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We develop a computational approach for calculating the optical conductivity in the augmented plane-wave
basis set of WIEN2K and apply it for thoroughly comparing the full dipole matrix element calculation and the Peierls

approximation. The results for SrVO; and V,0; show that the Peierls approximation, which is commonly used in
model calculations, works well for optical transitions between the d orbitals. In a typical transition-metal oxide,
these transitions are solely responsible for the optical conductivity at low frequencies. The Peierls approximation
does not work, on the other hand, for optical transitions between p and d orbitals which usually became important

at frequencies of a few eVs.
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Much of our knowledge about solid-state systems comes
from their response to small electromagnetic perturbations.
A broad range of techniques has been developed to probe
the nature of ground states in elastic-scattering experiments
and the excitations in inelastic scattering or absorption ex-
periments. It is usually a combination of several experimental
techniques as well as theoretical calculations which allow us to
draw a complete picture of a given material. Among those, the
optical spectroscopy plays an important role,' complementing
the photoemission spectroscopy (PES) which is easier to
access and interpret in most theories. Probing the particle-hole
excitations averaged over the Brillouin zone, the optical spectra
contain a different and less detailed information about the
system than angle-resolved photoemission spectra. The main
asset of the optical spectroscopy, however, is its robustness:
Unlike PES, it does not suffer from surface effects. Moreover,
unlike transport measurements, the optical conductivity is not
critically affected by impurities or disorder: Optical transitions
cannot simply disappear, but can only be shifted to different
energies, which is expressed by the sum rule for optical
conductivity.”

Calculations of optical spectra from first principles are
well established within the effective noninteracting electron
theories® for weakly correlated materials such as the local-
density approximation (LDA)* to the density functional theory.
The many-body perturbation theory on the GW level® and
its two-particle extensions using the Bethe-Salpeter equation®
have been successful in describing the excitonic physics in
semiconductors. The situation is different in the field of
strongly correlated electron systems. Although the optical
measurement on these materials proved very useful for investi-
gation of metal-insulator transitions or mass-renormalization
effects, material specific theoretical investigations are rather
rare.”~'? This is perhaps not surprising given the fact that calcu-
lation of one-particle spectra is already a formidable challenge.

In the past decade the dynamical mean-field theory
(DMFT)"3*-!5 combined with first-principles band structures
(LDA +DMFT)'®!7 showed considerable power to describe
correlated materials. This theory allows for an accurate
description of the local (intra-atomic) dynamics, while the
interatomic effects are treated on the static mean-field level.
Importantly, DMFT is not restricted to a particular energy
scale and thus allows for the simultaneous description of
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quasiparticles on meV scale and atomic excitations on the
eV scale, which is crucial to capture the spectral weight
transfers in the optical spectra. First optical calculations with
DMFT were performed for the single-band Hubbard model.
It was shown that the local approximation of DMFT leads
to the vanishing of the vertex corrections to the optical
conductivity.'®-?! This means that the electron and hole created
in the process of optical excitation behave independently
and thus the Green’s function of the electron-hole pair is
a product of two one-particle Green’s functions. This is not
necessarily true in multiband models, except for the case of
degenerate bands. However, the dipole selection rules at optical
frequencies typically forbid creation of an electron-hole pair on
the same atom and thus the vertex corrections may be neglected
also in this case, an approximation we also adopt throughout
this work. Note that for inelastic x-ray scattering experiments
“optical” transitions with finite momentum transfer allow
the formation of strongly bound local electron-hole pairs,
excitons. The vertex corrections in this case are substantial.
A typical example is the crystal-field d-d excitations deep in
the optical gap of transition-metal oxides; see Ref. 22 for a
V,03 calculation.

While the formal framework for calculating the optical con-
ductivity within the above approximations is well established,
the numerical implementation poses several challenges: (i)
k-space integration, (ii) determination of the optical transition
amplitudes and inclusion of states in a broad energy window,
(iii) evaluation of optical spectra for real frequencies, which
is an additional problem arising for particular numerical
techniques, such as quantum Monte Carlo simulations, used
to solve the DMFT equations. Different strategies for dealing
with these issues are possible. In this paper, we present an
implementation based on the Wannier functions formalism
and a direct calculation of the transition amplitudes from
the one-particle wave functions. We compare our results to
the so-called Peierls approximation, which relies on the k
derivatives of the effective low-energy Hamiltonian of the
systems considered, and discuss their relationship. We analyze
specifically two well-known correlated oxides, SrVO; and
V,03, as archetypes, and compare our results to the available
experimental data.

The outline of the paper is as follows: In Sec. I, we
give details on the LDA + DMFT calculation. In Sec. ITA
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the technical details of the dipole matrix element calculation
are discussed. Section II B discussed the relationship to the
Peierls approximation, which is popular for lattice models.
Sections III A and ITI B present the results for StVO3 and V,0s3,
respectively. Finally, Sec. IV summarizes the main findings.

I. LDA + DMFT WITH WANNIER ORBITALS

The DMFT equations are naturally formulated in terms
of fermionic creation and annihilation operators on a lattice,
a formulation which assumes an underlying set of localized
orthogonal orbitals. Our starting point is the LDA Bloch states
Y.k and corresponding band energies ¢,k calculated with the
full-potential linear augmented plane waves (LAPW) program
WIEN2K.>*?* Depending on the specific material considered,
we choose an energy window defined by the lower and upper
band indices npi, < 7 < nmax and transform the states ¥,
from this window to real-space Wannier orbitals® localized
around lattice sites R:

1 .
[wnk) = 5~ %je"‘“Umn(kwnk» (1)

where U(k) are unitary matrices defined throughout the
Brillouin zone and Ny is the number of k points. Using
WIEN2WANNIER?® and WANNIER90,>’ the matrices U(k) that
lead to maximally localized Wannier functions are found. Con-
struction of the single-particle part of the effective Hamiltonian
is completed by rotation of the LDA Hamiltonian into the
Wannier basis,

Hyy () = U, (K)enk U (K). @)

Finally the on-site interaction is added to the Hamiltonian.
Other important input data required for the DMFT calculation
are the local Coulomb repulsion parameters which define
the term to be added to H,fxn/(k) in the Wannier basis: the
intraorbital local repulsion U, interorbit local interaction V,
and the exchange parameter J. In principle, this input should
be computed from the underlying LDA data, with constrained
LDA!7 or constrained random phase approximation.® How-
ever, since identifying U, V, and J for SrVO;3 or V,03 is
not the aim of this work, we adapted these values from the
literature.””= In the case of V,03; we have chosen a slightly
lower value of U than in Refs. 29-31, which ensures the best
agreement with XAS* and optical experiments,** according
to considerations reported in Ref. 35. It is important to notice
though that the Coulomb parameter as well as the DMFT itself
in general depend on the chosen basis set of Wannier function,
which especially becomes important if the choice of Wannier
orbitals is not as straightforward as in the case of SrVO; or
V5,03 below. In both cases the actual DMFT calculation has
been done in the #,, subspace. For the optical conductivity, the
DMEFT t,, Green’s function was then supplemented with the
LDA Green’s function for the other orbitals.

Once the effective LDA Hamiltonian is set up, the DMFT
equations are solved numerically using quantum Monte Carlo
simulations®® with an imaginary time discretization of At =
0.1 eV~ for SrVO; and At = 0.125 eV~! for V,03, respec-
tively, to obtain the one-particle self-energy which serves as
the many-body input for evaluation of the optical conductivity.
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Similar LDA + DMFT approaches based on augemted plane
waves can be found in Refs. 37-39.

From the LDA + DMFT self-energy X(iw,,) for a temper-
ature T at the Matsubara frequencies w,, = 7(2m + 1)T, we
obtain ¥ on real frequencies via the procedure described in
Ref. 40: Starting from the imaginary-time Green’s function
G(t) measured in Monte Carlo, the k-integrated spectrum
A(w) is calculated by the maximum entropy method (MEM;
see Ref. 41). Afterward, the local Green’s function G gy (@)
for real frequencies is found by applying Kramers-Kronig
relations. Finally, we fit £(w) such that the Green’s function
obtained by direct k summation, i.e., G(w) = 1/Ng Zk[a) —
Hy (k) — Z(w)]~!, matches the one from the maximum
entropy method.

II. LINEAR RESPONSE FOR THE OPTICAL
CONDUCTIVITY

A. Dipole matrix element approach

The regular part of the optical conductivity is obtained via
the standard Kubo’s formula in linear response,’

1 )
Oup(w) = cl,iE%Re (W/ dt e’””([ja(q,t),j,s(—%())])) ,
3

where V is the unit-cell volume, j,(q,?) is the g-momentum
paramagnetic current in the « direction, 7 =1 and ¢ — 0
is the dipole approximation. Expressing Eq. (3) via the
Lindhardt bubble and Matsubara formalism (thus omitting
vertex corrections, consistently with the discussion above),
we include internal degrees of freedom describing optical
excitations:? initial (final) frequency w,(w + ), reciprocal
vector kK, and N = npax — Pmin Orbital degrees of freedom
participating in optical transitions. Altogether, we obtain
the following expression for the real part of the optical
conductivity:

Uaﬂ(a})z %Z/dw/f(a)/)—cfo(w’—}—w)
k

x Tr[ Ak, 0 (KA, + o)y ®)], @

where f is the Fermi function, v§},(k) = U (k)v*(k)U " (k) are
rotated matrix elements of the momentum operator v5,, (K) =
— i (Vuk| V| ¥mk) /me, 1 < ,n,m < N, the elementary charge
e =1, and A(k,w) = —ImG(k,w)/7 is the generalized spec-
tral function with the Green’s function,

G(k,w) = [(@+ )1 — Hy(k) — Z(0)] . &)

Here, u denotes the chemical potential, Hy (k) € CV*V the
(noninteracting) Hamiltonian in the Wannier orbital basis
and T(w) € CV*VN the self-energy from the LDA + DMFT
calculation.

For an efficient and accurate k quadrature of Eq. (4), we use
a tetrahedral-mesh integration. To resolve regions in k space
with larger integration error we adaptively refine the tetrahedra
in these domains. Furthermore, the symmetry operations of the
unit cell are applied such that the integrand of Eq. (4) has to
be evaluated only at k points within the reduced wedge of the
Brillouin zone.
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The computation of the momentum matrix elements,

o (k) = —i (Wnk|v|¢mk)’ ©)
me
which are in the following also denoted as dipole matrix,
requires their evaluation in term of the underlying LAPW basis
set.*? It is thus (to our knowledge for the first time) possible to
combine a full potential LAPW dipole matrix with Wannier-
functions-based DMFT algorithms for the computation of
transport and optical properties (for different approaches see,
e.g., Refs. 43 and 44). Note that the surveyed workflow is not
limited to the use of a DMFT self-energy X (w), but can be
easily generalized for other, even k-dependent self-energies
Y(k,w). In such cases, however, the inclusion of vertex
corrections to the bubble term becomes usually necessary.*’
In addition to transitions within Hilbert space of the
low-energy model, the present approach also allows inclusion
of higher energy bands. This can be achieved by enlarging
the transformation matrices U(k) and, consequently, the
Hamiltonian Hy (K),

1 0 0
Uk =0 Uk o], )
0 0 1
EODK) 0 0
HKk) = 0 Hy (K) 0 ) 3
0 0 E®%)

with diagonal E(V(k), EP (k) = &,x for n < npin (n > nax).
Note that though the ¢/ and Hy are block diagonal, the
corresponding dipole matrix V(k) = U (k)v*(K)U/T (k) is not.
Inserting U,H,V into Egs. (4) and (5), we thus also take
transitions between the Wannier orbitals and Bloch states
outside of the low-energy model into account.

B. Peierls approximation

For many-body calculations of lattice models, it is common
practice to determine the optical conductivity by the Peierls
approximation (PA).*® The PA approximates the group veloc-
ities directly from the hopping elements and, for non-Bravais
lattices, from the atomic positions in the unit cell.>!*!? If one
wants to go beyond the PA, however, one needs to know the
underlying continuum description for calculating the dipole
matrix elements. The idea of the PA is a gauge transformation
of the electromagnetic potential A which disregards the inner
orbital structure (an orbital will get a different gauge factor at
different positions) and assumes a single gauge factor which
only depends on the lattice site. This is reflected in a modified
hopping amplitude, fg;y:R'n — tRm:r'n EXPLIAR — R’)/c],lz'21
between sites R and R'.

In the following we discuss the corrections to the PA,
emerging from the exact continuum description in the Wannier
orbitals basis, cf. Ref. 12. Using the operator identity —%V =
[Hy,r], where Hj is the one-particle part of the Hamiltonian,
we can write the momentum matrix element as

— Wk i V] wyk)
e
[ K(R'—R
= — Y e ® R, g|[Ho.r]|wpr)

N
R.R
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i (R —
= N E elk(R R)[(R/ — R)(w,r|Ho|wmr)
R,R’

+(wmr|Ho(r — R)|wyr) — (wyur|(r — R)Ho|wywr:)].
&)

The first term equals Vi H(k), the PA, and can be obtained
without explicit knowledge of the orbital, e.g., from an
empirical tight-binding Hamiltonian. The remaining two terms
can be further analyzed by noting that the Wannier functions
form a complete eigenbasis of Hy. Hence we have

1 .
_m_(wmk|lv|wm/k) = Vk[-Imm’(k) + Cmm/(k)v (10)
where
i . !
Cmm’ K) = — ik(R'—R)
=752 e
R.R
Y [{wnr| HolwpL) (wyrlr — R [wy,r)
L.p
—(wpr|r — Rlw,L){(wpL | Holwwr)]. (1)

Let us first discuss the corrections for a single atom in the unit
cell. These can be classified as follows:

(1) Intra-atomic dipole transitions: Terms in Egs. (9) and
(11) with R = R’ yield together (w,,r|[Ho,r]|w,R), i.€., the
atomic-dipole elements, with the only difference being that
H, is the one-particle Hamiltonian of the solid and not of
the atom. These local transitions generally require different
angular momenta for m and m’ orbitals and are hence at a
higher energy. They cannot be described by the PA which only
considers a single gauge factor for the atom or site.

(ii) Dipole transition mediated hopping: For R’ =
L #R, the first term of Eq. (11) consists of a hop-
ping integral (w,r|Hplw,r’) and a local dipole transition
(wpr'[r — R'|wyyr). This is similar as intra-atomic dipole
transitions, however now we obtain a k dependence which was
absent for (i). Note that the same is obtained for the second
term of Eq. (11) in the case R = L # R'.

(iii) Inter-atomic dipole transitions: For R = L # R/, the
first term of Eq. (11) consists of a local Wannier matrix
element (w,,r|Holw pr) and an interatomic dipole transition
(wprlr —R'|lw,yr). A similar term with a minus sign is
obtained for the second term of Eq. (11) in the case R" = L. #
R. If the orbitals are locally orthogonal, only the local on-site
energies survive, and we only get a contribution if there is a
crystal-field splitting of the orbitals.

(iv) Further corrections arise if all lattice positions R,
L, and R’ are different in Eq. (11). In this case we have a
combination of an interatomic dipole element and a hopping
term.

If the orbitals are more localized, i.e., exponentially
decaying between the atoms, both the hopping element and
the interatomic dipole element are affected by this exponential
suppression. Hence the terms (iv), which contain two such
exponentials, are more strongly suppressed than the hopping
amplitude itself [which enters (ii) and (iii) as well as the
PA] since it only contains one exponential factor. The leading
term in the “localized” limit is (i), which only involves local
transitions.
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From these general considerations, the PA appears a rather
unjustified approximation. In fact, even in the limit of more
localized orbitals only the terms (iv) get suppressed. However,
in specific cases of interest the PA may be justified. For
instance, terms (i)—(iii) become only relevant if the orbitals
are (a) affected by a large crystal-field splitting or (b) of a
different angular momentum, which typically also means large
excitation energies. Hence for transitions below this energy,
e.g., the Drude peak, PA is expected to work, at least for
sufficiently localized orbitals.

The situation becomes a bit more involved in the case
of several atoms in the unit cell. Tomczak and Biermann®'°
showed that the PA has to be generalized to include the hopping
terms between the atoms in the same unit cell, which are absent
in Vi H,,,»(K). However, also in this case, the same correction
terms (i)—(iv) as discussed above remain.

III. RESULTS
A. SrvVO;

Due to its simple cubic (perovskite) lattice structure and 3d'
electronic structure, SrVO3 has been employed as a testbed
for ab initio calculations such as LDA + DMFT. There is,
on average, a single d electron residing in three degenerate 7,
bands that cross the Fermi energy E . These ,, bands are well
separated by a gap from the oxygen p bands below and the e
orbitals above. This situation makes the electronic structure of
SrVOj; particularly simple.

The photoemission spectra*’=° show a well developed
lower Hubbard below E r band and a pronounced quasiparticle
peak around Er; an upper Hubbard band is found, on the other
side, in x-ray-absorption experiments.*’ The quasiparticle
peak is renormalized (narrowed) by a factor of about 2
compared to the overall LDA 1,, bandwidth.* This is in good
agreement with LDA 4+ DMFT calculations®>*® in which the
interaction parameters have been determined from constrained
LDA calculations.’' Essentially the same one-particle spec-
trum has also been obtained in subsequent LDA + DMFT
calculations (among others, see Refs. 37,39, and 52-57), and
various Wannier function projection schemes have been tested
for this prototypical material (among others, see Refs. 58—62).
SrVO; is also the material where kinks in strongly correlated
electron systems abstain from any external bosonic degrees
of freedom and antiferromagnetic spin fluctuations have been
discovered.’>®® Similar structures can also be identified in
angular resolved photoemission spectra.* As the optical
conductivity averages (integrates), however, over different
k points, such fine structures are hardly discernible in this
physical quantity.® Experimentally, the optical conductivity
shows a Drude peak and additional features above 2 eV when
transitions between Hubbard and quasiparticle peak become
relevant (among others, see Refs. 66-68).

1. Spectral properties

The LDA density of states (DOS) for SrVO; used in our
analysis can be found in Fig. 1 (top panel), where the three
partial DOS contributions V-f,4, V-¢, and O- p are highlighted
(we use a = 3.84 A as unit-cell lattice parameter for the cubic
perovskite). From the LDA data, we obtained three different
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FIG. 1. (Color online) Noninteracting partial density of states of
SrVO; (results abbreviated as LDA) compared to DMFT spectra at
T = 1160 K. Two DMFT basis sets were employed: first, the three
orbital #,, basis with parameters (U,J,V) = (5.05,0.75,3.55) eV;
second, the entire V-d manifold with the same interaction parameters
for all orbitals.

Wannier projections: First, just the V-f,, manifold was mapped
onto three Wannier orbitals (in the following abbreviated as
P1). Second, we also included the two additional bands with
predominant V-e, character and thus describe the full V-d
manifold (P2). Finally, we also take into account the O-p
bands which leads to a basis consisting of 14 Wannier functions
(P3).

In Fig. 1, middle and lower panel, we plot the
LDA + DMFT spectra computed with the Wannier basis sets
P1 and P2, respectively. The parameters were adapted from
Ref. 32: local intraorbital Coulomb repulsion U = 5.05 eV,
local interorbital repulsion V = 3.55 eV, and local exchange
J =0.75 eV. Compared to the LDA DOS, the f,, partial
density of states is renormalized and the formation of lower and
upper Hubbard bands can be observed as correlation effects
are taken into account within the DMFT framework. In the
case of P2, where all five V Wannier orbitals are included
in the DMFT, the e, orbitals remain completely unoccupied
as in LDA leading to negligible correlation effects in these
two orbitals (see lower panel of Fig. 1). We thus restricted the
LDA + DMFT analysis for lower temperatures to P1, where
only the #,, orbitals are described within DMFT.
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2. Comparison of the dipole matrix elements approach and the
Peierls approximation

In Fig. 2, our main results for the optical conductivity of
SrVO; are summarized. We compare four different calcu-
lations for the (isotropic) optical conductivity o computed
via Eq. (4) with the experimental data from Ref. 66: The
uppermost panel shows o computed by use of the LDA
Green’s function (5), where we fixed the broadening by setting
¥ = —0.04i (eV) in Eq. (5), and employed the dipole matrix
(6) as group velocities. The second panel of Fig. 2 visualizes
the optical conductivity o computed with the same Green’s
function G (k,w), but with the Peierls approximation Vg Hy (k)
for the group velocities (we are neglecting for this calculation
the intraunit-cell contributions as introduced by Tomczak'?).
For the lower two panels, we inserted the DMFT self-energy
into the formula for the Green’s function (5). In particular, the
third and the fourth panels of Fig. 2 show the LDA + DMFT
results for o calculated with the dipole matrix and the Peierls
approximation as group velocities, respectively. Note that the
effect of taking a different temperature in the experiment
(T =290 K) and in the calculations (T = 460 K) is expected
to be limited since in this temperature range SrVO; does
not show a notable change in the electronic structure. The
main consequence of lowering the temperature 7 = 460 —
290 K is the decreased electron-electron scattering within
the coherent part of the electron spectrum which eventually

dipole matrix elements, LDA (T = 460 K)
= = exp., T'=290 K

10
V—tzg Hv—tgg
5
W
0 \O-p —V-d "
Peierls approximation, LDA (T = 460 K)
10 = = exp., T =290 K

V-tzg —>V-t29
’ M A
- -
~O‘—'p —V-d i

og
—
X0
N dipole matrix elements, DMFT (T =460 K)
B 1o - = exp., T =290 K
|
g V-tzg —>V-t2g
& 5
- - = .
0 L oS :
Peierls approximation, DMFT (T = 460 K)
10 = = exp., T =290 K
V—tgg —>V—t29
5
-
0 L ? 0TV
0 5 10

w [eV]

FIG. 2. (Color online) Optical conductivity of SrVO; calculated
with dipole matrix elements and the Peierls approximation, respec-
tively, compared to experiment (Ref. 66).
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leads to the Drude peak becoming more pronounced while the
interband contributions remain essentially unchanged.

In our analysis of the results, let us start investigating the
qualitative effect of correlation on the optical spectra, i.e.,
comparing the upper two panels of Fig. 2 with the two lower
ones. The renormalization of the 7, manifold surveyed in
Fig. 1 leads to a smaller Drude weight in the LDA + DMFT
panels of Fig. 2 and to a suppression of the prominent peak
of o around 3.5 eV predominately stemming from transitions
from the occupied O-p manifold to the unoccupied section of
the V-1,, orbitals. The suppression of these two features is also
seen in experiment. Additionally, the DMFT optical spectra in
the lower two panels of Fig. 2 show the formation of a small
satellite at ~2 eV originating from transitions from the lower
Hubbard band of the #,, orbitals to the unoccupied part of their
coherent spectral peaks.

Comparing the dipole matrix approach with the Peierls
approximation, i.e., the first with the second and the third
with the fourth panel in Fig. 2, indicates that both reproduce
low-energy transitions in a similar way. Since the Drude
peak in this material stems from intraband excitations of
the ,, bands, this implies that the Peierls approximation is
sufficient to describe optical transitions in SrVO; as long
as only well localized orbitals are participating. The case is
different for the O-p — V-1,, transitions, where a deviation in
the range 4-13 eV is clearly visible. Here, the dipole matrix
matrix approach appears to be superior and o is much closer
to the experimental results than the Peierls approximation,
especially for the LDA + DMFT optical spectra (see the third
and fourth panels of Fig. 2). The reason for this behavior can be
understood taking into account the more nonlocal nature of the
O-p orbitals and the deficiency of the Peierls approximation
to describe optical transitions therein quantitatively correct.

In addition to deviations compared to the choice of group
velocities, both LDA 4+ DMFT results for the optical spectra
deviate with experiment around 3.5 eV at the onset of the
O-p — V-1, transitions. Since LDA seems to describe this
onset more accurately, we think that the reason for this
behavior deduces from the fact that, including only the #,,
orbitals in LDA + DMFT, we did not consider a double
counting correction shifting the #,, orbitals relative to the O-p
orbitals. A more complete approach would consider the O-p
within LDA + DMFT on the level of the Hartree approxi-
mation taking into account the double counting corrections
more accurately. Then, the change of the 1, orbitals within
LDA + DMFT would eventually shift the p states to lower
energies correcting the energy distance between the onset of
the O-p manifold to the (now renormalized) peak in the #,,
orbitals back to the LDA level.

3. Sum-rule analysis

An important aspect associated to the theoretical and
experimental study of the optical spectroscopy is the analysis
of the associated f-sum rule.> This is a direct consequence
of charge conservation, stating that the integral over all
frequencies of the optical conductivity is always proportional
to the total electronic density ny; = Nyo/ V of the system

0 Nr(Q) N,
im m—/ do o) = lim et _ Now o)
0

li ¢ .
Q.—00 TTE2 Q. —00 Vv Vv
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The importance of the f-sum rule, however, goes well
beyond the verification of the charge conservation in LDA or
LDA + DMFT calculations of optical spectra. The validation
of Eq. (12) in theoretical calculations as well as in experiment
represents a rather academic but delicate issue, as it involves
very different energy scales (corresponding to optical transi-
tions involving valence and core states). For further details
about this issue, we refer the reader to Refs. 69 and 70.

More specific information can be extracted by the analysis
of so-called partial or restricted optical sum rules. They
correspond to consider just a portion of the frequency integral
in Eq. (12), a typical case being a finite upper cutoff €2, and
how this partial integral changes as a function of external
parameters (e.g., temperature, magnetic field, etc.). This
provides usually very important information about the energy
balance associated, e.g., with a phase transition, as it has
emerged from many experimental’! and theoretical analyses’?
of integrated optical spectroscopic data of high-temperature
superconducting cuprates, and most recently, by analyzing’?
the non-Slater nature of the antiferromagnetic phase in the
optical spectra of LaSrMnO,.7*

An example for the application of Eq. (12) is reported in the
upper panel of Fig. 3, where the growth of N.g with increasing
frequency up to Q¢ = 20 eV is shown for the case of SrVO;
(there are 19 valence electrons included in our calculation).
While a detailed analysis of the restricted sum rules for SrVO;
goes beyond the scope of this work (for the analysis of

15
integrated optical conductivity
10+ o
~ s
by b
Z . /)//
5 r
7
e
L
-~
2
0 e el ;
14
optical conductivity
12

exp., T'=290 K

10 §
=+ LDA, T = 460 K

= = DMFT, T =460 K

o [ lem™! x 107
o

10 15
w [eV]

FIG. 3. (Color online) Optical conductivity of SrVO; comparing
LDA, DMFT, and experiment. The LDA and DMFT results were
computed by the dipole matrix element approach (bottom). The top

panel shows the sum rule Ny(€2.) from Eq. (12) for o of the lower
panel (the experimental data are from Ref. 66).
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the restricted sum rule in V,03, see, e.g., Ref. 75), when
comparing the integrated LDA and LDA + DMFT optical
spectra of Fig. 3, we can note, for the latter case, a slight
decrease of the values of N in the low-frequency region,
which reflects, evidently, a correspondent reduction of the
electronic mobility due to electronic correlations. At higher
frequency, however, the LDA electron density value has been
recovered within an accuracy of about 3%.

B. V,0;

Vanadium sesquioxide V,0j3; has been the subject of
considerable interest in condensed-matter physics since the
early 1970s (see, e.g., Ref. 76), as it represents one of the most
evident realization of the Mott-Hubbard metal-to-insulator
transition (MIT). In fact, V,03 can be relatively easily doped
with Cr or Ti, and its phase diagram displays a clear first-order
transition between a paramagnetic metallic (PM) state (at low
concentration of Cr, or for Ti doping) and a paramagnetic insu-
lating (PI) state at a higher level of Cr doping. Such a first-order
MIT, which emerges from a (simultaneous) lower temperature
structural and magnetic transition and ends up at higher
Ts with a second-order (critical) endpoint, is completely
isostructural: The high-T paramagnetic phases of Cr,-V,_, 03
are always associated with a corundum crystal structure.

The experimental evidence of the MIT in V,0;3; has
been accumulated, first for static quantities (e.g., the dc
resistivity) and—at a later time—for spectral functions
[PES,”” .angle-resolved photoemission spectroscopy,** x-ray-
absorption spectoscopy (XAS),>*"® etc.]. In this paper,
however, we focus on infrared-optical spectroscopy>*’>7’
only, which is a bulk sensitive technique in comparison to
photoemission, and—contrary to XAS—includes important
information about the itinerant part of the electronic properties
of strongly correlated electron systems. In optical spectroscopy
measurements at room 7', the crossing of the MIT upon Cr
doping is clearly reflected in the abrupt disappearance of the
(weak) Drude peak in the in-plane®® optical conductivity o (w)
with the opening of a sizable spectral gap. Further important
information has been also extracted from the temperature’
and pressure** dependence of o (w): The former has provided a
clear indication of a strong interplay between small changes of
the lattice parameters and electronic properties, while the latter
(together with XAS measurements of the V K pre-edge) has
proven the inconsistency of the long-standing assumption of
equivalence of doping-level and applied pressure in the phase
diagram of V,03. Also to be mentioned are very recent optical
measurements®* performed in the most “intriguing” region
of the phase-diagram, i.e., right across the MIT first-order
transition line: The combined analysis of optical data and
photoemission on a microscopic scale has demonstrated the
formation of insulating islands embedded in the PM phase in
the metallic side of the MIT. The formation of such islands,
growing in size when the transition is approached, can be
put—to some extent—in analogy with the nucleation processes
due to impurities in a standard liquid-gas transition: In the case
of V,0; the impurity would be likely provided by the lattice
distortions®! due to the Cr substitutions.

From the theoretical point of view, the problem to be
analyzed consists of a system with two electrons in the three
3d-t, (i.e., correlated) bands of the V atom at the Fermi
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level. The #,, basis further splits in one a;, and two e, local
orbitals (separated by 0.2-0.3 eV) because of a slight trigonal
distortion of the material [see, e.g., LDA calculations with
Nth-order muffin-tin orbitals (NMTOs) in Ref. 82]. As clearly
stated in Ref. 82, the interplay between strong electronic cor-
relation and multiorbital physics is expected to be the crucial
ingredient of the physics underlying the Mott MIT in in V,05.
In fact, the properties of the MIT in the Cr-doped V,03 have
been calculated (in some case even preceding the experimental
results) by means of LDA + DMFT in Refs. 30 and 31, and,
later, by including the orbital hybridization in Ref. 29.

Beside the success in describing photoemission data,
LDA + DMFT can be also used to analyze optical spectra.
While—at the DMFT level—the numerical effort for com-
puting the optical conductivity o(w) is comparable to that
for computing spectral functions, as vertex corrections can be
usually neglected,'® rough approximations have been always
done in evaluating the optical dipole matrix elements in the
localized (NMTO, Wannier, etc.) orbital basis. In particular, in
the first LDA 4+ DMFT calculations of o (w) for V,03,” the
dipole matrix elements were simply replaced by 1, while in
later works’ the dipole matrix elements have been evaluated
in the Peierls approximation, including the effects of multiple
atoms in the unit cell when necessary.'%!2

Our results for V,03 are summarized in Fig. 4, where we
show in the first row LDA (left) and LDA + DMFT (right)
calculations for the optical conductivity obtained by using
the optical matrix elements, while in the second row the
corresponding calculations made with the PA are discussed
(we use a =4.95A and ¢ =14 A as lattice parameters;
see Ref. 82 and references therein). In all cases, we also
directly compare our theoretical results with the experimental
data reported in Ref. 83. Our analysis at the level of the
optical conductivity clearly confirms the pivotal role played

(a) dipole, LDA (b) dipole, DMFT

V-tgg —>V-tgg

(d) PA, DMFT

V—tgg Hv—tgg

V-tgg —>V-t2g

o [Q 7 tem™! x 103]
S vk o O N R O 00
O N Ok O 0 O N A O

w [eV]

FIG. 4. (Color online) Optical conductivity of V,0; (« phase,
metallic) at 7 =460 K calculated with dipole matrix elements
[(a) LDA, (b) DMFT for V-,g with (U,J,V) = (4,0.7,2.6) eV]
and the Peierls approximation [(c) LDA, (d) DMFT for V-t,g with
(U,J,V)=(4,0.7,2.6) eV], respectively, compared to experiment
(dashed line taken from Ref. 79).
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by electronic correlations in the physics of V,03: the LDA
results show a much stronger Drude peak (almost an order of
magnitude stronger) when compared to the experiments. The
inclusion of correlations via DMFT significantly improves the
situation: Due to the proximity to the Mott-Hubbard MIT one
observes that a marked spectral weight shifts from the Drude
peak to higher frequencies, which makes the overall agreement
with experiment much better in the region up to 1.5 eV, where
the experimental data are available.

From our analysis, moreover, another important aspect
emerges: in the case of V,03; the PA (adopted in previous
calculations, e.g., Ref. 34) works satisfactorily well, at least
in the low-energy t,, subspace: The improvements due to the
inclusion of the full optical matrix elements only leads to small
changes in the optical spectra up to 2 eV both in the LDA and
LDA + DMFT results, as it can be expected on the basis of the
discussion of Sec. II B, considering the small (or vanishing)
value of the crystal-field splitting between the localized 1,
orbitals at the Fermi level.

IV. CONCLUSION

We have developed a program package for calculat-
ing the optical conductivity using a Wannier representa-
tion of the WIEN2K bandstructure, and make it available
to the scientific community at www.wien2k.at/reg_user/
unsupported/wien2wannier. Electronic correlations, e.g., from
DMFT, or finite lifetimes, e.g., from impurity scattering, can be
included via a corresponding self-energy for the Wannier or-
bitals. From this self-energy the Green’s function is calculated,
which together with the full dipole matrix elements yields the
optical conductivity, disregarding vertex corrections.'®

The main topic of the paper is a careful comparison between
the dipole matrix element approach and the Peierls approxima-
tion, which is the de facto standard for lattice model calcula-
tions. We have considered two materials, SrVO5; and V,053, as
testbeds. The low-frequency part (below 2-3 eV) of the optical
conductivity stems from d-d transitions, at least for the two
materials considered and many other transition-metal oxides.
This part is well captured by the Peierls approximation. One
can understand this by the high degree of localization of the de-
generate (or almost degenerate) Wannier d orbitals: Below ~1
eV, for both vanadates, it is also sufficient to include only the
three 1,, bands out of the five d orbitals. For the high-frequency
part (above 2—3 eV), on the other hand, not only are the d Hub-
bard bands relevant, but also p-d transitions. This part of the
spectrum is not well described by the Peierls approximation.
Generalized Peierls approximation, while still approximate,
also improves the description of p-d transitions'® at a compu-
tational cost comparable to the full dipole matrix calculation.

The comparison to experiment shows that LDA + DMFT
with full dipole matrix elements gives a good description of
the optical conductivity. In contrast, the Peierls approximation
shows strong deviations at high frequencies. The same is
true for the LDA optical conductivity even with the full
dipole matrix elements. For instance, the LDA optical of
SrVO; conductivity particularly shows too pronounced a
peak at ~3.5 eV. This peak stems from d-p transitions, and
the DMFT correctly spreads the d orbital spectral over a
larger energy region: Hubbard side bands are formed and the
electron-electron scattering smears out the d bands.
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The residual differences between LDA 4+ DMFT and ex-
perimental infrared spectra hence cannot be ascribed to the
limitation of the Peierls approximation, but rather to effects
beyond the LDA 4+ DMFT scheme, for example, impurity
scattering and the inclusion of nonlocal electronic correlations.
The inclusion of the latter requires a considerable effort of go-
ing beyond the standard LDA + DMFT scheme, e.g., by cluster
extension of DMFT,%* dynamical vertex approximation,® or
duals fermion,®® which also necessarily requires a proper
treatment of vertex corrections.
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