 meV,
but the topological phase extends beyond this W value. This
phase diagram will be reconfirmed by a direct mapping of the
Z2 invariant.

VI. MAPS OF THE Z2 INVARIANT

The Z2 invariant will be mapped along the two paths
shown in Fig. 4. Due to the extreme computational costs of
such calculations, we had to settle for a somewhat smaller
lattice size of 8×8×8 (but same as the largest lattice size
used in Ref. 23). We have used 400 k points in the kz

direction to compute the monodromies, and 25 k points
in the ky direction for the interpolation. As such, each Z2

invariant computation requires 20 000 exact diagonalizations
of the disordered Hamiltonian. A number of 10 disorder
configurations were considered for each point chosen along
the paths shown in Fig. 4.

There is one important numerical aspect that we must
acknowledge, which is the computation of the Pfaffian of the
time-reversal operator at the time-reversal-invariant k points.
This became an issue for us because the dimensions of the
matrices are very large. We have successfully used the fortran
routine PFAFFIANH freely provided by the authors of Ref. 56,
which computes the Pfaffian of a general complex a skew-
symmetric matrix using the Householder transformations.

Figure 5 reports the map of the Z2 invariant along the path
(1). The calculations were performed with a fixed number
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824624
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224

124

Energy (meV)

V
ar
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n
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100%30%70%30%40%40%30%20%0%

0%70%30%70%60%60%70%80%100%
+1

-1
60%

40%

FIG. 5. (Color online) The upper panels show the Z2 invariant computed along the path (1) of Fig. 4 on an 8×8×8 unit-cell lattice via
twisted boundary conditions. The dimension of the occupied space was slowly reduced from 1024 to 124, as indicated in the figure. For each
Z2, the calculation was repeated for 10 random disorder configurations and the output is shown by the full dots, exactly how it occurs in the
actual calculation. The percentages of the Z2 = ±1 occurrences are displayed in each panel. The lower panel shows the variance of the level
spacings for W = 300 meV, and the averaged Fermi levels (see the vertical lines) corresponding to each Z2 calculation.
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of occupied states rather than a fixed Fermi level. By doing
so, we ensured that all the projectors in the monodromy
formula (14) have the same dimension, but in this case the
Fermi level displays small fluctuations which disappear in the
thermodynamic limit. The dimension of the occupied states
was slowly reduced from 1024 (half-filled) to 50, as illustrated
in Fig. 5, and for each dimension we have computed the
average Fermi level, defined as half between the last occupied
and lowest unoccupied states. The averaged Fermi levels are
shown as vertical lines, overimposed on the variance plot at
W = 300 meV. As one can see, the Fermi levels sample the
entire spectrum below the gap.

We want to point out again that the spectral gap is already
closed at W = 300 meV but, according to the level-statistics
analysis, there is still a mobility gap opened. We have verified
this statement by direct check of the eigenvalue files. Also,
the integrated density of states shows an inflection point rather
than a plateau. When the Fermi level was inside this mobility
gap, we found absolutely no fluctuations in the Z2 invariant,
which turned out to be −1 for all 10 random configurations.
As the Fermi level is lowered, it enters the region of extended
states and here we observed large fluctuations. As we already
discussed, even in this regime, the Z2 continue to take
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FIG. 6. (Color online) This figure reports the results of a compu-
tation of the strongZ2 invariant along the path (2) of Fig. 4, completed
on an 8×8×8 unit-cell lattice via twisted boundary conditions. The
disorder strength was increased from W = 100 to 1200 meV, as
indicated in the figure. For each Z2, the calculation was repeated
for 10 random disorder configurations and the output is shown by
the full dots, exactly how it occurs in the actual calculation. The
percentages of the Z2 = ±1 occurrences are displayed in each panel.
The accompanying panels show the variance of the level spacings
at the corresponding W ’s, from where one can determine when the
Fermi level is in a region of localized/delocalized spectrum. The
Fermi level, represented by the dotted vertical line, was kept at 68 meV
during these calculations.

quantized ±1, but there is no way to tell which one will be
so the output fluctuates between the two allowed values. This
remains the case for as long as the Fermi level is in the region
of extended states and, as soon as the Fermi level emerges back
into the region of localized states, the Z2 invariant is seen to
take a nonfluctuating quantized value of +1.

A similar behavior is observed when considering the path
(2) of Fig. 4 for which the calculations are reported in Fig. 6.
While increasing the disorder strength, the Z2 invariant is seen
to take the quantized and nonfluctuating value of −1 until
the mobility gap closes. From there on, the values fluctuate
between ±1, and the Z2 stabilizes once again when the
path enters the trivial insulating state where it assumes the
value +1.

VII. CONCLUSIONS

In conclusion, a previously introduced gauge-independent
formulation of the strong Z2 invariant was found to bring sig-
nificant numerical advantages, allowing direct computations
of the invariant for large supercells with twisted boundary
conditions. The resulting numerical algorithm was applied
to a disordered model of Bi2Se3 topological material and
maps of the strong invariant were given as a function of
either Fermi level or disorder strength. The behavior of the
strong Z2 invariant seen in our numerical calculations is
exactly what one will expect if this invariant was indeed
robust to disorder. Specifically, we observed the strong Z2

invariant taking quantized and nonfluctuating values whenever
the Fermi level was in an energy region of localized states, and
fluctuating values (between the only two possible values of
±1) whenever the Fermi level was in an energy region of
delocalized states. The fact that our numerical maps of the
strong Z2 invariant were in good agreement with the phase
diagram constructed from the level-statistics analysis leaves
very little doubt that the strong topological phase survives
beyond the point where the spectral gap closes, and that it
extends all the way to the point where the mobility gap closes.

Our algorithm, combined with accurate tight-binding
models that can be developed for any material via either
first-principles calculations or by simple empirical means,57

can provide accurate quantitative simulations of the real
experimental samples. We want to point out that, recently,
the twisted boundary conditions were successfully used to
compute the Chern invariant of an interacting two-dimensional
fractional Chern insulator.58 Since the algorithm for computing
the Z2 invariants is less demanding than the algorithm for the
Chern invariant, we have high hopes that we will soon be able
to map the Z2 invariants in the presence of electron interaction
for accurate complex models of topological materials. Both
disorder and electron interactions are expected to strongly
influence the phase diagram of a topological material. The
topological/nontopological state of a sample can be probed
by looking at the extended/localized character of the surface
states via transport simulations on quasi-one-dimensional
bars (as it was done in Ref. 24), but here one has to be
careful with the boundary conditions and, in addition, the
extended surface states can exist in nontopological samples.
Therefore, we believe that the direct computation of the
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strong Z2 invariant will be a valuable complement to these
aforementioned methods.

The data generated by our study can be of interest for
experimentalists. So far, all topological materials fabricated
in the labs display metallic bulk properties, a feature that was
attributed to the imperfections of the materials. Our study
revealed the interesting fact that, due to the very topological
nature of the materials, the disorder pulls the valence and
the conduction mobility edges closer to each other. In fact,
within our tight-binding model for Be2Se3, we saw a rapid
reduction of the mobility gap with disorder and the closing

of the mobility gap when the disorder strength reached about
350 meV. This suggests that the topological materials have to
be much “cleaner” than their trivial counterparts in order to
see an insulating bulk phase.
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