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Impact of the Dzyaloshinskii-Moriya interaction in strongly correlated itinerant systems
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Spin-only approaches to anisotropic effects in strongly interacting materials are often insufficient for systems
close to the Mott regime. Within a model context, here the consequences of the low-symmetry relevant
Dzyaloshinskii-Moriya (DM) interaction are studied for strongly correlated, but overall itinerant, systems.
Namely, we investigate the Hubbard bilayer model supplemented by a DM term at half filling and in the
hole-doped regime. As an add-on, further results for the two-impurity Anderson model with DM interaction are
also provided. The model Hamiltonians are treated by means of the rotational invariant slave boson technique at
the saddle point within a (cellular) cluster approach. Already small values of the anisotropic interaction prove
to have a strong influence on the phases and correlation functions with increasing U . An intriguing metallic
spin-flop phase is found in the doped bilayer model, and a reduction of the Ruderman-Kittel-Kasuya-Yosida
exchange is found in the two-impurity model.

DOI: 10.1103/PhysRevB.85.205132 PACS number(s): 71.27.+a, 71.23.An, 75.30.Hx, 75.20.Hr

I. INTRODUCTION

The effect of anisotropic magnetic exchange on the atom-
istic level has been recently brought back to a center of interest
in condensed-matter physics due to its intriguing importance
in, e.g., the search for multiferroic materials,1,2 the understand-
ing of complex metallic magnetic surface structures,3 and the
phenomenology of topological insulators.4 A hallmark step in
this research topic has already been performed some fifty years
ago by Dzyaloshinskii5 and Moriya,6 who derived an effective
spin-spin interaction term from the spin-orbit coupling in
low-symmetry cases, the so-called Dzyaloshinskii-Moriya
(DM) interaction. The DM term or more generic magnetic
anisotropies are nowadays believed to play furthermore a
prominent role in many strongly correlated materials. However
nearly exclusively, theoretical studies in this context were in
the past bound to pure spin models without itinerancy, leaving
the impact of charge fluctuations aside. Yet the latter are
surely important, e.g., close to the Mott-critical regime of the
metal-insulator transition. Allying the Hubbard model with
spin-orbit terms has just recently gained rising interest.7,8

In the present work we aim at a minimal modeling of
the influence of the DM interaction in the strongly correlated
metallic regime. There are many specific materials problems
motivating such a case study, namely, the complex magnetic
behavior of doped cuprate systems,9–11 manganites,12,13 and
mono-oxides14 as well as anisotropic magnetic effects close
to the metal-insulator transition in low-dimensional organic
compounds15 or in the context of transition-metal impurities
on metallic surfaces.16 While standard direct and indirect
exchange processes favor collinear alignment of the local
spins generated in the strongly correlated metallic regime,
the DM interaction tends to align the spins in a perpendicular
fashion. Thus the competition between the former conven-
tional exchange processes and the DM interaction within an
itinerant system shall give rise to nontrivial physics resulting
in sophisticated spin arrangements or orderings.

To keep things simple and to build on a somewhat canonical
approach, we rely on two basic models, namely, the bilayer
model of two coupled single-band Hubbard planes17–24 and
the two-impurity Anderson model (TIAM).25–31 The former

Hamiltonian allows for a DM coupling between two lattice
planes in the thermodynamic limit, whereas the latter provides
the possibility to study the DM term within a local perspective
via interacting impurities coupled to the same bath. Both
setups render it possible to investigate nearest-neighbor (NN)
correlation functions between sites in an itinerant background.
Of course, such modelings are not sufficient to grasp the
very details of the above-named materials problems, yet it
will be shown that the computed phenomenology is far from
trivial and may apply to generic realistic phenomena. One
key focus in the context of the Hubbard bilayer lattice is
thereby on the competition between the antiferromagnetic
(AFM) tendencies driven by direct exchange and the DM term
within the metallic state. It will become clear that already
rather small values of the DM integral may have a significant
influence on the magnetic ordering tendencies in the larger
Hubbard U range; i.e., the AFM state is rather sensitive to only
minor DM perturbations. A rich phase diagram results from
the interplay of kinetic energy, onsite Coulomb interaction, and
DM interaction. The latter also has important consequences
in the two-impurity model, where its favor for perpendicular
spin arrangement severely affects the local-limit competition
between singlet-forming Kondo screening and triplet-forming
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction.

In the following we define the model Hamiltonians as well
as our mean-field approach in Sec. II. The results for the
Hubbard bilayer at half filling and in the hole-doped case
are discussed in Sec. III. Some basic observations retrieved
from the studies on the two-impurity Anderson model with
DM interaction will be presented in Sec. IV.

II. HAMILTONIANS AND THEORETICAL APPROACH

The first problem addressed here consists of two coupled
two-dimensional infinite square-lattice planes with one orbital
per site, each facing an on-site Coulomb repulsion U (see
Fig. 1). In both planes the electron dispersion is defined by
identical simple NN hopping t . The interplane coupling is
realized via a perpendicular hopping t⊥ as well as a DM
interaction mediated by the vector integral D. The model
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FIG. 1. (Color online) Bilayer model with DM interaction. The
vertical blue line represents the interlayer hopping t⊥, which of course
is applied at every lattice point, and the ellipse marks the two-site
cluster. The DM integral vector D is chosen to point in the y direction.

Hamiltonian is accordingly written as

HBL = −t
∑

ασ

〈i,j〉

(c†αiσ cαjσ + H.c.) + t⊥
∑

iσ

(c†1iσ c2iσ + H.c.)

+U
∑

αi

nαi↑nαi↓ +
∑

i

D · (S1i × S2i), (1)

where c
(†)
αiσ creates or annihilates an electron in layer α =

1,2 at lattice site i with spin projection σ =↑ , ↓. The ν =
x,y,z component of the spin operator at each site i of an
individual layer α is provided by S

(ν)
αi = 1/2 c

†
αiσ τ

(ν)
σσ ′ cαiσ ′ with

the Pauli matrices τ (ν). In general, the vector interaction D is
defined perpendicular to the bond between the involved lattice
sites.5,6 Since otherwise there is a freedom of choice for the
explicit direction, we pick D to point along the y axis, i.e.,
D = D ey . Note that the DM interaction may only occur if the
inversion symmetry is broken. To facilitate this in the present
case, one could, e.g., think of an interlayer coupling originally
established via oxygen with an angle deviating from 180◦.

In the smaller second part of this paper, we take the op-
portunity to also briefly discuss the well-known two-impurity
Anderson model (TIAM) supplemented by a DM interaction
between the impurities. We write that model in the form

HTIAM =
∑

kσ

εkc
†
kσ ckσ + εd

∑

iσ

niσ

+V
∑

kiσ

(c†kσ diσ + H.c.) + t12

∑

σ

(d†
1σ d2σ + H.c.)

+U
∑

i

ni↑ni↓ + D · (S1 × S2), (2)

with the impurity-electron operators d
(†)
iσ (i = 1,2), the

impurity-level energy εd , and the impurity-impurity hopping
t12. The bath has associated operators c

(†)
iσ and a dispersion

εk. The impurity-bath coupling is denoted by V and the
Hubbard U is located on the impurities with niσ = d

†
iσ diσ .

In the present approach the bath is treated explicitly through
a three-dimensional simple cubic dispersion with bandwidth
W = 12t , choosing t = 0.5. For the direction of D again the
y axis is selected. The impurities have a common bath, yet V

is assumed here to be k independent and the explicit impurity-
impurity distance is formally set to zero. A constant value of
V = −0.5 is chosen in the present work. Hence only the local
part of the RKKY interaction is accessible. Such a modeling
is, e.g., important for understanding the local spin interactions
between correlated atoms on metallic surfaces,16 where there
is indeed an intriguing interplay between conventional direct
exchange, RKKY interaction, Kondo effect, and anisotropic
exchange.

For the numerical solution of the model Hamiltonians
discussed here, the rotationally invariant slave boson (RISB)
formalism21,32 in the saddle point approximation is employed,
which yields identical results as the generalized infinite-
dimension limit of the Gutzwiller variational approach.33

The RISB methodology amounts to a decomposition of an
electron operator aνσ with generic orbital or site index μ via
aμσ = R̂[φ]σσ ′

μμ′fμ′σ ′ into its quasiparticle (QP) part fμσ and
the remaining high-energy excitations carried by the set of
slave bosons {φAn}. Here A denotes a chosen localized basis
state and n relates to the given QP degree of freedom. Two
constraints, the first enforcing the normalization of the bosonic
content and the second keeping an eye on the match of the
bosonic and the fermionic occupation matrix, are established
on site average at saddle point through the Lagrange multiplier
matrix �.21 In order to describe interatomic correlations
adequately, a two-site (cellular-cluster) framework is used.
This cluster connects two NN lattice sites between the layers
in the Hubbard bilayer and the two impurities in the TIAM.
It amounts to a local cluster approach to the electronic self-
energy, whereby 	12(ω) incorporates terms linear in frequency
as well as static renormalizations.21 Therewith the low-energy
behavior may be adequately expressed and intersite correlation
functions as well as multiplet weights on the cluster can be
retrieved. Combining the Hubbard model with explicit spin
interactions has been already studied within the scope of the
Hubbard-Heisenberg model in a spin-isotropic way.34 Due to
our cluster approach the direct exchange term driven by t2

⊥/U

or t2
12/U is properly included beyond single site in our models.

We thus only treat the smaller anisotropic exchange of the DM
kind in an explicit way, since it is more difficult to implicitly
reproduce it even on the cluster mean-field level from a general
spin-orbit term.

Importantly, the formalism allows for full spin and orbital
rotational invariance, needed to account for the competition
between isotropic and anisotropic interactions. In this respect
the slave bosons may become true complex numbers and �

can be expanded via Pauli matrices in each orbital sector (with
allowed off-diagonal terms between these sectors). Albeit the
calculations are formally performed at temperature T = 0, a
small Gaussian smearing for the k point integration introduces
a minor T scale. For this reason the energetics are discussed in
terms of the free energy F . Note that, in the numerical solution
of the TIAM, a three-orbital model is effectively treated within
RISB, whereby the bath enters through its band dispersion.
Thus the bath degrees of freedom are not integrated out, but
are handled explicitly. In principle, a correlated-bath scenario
may also be studied; however, we here always keep Ubath = 0.
Nevertheless, correlation effects are introduced within the
bath due to the coupling to the correlated impurities. The
investigated half-filled scenario of the model is either achieved
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by setting εd = −U/2 or through an additional Lagrange
multiplier fixing the electron occupation on the bath according
to the total filling N = 3.

III. HUBBARD BILAYER MODEL

The original Hubbard bilayer without DM interaction has
already been addressed in several works,17–24 most often
concerning the electronic phase diagram when varying the
ratio t⊥/t . Here, however, the main interest lies on the ratio
U/|D| for the coupled square-lattice layers with bandwidth
W = 8t . In the following, we restrict the discussion to cases
t⊥/t < 1 with all the energies given in units of the half
bandwidth 4t .

Concerning the electronic phases studied within the current
mean-field approach, we restrict the discussion to such long-
range orderings that originate from the two-site unit cell.
Thus we neglect longer-wavelength orders as realized for,
e.g., spin spirals. Such more intricate instabilities are planned
to be addressed in more concrete materials-connected future
modelings. Here the focus is first on the interplay of the
fundamental short-range processes in the strongly correlated
metallic regime that drive the eventual long-range order. Note,
however, that in the present context the cluster description
does not account for intralayer intersite self-energies. In this
respect, the antiferromagnetic (AFM) state stabilized at larger
Hubbard U is here of the A-type character, i.e., involves two
FM layers that are coupled antiferromagnetically.

A. Half-filled case

At half filling, each layer accommodates one electron and
the whole system is therefore susceptible to a Mott transition.
We study two cases, namely, the one of weakly coupled layers
(t⊥ = 0.025) and the other with stronger interlayer hopping
(t⊥ = 0.1).

Figure 2 shows the phase competition within the half-filled
model with increasing the Hubbard U . The computations allow
for the stabilization of two metallic phases, namely, the para-
magnetic (PM) and antiferromagnetic-between-layers (AFM)
ones. From the inspection of the free-energy differences it is
not surprisingly seen that in general the AFM phase wins over
the PM phase at larger U . Thereby a smaller t⊥, and hence a
smaller bonding or antibonding splitting, supports the building
up of the AFM phase, in line with dynamical mean-field theory
calculations employing quantum Monte Carlo solvers for the
impurity problem.20,23 A further gain in AFM free energy is
observed at fixed U when introducing the DM interaction, but
with only marginal shifts of the phase onset toward smaller U .
The difference between the two critical U = Uc for the two
different t⊥ vanishes with D, while in the case of D = 0 the Uc

for t⊥ = 0.1 is clearly smaller. However, the general evolution
of the QP weight Z = (1 − ∂	/∂ω)−1|ω=0 with U does
not display strong changes with the introduced anisotropic
interaction.

Insight into the local behavior can be gained from the
inspection of the respective weights of the various multiplets
�p in particle sector p. As, e.g., outlined in detail in Ref. 31,
the eigenstates of the local dimer without DM interaction are
classified according to the SU (2) symmetry and form triplet
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FIG. 2. (Color online) Energetics, QP weight, and multiplet
weights with increasing U for the bilayer model at half filling for
two values of t⊥ and D, respectively. Free energies are normalized to
the one of the PM phase. The thick lines in the multiplet-weights plot
correspond to the states in the two-particle sector.

and singlet states in the two-particle sector. The occupation
probability ρ�p

of these multiplets in the strongly correlated
itinerant system is accessible via ρ�p

= ∑
�′ |φ�p�′

p
|2. Here

φ�p�′
p

denotes the slave boson amplitude connecting �p and �′
p

in the associated local multiplet basis, obtained from a rotation
of the original {φAn}. From the induced exchange processes
between neighboring sites for D = 0, the singlet occupation
remains strongest up to the Mott transition, followed by the
triplet states (with their degeneracy lifted when entering the
AFM phase), as seen in Fig. 2. For D 	= 0 the bilayer
Hamiltonian Eq. (1) does not commute with {S2,Sz} and
thus the former triplet and singlet states are no longer
two-particle eigenstates. That is easily understood from the
DM interaction favoring a perpendicular alignment of the
local spins, in contrast to the originally preferred collinear
states. The corresponding new eigenstates |�(DM)

p,ν 〉 are still
given by a general expansion into Fock states |np〉 through
|�(DM)

p,ν 〉 = ∑
n c

(p)
νn |np〉. But now all coefficients c

(p)
νn are

finite for the most probable occupied two-particle state, the
modified singlet |�(DM)

2,1 〉. The development of those expansion
coefficients with D is documented in Fig. 3. The picture for the
multiplet occupations of the modified states shown in Fig. 2
formally looks still very similar.

Figure 4 shows the evolution of the spin moments in
the two layers with increasing U . For D = 0 only 〈Sz〉
adopts a nonzero value in the AFM phase, with a steeper
increase for larger t⊥. However, with finite D also a sizable
x component of 〈S〉 shows up and grows until Uc is reached.
For the smaller t⊥ = 0.025 the value for 〈Sx〉 even equals
the corresponding 〈Sz〉 magnitude. A lower t⊥ apparently
also effectively increases the relative tendency toward the
noncollinear spin alignment driven by the DM coupling. Note
that the DM interaction not only modifies the AFM phase
but has an impact in the PM state as well. There 〈S1,yS2,y〉
exhibits more AFM-like character and the corresponding
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FIG. 3. (Color online) Evolution of the Fock-state contributions
for the modified singlet with the highest occupation probability ρ

(compare with Fig. 2) for U = 3. Note that for D 	= 0 this multiplet
is no longer an eigenstate of the S2 and the Sz operator. Inset: D

dependence of ρ for that state.

(x,z) correlation functions show minor weakened AFM-like
tendencies, both compared to the D = 0 case. Close to the
Mott transition the larger t⊥ results in a stronger (coherent)
spin response for D = 0, as retrieved from the interlayer
spin-correlation functions plotted in Fig. 5. For nonzero D the
correlation between the x components, i.e., 〈S1,xS2,x〉, appears
to behave especially more disconnected from the z component
for the smaller t⊥.

In order to gain further insight into the impact of the DM
term, Fig. 6 depicts explicitly the D dependence for fixed U .
The Mott transition itself may be tuned over a rather wide
range of the anisotropic interaction. Whereas the spin moment
in the x direction shows a strong variation with D, the spin-
spin correlations are only weakly dependent thereon. Albeit
no resulting 〈Sy〉 value exists, the correlations along y still
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choice for the direction of the D vector). The vertical dot-dashed
lines mark the AFM transition point.
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FIG. 5. (Color online) Same as Fig. 4, here for the spin-spin-
correlation functions between the layers. Solid lines, PM phase;
dashed lines, AFM phase.

appear to gain strongest in magnitude from a larger D. It
is also visualized that the angle γ between the local spins
on the adjacent layers indeed increasingly deviates from the
AFM-ideal 180◦ with growing DM interaction. Close to the
Mott transition, the value γ ∼ 100◦ is nearby the DM-ideal
value of 90◦.

B. Hole-doped case

We now turn to the effects of doping the bilayer model
away from half filling. For investigating the simultaneous
effects of doping, on-site Coulomb interaction, and intersite
DM interaction we set t⊥ = 0.1 and first fix the Hubbard
interaction to U = 3. As can be seen from Fig. 2 the value of U

puts the system just below the Mott transition at half filling; i.e.,
strong correlations with the quasiparticle weight Z ∼ 0.2 exist.

The results of hole doping δ = 2−n for the system in the
filling range n ∈ [1.6,2.0] are summarized in Fig. 7. Let us first
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AFM half-filled bilayer model. Inset: evolution of the angle between
the spin moments in the two layers.
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FIG. 7. (Color online) Influence of hole doping on the bilayer
model, with and without DM interaction for t⊥ = 0.1 and U = 3.
Top insets: free-energy curve, with the region where AFM order is
(meta)stable marked in red. C-AFM marks the canted antiferromag-
netic phase and SF marks the spin-flop phase. Right-middle inset:
evolution of the angle γ between spins.

discuss the D = 0 case. Starting from half filling, the system
is in the AFM phase for the chosen U value. With increasing
δ the order parameter 〈Sz〉 decreases, until it vanishes close
to n = 1.74 and the PM phase sets in (at reduced spin-spin
correlations and larger QP weight). When including a DM
interaction with D = 0.03 in the model, the situation becomes
more intriguing. Again the AFM phase, now canted in the
x direction (and hence designated C-AFM), weakens upon
doping from half filling; however, at n ∼ 1.76 the Hubbard
bilayer system shows a first-order phase transition to a metallic
spin-flop (SF) phase. The latter one is characterized by the
discontinuous jump to a local configuration with an 〈Sx〉
expectation value larger than 〈Sz〉. This corresponds to an
angle γ between the local spins in both layers being lower
than 90◦, whereas in the C-AFM phase γ ∈ [90◦,180◦] holds
(see Fig. 8). The strong decrease of γ at the transition point

FIG. 8. (Color online) Illustration of the stable local spin config-
urations according to the local spin-spin angle γ on the interlayer
cluster. (a) PM without ordered local moments. (b) AFM with
γ = 180◦. (c) C-AFM with γ between 180◦ (pure AFM ordering)
and 90◦ (pure DM ordering). (d) SF with γ < 90◦, i.e., weak
ferromagnetism with strong canting.

D = 0.0

-4.0
-3.0
-2.0
-1.0
0.0
1.0

ΔF
 ×

10
-3

D = 0.03

-0.4

-0.2

0.0

0.2

<
S

>

<S1, z>
<S2,z> <S

1,x
>=<S

2,x
>

<S
1,z

>
<S

2,z>

-0.06
-0.04
-0.02
0.00
0.02

<
S

1S
2>

<S
1,x/y

S
2,x/y>

<S
1,z

S
2,z

>

<S
1,x

S
2,x

>
<S

1,y
S

2,y
>

<S
1,z

S
2,z

>

2 3 4 5
U 

0.2
0.4
0.6
0.8

Z

Z1-down/2-up
Z1-up/2-down

2 3 4 5 6
U 

Z1-down/2-up
Z1-up/2-down

0 2 4 6
-0.8
-0.6
-0.4
-0.2
0.0

0 2 4 6
-0.8
-0.6
-0.4
-0.2
0.0

2 3 4 5 6
0

90

180

PM

AFM

SF C-AFM

FIG. 9. (Color online) Phase diagram with U for the doped
Hubbard bilayer at filling n = 1.7 (compare with Fig. 7). Insets:
free-energy curves and the interaction-dependent spin-spin angle γ .

may be observed in the inset of Fig. 7. Hence the SF phase
displays weak ferromagnetism due to strong canting. Note that
neither the spin-correlation functions nor the diagonal Z values
show a strong signature therein. The SF phase transforms into
the usual PM phase at n ∼ 1.62.

In addition to the doping scan, Fig. 9 displays the various
phases emerging with increasing Hubbard interaction U for
fixed hole doping δ = 0.3, i.e., n = 1.7. Without the DM
interaction, the standard picture of a stable PM phase at small
U and a stable AFM phase at larger U (U>3.58) remains vital.
Note that the U values for AFM stabilization are well above
the Mott critical U at half filling. Introducing D stabilizes the
metallic SF phase for 1.9 < U < 3.85, accompanied with the
jump in the angle γ toward lower values. Therewith the onset
of AFM order takes place at slightly larger U than for D = 0.
Hence the finite D enables specific magnetic ordering in a
Coulomb interacting regime that is originally not susceptible
to such order. Only the z component of the spin-correlation
function shows a discontinuous behavior at the SF/C-AFM
phase boundary.

IV. TWO-IMPURITY ANDERSON MODEL

The TIAM25–31 belongs to the set of canonical models in
the physics of strong electronic correlations, believed to be
relevant for the understanding of heavy-fermion systems.35

Via the coupling of the impurities to a bath it contains the
single-impurity Kondo physics and as a competitor also the
RKKY mechanism acting between the impurities. The latter
originates from the effective exchange introduced through
the impurity coupling to the same bath. In some works18,31

this type of exchange interaction between sites is discussed
in the context of two impurities coupled to different baths
(similar to the bilayer architecture). But here we try to separate
the exchange in an indirect (“RKKY”) one, stemming from
effective exchange via the bath, and a direct term, resulting,
e.g., from an explicit hopping amplitude t12 between the
impurities [see Eq. (2)].
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FIG. 10. (Color online) Interaction-dependent spin-correlation
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The dashed dark line without circles is the 〈SimpSbath〉 correlation
function mirrored at the zero line.

Figure 10 shows the RISB results for the spin-correlation
functions of the fundamental model with t12 = D = 0.
Thus the two impurities are only coupled via the bath and
exchange can only be mediated therewith. The expectation
value 〈S2〉= S(S + 1) on the impurity quickly rises with U due
to the formation of the local moment. It approaches the value
3/4, corresponding to the full S = 1/2 limit, at large interaction
strength. With increasing U a local Fermi liquid is established
with a small quasiparticle weight Zimp (see inset, Fig. 10).
The competition between the Kondo screening and the RKKY
interaction may be observed from inspection of the spin-spin
correlations. From Fig. 10 it is obvious that 〈SimpSbath〉, i.e., the
correlation between a single impurity and the bath, is always
of AFM character with a maximum close to UK ∼ 1.6. On the
other hand the interimpurity correlation 〈S1S2〉 is exclusively
of the FM kind and shows monotonic increase with U . The
former is associated with the singlet-forming tendencies due
to Kondo screening, whereas the latter signals triplet-forming
tendencies because of the FM RKKY exchange within the
local limit. Close to UK the absolute value of the local RKKY
correlation exceeds the singlet-forming amplitude between
impurity and bath. The system at larger U is then dominated by
the RKKY interaction.26,30,31 Within a conventional Schrieffer-
Wolff mapping36 for the Kondo coupling via JK = 8V 2/U ,
a similar crossover regime would follow also from simple
estimates through the associated exchange interactions, for
if we understand the RKKY interaction as a second-order
process, i.e., JRKKY ∼ J 2

K, then here the two exchange integrals
become equivalent for U = 2, which is the order of magnitude
from the numerics. With increasing impurity-bath coupling V

the crossover shifts to larger U , since J 2
K profits more strongly

therefrom. However, note that with our bath bandwidth W = 6
the present TIAM is surely not in the Kondo-Hamiltonian
limit (U � W ) for the studied interaction range.28 Turning
on a finite DM term of size D = 0.05 has nearly no effect at
small U . However, for larger Hubbard interaction rather strong
modifications occur, especially for the interdimer function
〈S1,yS2,y〉. Remember that the D vector also points in the y
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FIG. 11. (Color online) Interaction-dependent spin-spin correla-
tions for the TIAM with t12 = 0.2, with and without DM interaction.

direction. Thus an intricate spin-spin coupling scenario arises
at large U , with still FM alignment in the (x,z) axes and
near AFM alignment in the y axis. For U > 5 our mean-field
approach yields net local moments in the presence of a finite
D; i.e., a paramagnetic solution is no longer stabilizable. It
would thus be very interesting to study the large-U regime
of this model beyond mean field (e.g., with the numerical
renormalization-group approach utilized in Ref. 30).

In addition to the basic model with vanishing interimpurity
hopping, Fig. 11 exhibits the resulting spin-correlation
functions for the TIAM with t12 = 0.2. Now both 〈SimpSbath〉
and 〈S1S2〉 display AFM correlations in the weakly interacting
limit. This is understood from the direct exchange integral
Jdir = 4t2

12/U originating from the introduced dimer coupling.
With increasing U the correlation functions develop rather
similarly as for t12 = 0, yet the overall magnitude is somewhat
reduced at small interaction strength. Hence there the direct
exchange weakens both impurity Kondo screening (due to the
stronger interimpurity link) as well as FM RKKY interaction
(since the direct exchange favors AFM behavior). But the
crossover point of domination for these processes does not
seem to change much with the introduced t12. Of course, a
very large t12 should rank the direct exchange above the other
mechanisms; however, here we do not investigate this model
limit. Finally, when introducing the DM term to the model,
effectively four different exchange mechanisms compete with
each other: impurity Kondo, RKKY, direct, and DM. The
latter has indeed again significant effect on the spin correlation
between the impurities. For already moderate values of U the
dominance of the FM RKKY is lost, turning the system into
AFM-like interimpurity correlations for U > 2. Thus also here
the DM interaction severely influences the magnetic correla-
tions for isolated impurities within an itinerant background.
It appears to strengthen the singlet-forming tendencies
(with stronger response in the D direction) in an otherwise
triplet-favoring RKKY system at short-range distance.

V. SUMMARY

A theoretical investigation of effects stemming from the
Dzyaloshinskii-Moriya interaction in itinerant systems with
strong electronic correlations was presented in this work. In
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order to study the principle physics on the lattice as well as in
the local limit, we elaborated on two prominent model systems,
namely, the Hubbard bilayer and the one defined by the
two-impurity Anderson Hamiltonian. In both cases substantial
influence of the DM interaction is found, especially at large
coupling, where the strong renormalization enhances the im-
pact. The half-filled Hubbard bilayer displays large out-of-axis
spin components close to the Mott transition that may severely
influence the magnetic response in an applied field. Intriguing
phenomena in this respect are, e.g., observed in quasi-two-
dimensional organic compounds.15 At finite hole doping and
larger U , the bilayer system with DM interaction exhibits the
emergence of a metallic spin-flop phase between the AFM
phase at half filling and the PM phase at stronger doping. This
finding is of vital importance for many doped Mott systems
with anisotropies. For instance, it is well known that the hole-
doped layered cuprates display puzzling phases between the
AFM region and the superconducting dome and that the DM
interaction is not completely negligible at low energy.9–11 No-
tably it would be very interesting to investigate in some detail
whether there is a closer connection between our model results
and the observation of spin-glass behavior in these systems.37

The TIAM is very relevant not only in the context of
heavy fermions but, e.g., also for isolated atoms on metallic

surfaces. In either case, anisotropic spin terms such as
the DM interaction exist in many realistic representants in
nature. It results from our studies that the DM term becomes
an important player in the hierarchy of relevant exchange
processes in these contexts. In the local limit it works against
the FM tendencies of the RKKY interaction and promotes
the singlet formation between the impurities at large local
Coulomb interactions. Further research along these lines,
e.g., by going beyond mean field, including the complete
k dependence of the impurity-bath coupling or tailoring the
modeling toward concrete materials systems, is of vital interest
to account for generic exchange processes in the strongly
correlated itinerant regime.
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