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In the context of a gas of ultracold atoms with effective spin S = 3/2 confined to an elongated trap, we study the
one-dimensional Fermi gas interacting via an attractive δ-function potential within the grand-canonical ensemble.
The particles can be either unbound or clustered in bound states of two, three, and four fermions. The rich μ

versus H ground-state phase diagram (μ is the chemical potential and H the external magnetic field) consists
of the four basic states and the various possible mixed phases in which some these states coexist. Extending the
analysis of K. Yang [Phys. Rev. B 63, 140511(R) (2001)] for S = 1/2, we study the correlation functions of the
generalized Cooper clusters of bound states of two, three, and four particles using conformal field theory and
the exact Bethe Ansatz solution. The correlation functions consist of a power law with distance times a sinusoidal
term oscillating with distance. In an array of tubes with weak Josephson tunneling, the type of superfluid order
is determined by these correlation functions. The wavelength of the oscillations is related to the periodicity of a
generalized Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state for higher spin particles. All the relevant states are
analyzed for S = 3/2.
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I. INTRODUCTION

Spin-imbalanced ultracold gases of atoms confined to
one-dimensional traps have been the subject of several recent
studies.1–3 Confinement to nearly one-dimensional tubes can
be achieved if the ultracold cloud of atoms is subjected
to a two-dimensional optical lattice, which defines a two-
dimensional array of tubes.1 The tubes can be regarded as
isolated if the confinement by the laser beams is strong
enough to suppress tunneling between tubes. The scattering
between atoms under transverse harmonic confinement is
subject to a confinement-induced resonance.4 Fine tuning this
Feshbach-type resonance, the interaction between the fermions
can be made attractive and its strength can be varied.5 The
interaction is local and can be approximated by a δ-function
potential in space. The confinement along the tube is roughly
harmonic and weak; it can be locally incorporated into the
chemical potential. Consequently, these systems of fermions
are only locally homogeneous and within the local density
approximation display phase separation with the variation
of the chemical potential along the tube.2,3 Although most
experimental findings so far are for 6Li atoms (spin 1/2),1,6–8

recent results for 40K (spin 9/2) are very encouraging that soon
higher spins will be investigated.9

One-dimensional spin-1/2 gases with δ-function interac-
tion were first studied by M. Gaudin10 and C. N. Yang11

extending Bethe’s Ansatz. For an attractive interaction in
the ground state there are two classes of solutions of the
discrete Bethe Ansatz equations, namely, real charge rapidities
and paired complex conjugated rapidities,10,12,13 representing
spin-polarized particles and bound states of the Cooper type,
respectively. There are then three possible homogeneous
phases, namely, the (1) fully spin-polarized state, (2) a phase
without polarization, where all particles are bound in Cooper
pairs, and (3) a mixed phase in which unpaired spin-polarized

particles coexist with Cooper pairs. In phase (2), the Cooper
pairs are gapped (i.e., it requires a critical field to break-up the
bound states) and display no long-range order. Similar results
were obtained for the Hubbard model with attractive U .14,15

There are several other theoretical studies, Refs. 16–28, of
ultracold spin-1/2 atoms in one dimension, which are related
to the present work.

Sutherland29 generalized the Bethe Ansatz solution for spin
1/2 to an arbitrary number of colors N = 2S + 1 [SU(N )
symmetry]. For an attractive interaction, Takahashi30 derived
the integral equations for the ground-state density functions
for bound states of up to N = 2S + 1 particles. The space
extension of these bound states was further studied by
C. H. Gu and C. N. Yang.31 The classification of states, the
thermodynamics, the ground-state equations and elementary
excitations of the gas arbitrary number of colors have been
derived by Schlottmann32,33 for both attractive and repulsive
potential (see also Ref. 34). Several of these results have
been recently rederived in the context of ultracold fermion
gases.35–38 With an attractive interaction, atoms with spin S

can form bound states of up to (2S + 1) particles, extending
this way the concept of Cooper pairs to larger clusters, and
the phase diagram will have more possible pure and mixed
phases.36,39 For instance, for S = 3/2, there are four basic
states, namely, bound states of four, three, and two particles,
and unbound particles, and the corresponding mixed phases,
which can have up to four coexisting basic states.

A two-body interaction for spin larger than 1/2 does not
necessarily have to have SU(N ) symmetry as it is assumed
here. Spin-3/2 fermion models with contact interactions in
any dimension display a generic SO(5) symmetry without
tuning parameters.40 The Hubbard variant for S = 3/2 has
been studied via Monte Carlo algorithms in Ref. 41 and was
applied to investigate the competing orders in one-dimensional
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optical traps in Ref. 42. Several integrable one-dimensional
continuum models displaying pairing involving exchange
interactions,43 SO(5) symmetry for spin-3/2 fermions,44 and
hidden Sp(2s + 1) and SO(2s + 1) symmetries for high spin-s
fermions and bosons45 have been constructed and solved for
the low particle density limit. Experimental results on high
spin atomic gases will have to decide which model is the
appropriate one.

The mixed phase for S = 1/2 has been interpreted21 as the
one-dimensional analog of the FFLO state.46 For an isolated
tube there is no long-range order of the pairs and hence no
order parameter; however, the Cooper-pair correlation function
acquires a phase in the mixed state, that is believed to be
reminiscent of the space modulation of the order parameter in
higher dimensions. A coupling between tubes, e.g., Josephson
tunneling, increases the effective dimension of the system
so that long-range order can arise and it is believed that
this could lead to the realization of the FFLO phase in
an ultracold gas of atoms.1,21 The crossover from three-
dimensional (FFLO phase) to one-dimensional (mixed phase)
behavior is addressed in Ref. 47, where the phase diagram
for a weakly interacting array of tubes is calculated. FFLO
related phases have been observed in the strongly anisotropic
heavy-electron compound48,49 CeCoIn5 (the interpretation is
still controversial50) and in the quasi-two-dimensional organic
compounds λ-(BETS)2FeCl4 and (TMTSF)2ClO4.51,52

Motivated by the work of K. Yang21 in this paper we
explore the possible formation of FFLO states in the mixed
phases of quasi-one-dimensional systems with particles of
spin S larger than 1/2. As a concrete example, we will work
with S = 3/2, but the results can be extended to other spin
values. For S = 3/2 bound states of two, three, and four
particles occur which, as Josephson tunneling between tubes
is allowed, may give rise to long-range superfluid order. The
instability from the normal phase to the first superfluid phase
is determined by the dominant one-dimensional correlation
function. In a mixed phase, since the Fermi momenta for the
different spin-components are different due to the magnetic
field, the order parameters will have sinusoidal oscillations in
space, characteristic of an FFLO state. In the one-dimensional
case, the periods of oscillation can be extracted from the
corresponding correlation functions. We evaluate the response
functions using conformal field theory and the Bethe Ansatz
solution. The correlation functions are the product of a power-
law dependence of the distance and a cosine term with the
desired periodicity. There are numerous correlation functions
and the critical exponent can be used to determine which one
yields the dominant behavior.

The rest of the paper is organized as follows. We start
with the simplest situation: S = 1/2 particles. In Sec. II, we
present the model and the discrete Bethe Ansatz equations for
S = 1/2 and evaluate the Cooper-pair correlation function in
the paired particle phase and the mixed phase using conformal
field theory, thus reproducing K. Yang’s21 bosonization results.
In Sec. III, we present the Bethe Ansatz equations and their
numerical solution for the dressed energies and the densities
for the case S = 3/2. The phase diagram for a Zeeman
splitting and the phase separation due to the varying chemical
potential along the trap are reviewed.39 In Sec. IV, we turn to
the correlation functions for S = 3/2. The matrix of dressed

generalized charges is calculated and standard conformal field
theory is applied to calculate the correlation functions. Results
for the correlation functions as a function of the chemical
potential for H = c2 and H = 2c2 are presented in Sec. V.
The conclusions are summarized in Sec. VI.

II. BETHE ANSATZ EQUATIONS AND PAIRING
CORRELATION FUNCTION FOR SPIN-1/2 PARTICLES

A. Model and Bethe Ansatz

The Hamiltonian for a gas of nonrelativistic particles with
spin S = 1/2 interacting via an attractive δ-function potential
is

H = −
Np∑
i=1

∂2

∂x2
i

− 2|c|
∑
i<j

δ(xi − xj ), (1)

where xi are the coordinates of the particles, Np is the total
number of particles and c is the interaction strength. Here,
h̄2/2m, where m is the mass of the particles, has been equated
to 1, or alternatively it has been scaled intoH and c. The model
is integrable and a solution can be constructed by nesting
two Bethe Ansätze in terms of two sets of rapidities, one for
the particles (charges), {kj }, j = 1, . . . ,Np, and one for the
spin degrees of freedom, {λα}, α = 1, . . . ,M , where M is
the number of minority spins.10,11 With periodic boundary
conditions on a ring of length L this gives rise to the discrete
Bethe Ansatz equations.

For an attractive interaction and large L, the solutions of the
Bethe equations for the ground state can be classified according
to (i) Np − 2M real charge rapidities, belonging to the set
{kj }, representing unpaired propagating particles, and (ii) M

pairs of complex conjugated charge rapidities associated with
a spin rapidity λα , in the form k± = λ ± |c|/2. These pairs
correspond to bound states of particles with different spin
components, so-called strings of length one.10,12,32,34 The real
rapidities kj and λα have all to be different and satisfy the
Fermi-Dirac statistics, i.e., the states are either occupied or
empty. In the ground state, the rapidities are densely distributed
in the interval [−Bl,Bl], where l = 0 and 1 is the length of the
string. We denote with ε(0)(k) and ε(1)(λ) the energy potentials
(entering the Fermi-Dirac distribution), which satisfy the
following coupled linear integral equations:12,32,34

ε(0)(k) = k2 − μ − H/2 −
∫ B1

−B1

dλε(1)(λ)a1(k − λ), (2)

ε(1)(λ) = 2λ2 − c2/2 − 2μ −
∫ B0

−B0

dkε(0)(k)a1(λ − k)

−
∫ B1

−B1

dλ′ε(1)(λ′)a2(λ − λ′), (3)

where

an(x) = 1

π

n|c|/2

x2 + n2c2/4
, (4)

μ is the chemical potential for the total number of particles
and H is the Zeeman energy. μ and H correspond to the
Langrange multipliers for the conservation of particles and the
magnetization, respectively. They determine the integration
limits Bl through the condition that ε(l)(±Bl) = 0, since
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FIG. 1. (Color online) (a) Ground-state phase diagram μ vs H for a homogeneous fermion gas of spin S = 1/2 with |c| = 1.2 The lower
left corner corresponds to the empty system (no particles). The roman number I denotes unpaired particles and II denotes paired bound states.
The region I + II corresponds to the mixed phase with coexisting phases I and II. The two vertical lines at H = 0.2 and 1.0 are μ intervals
considered in the remaining panels. (b) Dressed generalized charges for the gas as a function of μ along the vertical lines H = 0.2 (solid
curves) and H = 1.0 (dashed curves). (c) Occupation numbers n0 of unpaired particles (solid), n1 of bound pairs (dashed), and the exponent θ

of the Cooper pair correlation function (dash-dotted, right axis) as a function of μ for H = 0.2. (d) Same as (c) but for H = 1.0.

occupied states correspond to ε(l) < 0 and for empty states,
ε(l) is positive. This way the Bl play the role of Fermi points
for the spin-polarized states and the Cooper pairs, respectively.

Note that if all the ε(l) are rescaled to ε(l)/c2, μ to μ/c2, H to
H/c2, both Bl to Bl/|c|, k to k/|c|, and λ to λ/|c|, the equations
are universal, i.e., independent of the magnitude of |c|. The
problem has then only two parameters, namely, H and μ.2 In
other words, by fixing μ and H the total number of particles
and the spin polarization are determined. The phase diagram,
obtained by numerically solving Eqs. (2) and (3), is shown in
Fig. 1(a) and agrees with published results.2 There are three
possible phases, namely, a phase where all particles are paired
denoted with II (the rapidity band l = 1 is partially populated
and the band l = 0 is empty), a phase where all particles are
unpaired and spin-polarized denoted with I (the rapidity band
l = 0 is partially populated and the band l = 1 is empty),
and the mixed phase I + II where pairs coexist with unpaired
spin-polarized particles. The pure phase II is only stable for
small Zeeman splitting. The harmonic confinement of the trap
can be treated within the local density approximation and
incorporated into the chemical potential μ.1–3,39 μ is largest
at the center of the trap and decreases as one moves away

from the center towards the boundaries [see Sec. III, Eq. (27)].
In a constant magnetic field, this corresponds to a vertical
line in Fig. 1(a). The two dashed vertical lines represent two
qualitatively different situations of varying particle density, in
which one moves from the mixed phase at the center of the trap
into a pure phase, namely, phase II at low fields and phase I at
higher fields, respectively. Hence, phase separation is expected
as a function of the position along the trap.2 We will refer to
these transitions later in this section.

B. Distribution densities of rapidities

The distribution densities of the rapidities, ρ(0)(k) and
ρ(1)(λ), can be obtained via differentiation of the potentials
ε(l) with respect to the chemical potential μ,

ρ
(0)
h (k) + ρ(0)(k) = − 1

2π

∂ε(0)(k)

∂μ
,

(5)

ρ
(1)
h (λ) + ρ(1)(λ) = − 1

2π

∂ε(1)(λ)

∂μ
,

where ρ
(l)
h is the corresponding distribution density of the

holes (unoccupied states). The density functions satisfy the
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following integral equations:12

ρ
(0)
h (k) + ρ(0)(k) = 1

2π
−

∫ B1

−B1

dλρ(1)(λ)a1(k − λ), (6)

ρ
(1)
h (λ) + ρ(1)(λ) = 1

π
−

∫ B0

−B0

dkρ(0)(k)a1(λ − k)

−
∫ B1

−B1

dλ′ρ(1)(λ′)a2(λ − λ′). (7)

The density of unpaired polarized particles and the density of
paired states are given by12

n0 =
∫ B0

−B0

dkρ(0)(k), n1 =
∫ B1

−B1

dλρ(1)(λ) , (8)

and the total number of particles and the magnetization per unit
length are Np/L = n0 + 2n1 and Magnetization/L = n0/2.
n0 and n1 as a function of the chemical potential at constant
magnetic field are shown in Figs. 1(c) and 1(d) for the
two situations corresponding to the vertical dashed lines
in Fig. 1(a), respectively. In Fig. 1(c), it is seen that with
decreasing μ there is a transition from the mixed phase (n0

and n1 are both nonzero) to the phase II (only n1 is nonzero).
At the boundary, n0 vanishes with a square-root dependence,
while variation of n1 is smooth. In Fig. 1(d), we observe that
with decreasing μ the transition is from the mixed phase to the
spin-polarized phase I. In the mixed phase, both n0 and n1 are
nonzero and n1 vanishes with a square-root dependence at the
phase boundary, while n0 has a cusp at that point.

The total energy of the system is given by12

EGS = Lε∞ =
∫ B0

−B0

dkk2ρ(0)(k)

+ 2
∫ B1

−B1

dλ(λ2 − c2/4)ρ(1)(λ), (9)

where ε∞ is the energy density. If a band is partially filled, the
group velocity for the band is defined as33

vl =
(

dε(l)(ξ )

dξ

∣∣∣∣
ξ=Bl

)/
[2πρ(l)(Bl)], (10)

where ξ is either k or λ. Here v0 is the group velocity for
the low-lying spin excitations and v1 the one for the low-lying
excitations of the paired bound states. In the mixed phase, both
excitation states form a simple Dirac sea with two Fermi points
at ξ = ±Bl . The respective Fermi momenta are pl = πnl .

C. Conformal towers

The low-lying excitations of the system with periodic
boundary conditions can be described by the finite-size
corrections to the ground-state energy:53–55

E = Lε∞ +
∑
l=0,1

πvl

2L

⎡
⎣ ∑

q=0,1

(ẑ−1)lq�Nq

⎤
⎦

2

+
∑
l=0,1

2πvl

L

⎧⎪⎨
⎪⎩

⎡
⎣ ∑

q=0,1

zqlDq

⎤
⎦

2

+ n+
l + n−

l − 1

12

⎫⎪⎬
⎪⎭ ,

(11)

and the corresponding momentum is

�P = 2π

L

∑
l=0,1

(Dl�Nl + n+
l − n−

l ) . (12)

Here, zql is the 2 × 2 matrix of generalized dressed charges
and �Nq , Dq , and n±

q are a set of eight quantum numbers
characterizing the excitations. The generalized dressed charges
determine how the different Fermi points (there are four)
interact with each other. The dressed generalized charges
are obtained as zlq = ξlq(Bq), where the ξlq is the solution
of a set of integral equations analogous to that satisfied by
the distribution densities, Eqs. (6) and (7), but with different
driving terms,

ξl0(λ) = δl,0 −
∫ B1

−B1

dλ′ξl1(λ′)a1(λ − λ′),

ξl1(λ) = δl,1 −
∫ B0

−B0

dλ′ξl0(λ′)a1(λ − λ′)

−
∫ B1

−B1

dλ′ξl1(λ′)a2(λ − λ′). (13)

Figure 1(b) shows the dressed generalized charges as a function
of the chemical potential at constant magnetic field for the
two situations corresponding to the vertical dashed lines in
Fig. 1(a). The solid lines refer to the H = 0.2 case, while the
dashed curves represent the H = 1.0 case. In the mixed phase,
both bands are occupied and hence all four dressed generalized
charges are different from zero. This changes in the pure
phases, where only one rapidity band is populated and hence
the dressed generalized charge is a scalar, corresponding to zll

for that band. The off-diagonal dressed charges are negative in
the mixed phase, while the diagonal components are positive.
Their variation at the transitions can also be discontinuous,
which reflects in jumps of the critical exponent (see below).
The dressed generalized charges for the Tonks-Girardeau limit
were obtained in Ref. 28.

The eight quantum numbers consist of two sets of four
quantum numbers, one for each band of rapidities. �Nq

corresponds to the added or removed number of particles in
the rapidity band q, Dq is the parity variable, i.e., 2Dq is the
difference between forward and backward movers in the band
q, and the n±

q count the number of particle and hole excitations
about each Fermi point (+ for forward movers and − for
backward movers). These eight quantum numbers determine
the conformal asymptote of the correlation function for a given
conformal field operatorO. At T = 0, the corresponding space
and time-dependent correlation function is given by53–55

〈O†(x,t)O(0,0)〉= exp[−2i(D0p0 + D1p1)x]∏
l=0,1(x − ivlt)2�+

l (x + ivlt)2�−
l

, (14)

where pl are the Fermi momenta and �±
l are the conformal

dimensions defined as

2�±
0 = 2n±

0 +
[
z00D0+z10D1±z11�N0−z01�N1

2(z00z11−z10z01)

]2

,

2�±
1 = 2n±

1 +
[
z01D0+z11D1 ∓ z10�N0−z00�N1

2(z00z11−z10z01)

]2

. (15)

The smallest exponents are obtained for n±
0 = n±

1 = 0.
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The backward scattering quantum numbers, Dq , are actu-
ally related to the �Nq via the discrete Bethe Ansatz equations,
i.e., the equations before the thermodynamic limit is taken.
Removing or adding a pair of particles (or and unpaired
particle) rearranges the quantum numbers of the rapidities
yielding the following relations:28

D0 = 1
2 (�N0 + �N1) (mod 1), D1 = 1

2�N0 (mod 1).

(16)

Hence, depending on �N0 and �N1, D0 and D1 can be
integers or half integers, but they are only determined modulo
an integer.

In recent papers,56–59 it was shown that neglecting irrelevant
operators perturbing the Luttinger-liquid Hamiltonian can lead
to incorrect results for on-shell singularities in correlation
functions. Introducing a coupling to a mobile impurity and
taking the leading irrelevant operators into account nonpertur-
batively, it is possible to recover the exact singularity threshold
and critical exponent. We do, however, believe that these
irrelevant operators do not affect the exponent of the equal-time
correlation functions studied here.

D. Cooper pair correlation function and FFLO phase

For simplicity, we restrict ourselves to the equal-time
correlation function for the Cooper pairs. Denoting the creation
of a Cooper pair by C

†
p, the corresponding correlation function

has the following general form:

〈C†
p(x,0)Cp(0,0)〉 = Ax−θ exp[−2i(D0p0 + D1p1)x] ,

(17)

where

θ = 2(�+
0 + �−

0 + �+
1 + �−

1 ) (18)

and A is an amplitude.
We first consider the pure phase II for which we only

have to consider two quantum numbers, namely, �N1 and
D1. The addition of a bound pair of particles corresponds
to �N1 = 1 and from Eq. (16) we have that D1 is an
integer. In terms of particle creation operators, the operator
associated with D1 = 0 is c

†
1/2+c

†
−1/2−, where the subscripts

refer to the spin component and +/− to forward/backward
movers. This represents a standard Cooper pair, which is
a bound state of a forward moving spin-up particle with a
backward moving spin-down particle, and has zero total spin
and momentum. Another possible choice is D1 = 1, which
corresponds to the operator c

†
1/2+c

†
−1/2+ and carries momentum

2πn1D1, but is different from a Cooper pair. The above
arguments correspond to a system with periodic boundary
conditions, although the trap is actually open ended (see
Ref. 39). However, transport quantities should be calculated
with periodic boundary conditions, since the possibility of a
current circulating should exist. For �N1 = 1, D1 = 0, and
n±

1 = 0 (the leading contribution involves no particle-hole
excitations about the Fermi points), we obtain θ = 1/(2z2

11)
and 〈C†

p(x,0)Cp(0,0)〉 = Ax−θ ,54 in agreement with results
obtained using the bosonization method.21

We now consider the mixed phase, where both rapidity
bands are populated. The quantum numbers for the band of

pairs are not changed, �N1 = 1, D1 = 0, and n±
1 = 0. The

band for spin-polarized unpaired particles has �N0 = 0 (the
number of unpaired particles is not changed) and from Eq. (16)
it is seen that the parity of the states is changed by the addition
of a Cooper pair, D0 = ±1/2 and n±

0 = 0 for the smallest
conformal dimensions. When inserted into Eq. (15), we obtain
for the critical exponent,

θ = 1

2

(
z2

01 + z2
00

) [
1 + 1

(z11z00 − z10z01)2

]
, (19)

and the correlation function is given by

〈C†
p(x,0)Cp(0,0)〉 = Ax−θ cos(πn0x), (20)

where we neglected an arbitrary constant phase in the cosine
function. The period of oscillation has been obtained in
Sec. II B [see Figs. 1(c) and 1(d)] and θ is shown as the
dash-dotted curve in the same panels (right side axis). Note
that θ is discontinuous at the transition between phases. θ

is in qualitative agreement with the result obtained through
the bosonization method.21 The critical scaling dimension in
one-dimension is 2, and θ < 2 is satisfied for both, the II and
the I + II, phases in the region of interest. The correlation
function for the Tonks-Girardeau limit was also obtained in
Ref. 28.

Next, we consider an array of parallel elongated tubes. The
tubes are assumed to be all equal. The particles in different
tubes interact with each other and a weak tunneling of unpaired
and preformed pairs of particles between tubes is allowed. The
Josephson tunneling leads to coherence between the pairs in
different tubes and eventually to long-range order of Cooper
pairs that propagate along the direction of the tubes. If the
system is in phase II, the long-range order is the condensation
of pairs of up-spin right movers with down-spin left movers,
as expected from the BCS theory, only that the Fermi surface
is one-dimensional with Fermi momentum kF = πn1.21 The
three-dimensional order gives rise to a low but finite Tc,
and for T above Tc the Luttinger liquid power-law behavior
of the Cooper-pair correlation function (17) remains valid.
This power law determines the onset of superfluidity from
the normal phase. The situation is more complicated in the
mixed I + II phase, since the Fermi momenta for up-spin
and down-spin are different, namely, kF↑ = π (n0 + n1) and
kF↓ = πn1, respectively. It is then straightforward to see that
with transversal coherence the BCS theory yields momentum
carrying Cooper pairs and the order parameter is an oscillating
function of space, in complete analogy with the FFLO phase.21

The space modulation of the order parameter is just given
by the oscillating factor in Eq. (20). The phase is then not
homogeneous, but due to the nodes of the order parameter,
there are periodically alternating regions of BCS condensate
and normal phases.

E. Density wave correlation functions

Particle density waves and spin density waves are two other
possible forms of long-range order that can be considered. The
correlation function for longitudinal (along the z axis) spin
density waves is very similar to that of particle density waves,
so that we can refer to them as density waves. In terms of
creation and annihilation operators, the local density operator
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for up-spin particles is

ψ
†
↑(x)ψ↑(x) = 1

L

∑
k,k′

(c†k↑+eik↑x + c
†
k↑−e−ik↑x)

× (ck′↑+e−ik↑x + ck′↑−eik↑x), (21)

and a similar expression holds for down-spin particles. None of
the operators changes the number of particles, so that �N0 =
�N1 = 0 for all of them. Consequently, the parity operators
are integers. Operators with both fermion operators referring to
the same Fermi point have D0 = D1 = 0, while a momentum
transfer of ±2k↑ correspond to D0 = D1 = ±1 and of ±2k↓
to D0 = 0 and D1 = ±1. The critical exponents are computed
from the conformal dimensions, Eq. (15). The terms with D0 =
D1 = 0 yield a constant term given by the square of the particle
density (square of the magnetization) for the particle density
(spin density) correlation function. The terms with nonzero D

quantum numbers give rise to nontrivial results. The density
correlation function for the Tonks-Girardeau limit was also
obtained in Ref. 28.

For the pure phase II (all particles are paired), only z11

matters and the density wave exponent is θDW = 2z2
11, which

is the inverse of the exponent for superfluidity. z11 is close
to one for small particle density and hence superfluidity is
favored. With increasing μ, z11 decreases and at some critical
value of μ for which z11 = 1/

√
2, the two exponents are equal

to one. For larger particle populations, the density waves are
favored.

In a finite magnetic field H and with increasing μ, the
system eventually crosses over into the mixed phase. When
entering the mixed phase the exponent for superfluidity
increases dramatically, as seen in Figs. 1(c) and 1(d). θDW,
on the other hand, decreases considerably because z11 > 0
and z00 > 0 but z10 and z01 are both negative. Under these
circumstances, the density waves dominate and one could
expect a coexistence of three types of order in the ground
state, namely, ferromagnetism, particle density waves, and
spin density waves. There are two different wave numbers of
oscillation, which are (2πn↑) and (2πn↓) and the exponents
for both spin directions are different in the mixed phase. Let
us assume that the order is governed by the spin direction
with the smaller exponent; then there is a modulation either
for the up-spins or the down-spins, but not for both. If the
up-spins are modulated, both paired and unpaired particles are
modulated and hence the down-spins are also modulated. On
the other hand, if the modulation is for down-spins, then, since
the particles are bound, the up-spins are also modulated. In
other words, both, up- and down-spin particle densities, have
to be modulated simultaneously, but since the Fermi vectors
are different the periodicities are going to be different.

In order to generate long-range order at finite temperatures,
the transversal coherence among a large number of tubes is
required. This can be obtained by tunneling of Cooper pairs
between tubes induced by constructing the optical lattice so
that the tubes are not perfectly isolated. The tunneling of
particles between tubes also smears the build-up of density
waves, which this way become unfavorable. We therefore
limit ourselves to study superfluidity response functions for
the remainder of this paper. Symmetry breaking due to the
tunneling of pairs between two chains has been studied in

Ref. 60 in the context of the Coulomb drag between quantum
wires.

Finally, there is a third operator that could be relevant for
density waves, c

†
↑+c↑−c

†
↓−c↓+, i.e., an up-spin particle jumps

forward and a down-spin particle backward across the Fermi
surface. The only nonzero quantum number is then D0 = ±1.
This term yields oscillations with a wave number of (2πn0),
but the corresponding exponent θ is larger than 2 (larger than
the critical scaling dimension) and hence this operator is not
relevant.

III. GENERALIZATION TO SPIN-3/2 PARTICLES

For S > 1/2, the model under consideration is still given
by Eq. (1) only that the internal spin symmetry is now
SU(N ) with N = 2S + 1. The corresponding Bethe Ansatz
equations have been derived by Sutherland.29,34 For an at-
tractive interaction and large L, the solutions of the discrete
Bethe equations for the ground state are strings of length
of up to N − 1. We denote the rapidities with ξ (l), where
l = 0, . . . ,N − 1 = 2S. For S = 3/2, there are then four
sets of states, namely, ξ (3), corresponding to bound states
of four particles, ξ (2), referring to bound states of three
particles, ξ (1), representing bound pairs, and ξ (0) for the
unbound spin-polarized particles.30,33,34 This classification
of states is completely analogous to that of the Anderson
impurity of arbitrary spin in the U → ∞ limit61 (see also
Refs. 62–64, and 66) and the one-dimensional degenerate
supersymmetric t-J model,65 and is only determined by the
SU(N ) symmetry and the attractive nature of the potential.

The real rapidities ξ (l) have all to be different and satisfy
the Fermi-Dirac statistics, i.e., the states are either occupied
or empty. In the ground state, the rapidities are densely
distributed in the interval [−Bl,Bl]. We denote with ε(l)(ξ ),
l = 0,1, . . . ,2S, the dressed energy potentials (entering the
Fermi-Dirac distribution) and with ρ(l)(ξ ) the densities of
the rapidities. These quantities satisfy integral equations that
generically for a quantity X(l) for l = 0, . . . ,2S can be written
as

X(l)(ξ ) = Dl(ξ ) −
2S∑

q=0

∫ Bq

−Bq

dξ ′Klq(ξ − ξ ′)X(q)(ξ ′), (22)

where Dl(ξ ) is the driving term and Klq(ξ ) the integration
kernel. The kernel can be written in a compact form:33

Klq(ξ ) =
∫

dω

2π
exp[iξω − (l + q − pl,q)|ωc|/2]

× sinh[(pl,q + 1)ωc/2]/ sinh(ωc/2), (23)

where pl,q = min(l,q) − δl,q . Note that Klq(ξ ) = Kql(ξ ). In
terms of the an(ξ ) defined in Eq. (4), the kernel for S = 3/2 is

K00 = 0, K01 = a1, K02 = a2, K03 = a3,

K11 = a2, K12 = a1 + a3, K13 = a2 + a4, (24)

K22 = a2 + a4, K23 = a1 + a3 + a5, K33 = a2 + a4 + a6.

The four dressed energy potentials for a Zeeman splitting
are obtained from Eq. (22) with the driving terms33,34

Dl(ξ ) = (l + 1)

[
ξ 2 − l(l + 2)

12
c2 − μ − 3 − l

2
H

]
. (25)
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FIG. 2. Ground-state phase diagram μ vs H for a homogeneous
fermion gas of spin S = 3/2 with |c| = 1.39 The roman numbers
denote the number of particles involved in a bound state. Regions
with more than one roman number are mixed phases, i.e., phases
with coexisting different states. The lower left corner corresponds to
the empty system, i.e., no particles. The two vertical dashed lines at
constant field, H = 1.0 and 2.0 are μ intervals considered in Figs. 4
and 5 to discuss phase separation along the trap.

The Lagrange multipliers μ and H determine the integration
limits Bl through the condition that ε(l)(±Bl) = 0, in analogy
to the S = 1/2 case. This determines the Fermi points of the
system. Note that if all the ε(l) are rescaled to ε(l)/c2, μ to
μ/c2, H to H/c2, all Bl to Bl/|c|, and ξ to ξ/|c|, the equations
are universal, i.e., independent of the magnitude of |c|. Hence,
within the framework of the grand canonical ensemble, without
loss of generality, it is sufficient to present the results for |c| =
1. The phase diagram has then only two parameters, namely,
H and μ. The above set of equations is solved numerically by
iteration and the phase diagram for |c| = 1 is shown in Fig. 2.
The energy potential ε(0) corresponds to unpaired particles
with spin-component Sz = 3/2; the energy ε(1) to bound pairs
with spin-components Sz = 3/2 and Sz = 1/2; the potential
ε(2) to bound states of three particles of spin components
Sz = 3/2, Sz = 1/2, and Sz = −1/2, respectively; and finally,
ε(3) to bound states of four particles all with different spin
components. We denote these states with roman numbers, I,
II, III, and IV, respectively. These states can coexist in mixed
phases, for example we denote with I + IV the coexistence of
unpaired and bound states of four particles and with I + II + III
a phase where all states except four-particle bound states are
present.39

Note that all phase boundaries are given by the zero of some
energy potential. The phase boundaries are then crossover
lines, which are accompanied by a square-root singularity
of one of the densities of states (one-dimensional van Hove
singularity, see inset of Fig. 4 of Ref. 39). For small magnetic
fields all particles are bound in four-particle bound states
(generalized Cooper pairs). The lower left corner refers to the
region where all bands are empty (system without particles).
With increasing field other phases become realized. At very
large magnetic fields and/or for low values of μ (small number
of particles) the phase IV is not favorable. For large μ and
intermediate magnetic fields, all four bands are populated

and hence spin-polarized unbound particles coexist with all
possible bound states.

An ultracold atom gas is inherently inhomogeneous
since the diameter of the tube gradually changes with position
from the center of the trap to its boundaries. As a consequence
of the changing diameter of the tube, the quantization in
the plane transversal to the tube gradually changes the zero
of energy. This change can be represented by a harmonic
potential, so that the actual local chemical potential μ is a
function of x given by

μ(x) + 1
2mω2

hox
2 = const. (26)

Within the local density approximation, it is μ(x) that enters
the Bethe equations for ε(l). The solution is then exact for the
one-dimensional system, but approximative for the trap. This
approximation1–3 is expected to be good since the variation
of μ with x is slow, i.e., it is the largest length scale in
the system. The approximation neglects the quantization of
the harmonic confinement, which is treated classically and
locally incorporated into the chemical potential. Given μ(0)
and μ(L/2), i.e., the chemical potential at the center and
boundary of the trap, the position along the trap is given by
[from Eq. (26)]

x/(L/2) =
√

[μ(x) − μ(0)]/[μ(L/2) − μ(0)] . (27)

The two dashed vertical lines in Fig. 2 represent two very
different situations for the variation with μ in a constant
magnetic field.

In order to obtain the local density profile as a function of x

for the different phases, the density functions for the rapidities
have to be computed. The density functions of the rapidities are
obtained from the dressed energies ε(q)(ξ ) by differentiation
with respect to μ,33,34

ρ
(q)
h (ξ ) + ρ(q)(ξ ) = − 1

2π

∂ε(q)(ξ )

∂μ
, (28)

where ρ(q)(ξ ) is the particle density and ρ
(q)
h (ξ ) the correspond-

ing hole density for bound states involving q + 1 particles. The
integral equations satisfied by the density functions are of the
form of Eq. (22) with X(l)(ξ ) = ρ

(q)
h (ξ ) + ρ(q)(ξ ) and Dl(ξ ) =

(l + 1)/(2π ).30 After solving these equations numerically, the
density of bound states in each class is given by

nq =
∫ Bq

−Bq

dξρ(q)(ξ ) . (29)

The local density profiles as a function of x [with x given
by Eq. (27)] for the different phases for H = 1.0 and 2.0
are displayed in Fig. 3. These cases correspond to the
vertical dashed lines in Fig. 2. The thin vertical lines in Fig. 3
indicate the transitions between the phases. The solid lines
represent the density of four-particle bound states, the dashed
curves the density of three-particle bound states, the dotted
lines the concentration of pairs, and the dash-dotted curves the
density of unpaired polarized particles. As a function of x the
system then displays phase separation. Note that the densities
vanish with a square-root singularity that is characteristic of
one-dimensional van Hove singularities39 as seen in Fig. 3.
The total density of particles, Np/L = ∑3

q=0(q + 1)nq , is
shown as the blue curves in Fig. 3. The magnetization density
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FIG. 3. (Color online) Density profile within the local density approximation for |c| = 1, S = 3/2 and (a) H = 1.0 [μ(0) = −0.5 and
μ(L/2) = −1.8] and (b) H = 2.0 [μ(0) = −0.5 and μ(L/2) = −2.3]. The position along the trap is given by Eq. (27). The four (three)
crossovers between phases are shown by the thin vertical lines. The densities nq of bound states of q + 1 particles (or polarized unbound
particles if q = 0) are given by the solid (n3), dashed (n2), dotted (n1), and dash-dotted (n0) curves. There is phase separation due to the varying
confinement along the trap.39 The solid blue curve represents the density of the total number of particles, Np/L, rescaled by a factor of 5 [in
(a) and 6 in (b)], respectively. The red curve is the magnetization density, M/L [rescaled by a factor of 3 in (b)].

M/L = ∑3
q=0(q + 1)(3 − q)nq/2 is represented by the red

curves in Fig. 3. Note the rescaling factors for both, the total
particle density and the magnetization density.

IV. CONFORMAL TOWERS AND SUPERFLUIDITY
CORRELATION FUNCTIONS

In order to calculate correlation functions, the finite-
size corrections to the ground-state energy and low-energy
excitations are needed. There are now four energy branches
rather than two as for the S = 1/2 case. The expression for
the conformal towers is similar to the one presented in Sec. II,
Eqs. (11) and (12), only that the indices l and q (representing
the string length) now go from 0 to 3. The group velocities for
the four branches of excitations are again given by Eq. (10).

The matrix of generalized dressed charges zlq has now
dimension 4 × 4. The situation is similar to that encoun-
tered for the degenerate supersymmetric t-J model66 and
the Coulomb drag between Luttinger liquids.67 The dressed
generalized charges are obtained as zlq = ξlq(Bq), where the
ξlq are the solution of four sets of integral equations of the
form of Eq. (22). The sets are labeled by the index l = 0, . . . ,3
and yield X(q)(ξ ) = ξlq(ξ ) for the driving terms Dq(ξ ) = δl,q .
There are then altogether 16 dressed charges to be calculated,
which determine the interplay of the different Fermi points
when a low-lying excitation is introduced. The dimension
of the matrix is gradually reduced as the energy bands are
depopulated, e.g., if there are only three bands occupied then
the matrix is 3 × 3, etc.

There are four sets of four quantum numbers, one set for
each band, describing the low-energy excitations of the Fermi
liquid. As for the S = 1/2 case, each set l consists of a quantum
number for the change in the number of particles in the band
l, �Nl , a backward scattering quantum number Dl , and two
quantum numbers for the particle-hole excitations at the Fermi
points, n±

l , for forward and backward movers, respectively.
While n±

l = 0 for the present purposes, �Nl and 2Dl take

integer values. Hence, Dl can have integer or half-integer
values. For elementary excitations from the ground state, the
values of the Dl quantum numbers are constrained by the
discrete Bethe Ansatz equations. A change in the population
of band q, �Nq , changes the backscattering quantum numbers
by

Dl = 1
2 [min(l,q) + 1]�Nq (mod 1) . (30)

Note that the Dl are only determined modulo 1, which gives
rise to some degrees of freedom.

We now consider the operators associated with superfluidity
in the Fermi gas. There are three classes of bound states that can
lead to superfluidity, i.e., the creation of a four-particle bound
state is characterized by �N3 = 1 and all other �Nl = 0, the
creation of a three-particle bound state is characterized by
�N2 = 1 and all other �Nl = 0, and a bound state of two
particles (pair) by �N1 = 1 and all other �Nl = 0. These are
the quantum numbers classifying the operators. For each case,
there may be more than just one set of quantum numbers Dl .

Let us first consider the pure phases, i.e., only one
band is occupied. The case of pairs has been discussed in
Sec. II D where we concluded that the quantum numbers are
�N1 = 1 and D1 = 0. In terms of atom creation operators
this operator now reads c

†
3/2+c

†
1/2−, i.e., one forward mover

coupled to a backward mover. The situation is similar if
the four-particle bound states are considered. In this case
the quantum numbers are �N3 = 1 and D3 = 0, and one of
the possible operators is c

†
3/2+c

†
1/2+c

†
−1/2−c

†
−3/2−, i.e., there

are two forward and two backward movers involved. Less
trivial is the case of three-particle bound states, because now
the bound states carry momentum. With three particles two
must be forward (backward) movers and the third particle is a
backward (forward) mover. This leads to a momentum of πn2

(−πn2), and hence D2 = ±1/2. These cases have been studied
previously in Ref. 68 and the quantum numbers are listed in
Table I.
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TABLE I. Superfluidity operators and their quantum numbers. If more than one possible operator exists for a given set of quantum numbers,
then only one of them is listed. �Nl is the change in the number of bound clusters of string-length l [(l + 1) particles] and Dl is the corresponding
backward scattering (parity) quantum number. For the leading exponent, all particle-hole excitation quantum numbers, n±

l , are zero. Here, λ is
the distance between nodes in the corresponding term of the correlation function. The index in the last column is the label in Figs. 5, 6, 8, and 9.

Phase Operator O† �N0 �N1 �N2 �N3 D0 D1 D2 D3 1/λ Label

IV c
†
3/2,+c

†
1/2,+c

†
−1/2,−c

†
−3/2,− . . . . . . . . . +1 . . . . . . . . . 0 0

III c
†
3/2,+c

†
1/2,+c

†
−1/2,− . . . . . . +1 . . . . . . . . . ± 1

2 . . . n2

II c
†
3/2,+c

†
1/2,− . . . +1 . . . . . . . . . 0 . . . . . . 0

I + IV c
†
3/2,+c

†
1/2,+c

†
−1/2,−c

†
−3/2,− 0 . . . . . . +1 ± 1

2 . . . . . . 0 n0 a,b,c

I + III c
†
3/2,+c

†
1/2,+c

†
−1/2,− 0 . . . +1 . . . ± 1

2 . . . ± 1
2 . . . n0 + n2

I + III c
†
3/2,+c

†
1/2,−c

†
−1/2,− 0 . . . +1 . . . ± 1

2 . . . ∓ 1
2 . . . |n0 − n2|

I + II c
†
3/2,+c

†
1/2,+ 0 +1 . . . . . . ± 1

2 ±1 . . . . . . n0 + 2n1 α

I + II c
†
3/2,+c

†
1/2,− 0 +1 . . . . . . ± 1

2 0 . . . . . . n0 β

II + IV c
†
3/2,+c

†
1/2,+c

†
−1/2,−c

†
−3/2,− . . . 0 . . . +1 . . . ±1 . . . 0 2n1

II + IV c
†
3/2,+c

†
1/2,−c

†
−1/2,+c

†
−3/2,− . . . 0 . . . +1 . . . 0 . . . 0 0

II + IV c
†
3/2,+c

†
1/2,− . . . +1 . . . 0 . . . 0 . . . 0 0

II + IV c
†
3/2,+c

†
1/2,+ . . . +1 . . . 0 . . . ±1 . . . ±1 2(n1 + n3)

III + IV c
†
3/2,+c

†
1/2,+c

†
−1/2,−c

†
−3/2,− . . . . . . 0 +1 . . . . . . ± 1

2 0 n2

III + IV c
†
3/2,+c

†
1/2,+c

†
−1/2,− . . . . . . +1 0 . . . . . . ± 1

2 ± 1
2 n2 + n3

II + III c
†
3/2,+c

†
1/2,+c

†
−1/2,− . . . 0 +1 . . . . . . ±1 ± 1

2 . . . 2n1 + n2

II + III c
†
3/2,+c

†
1/2,−c

†
−1/2,+ . . . 0 +1 . . . . . . 0 ± 1

2 . . . n2

II + III c
†
3/2,+c

†
1/2,− . . . +1 0 . . . . . . 0 0 . . . 0

II + III c
†
3/2,+c

†
1/2,+ . . . +1 0 . . . . . . ±1 ±1 . . . 2(n1 + n2)

I + II + IV c
†
3/2,+c

†
1/2,+c

†
−1/2,−c

†
−3/2,− 0 0 . . . +1 ± 1

2 ±1 . . . 0 n0 + 2n1 a

I + II + IV c
†
3/2,+c

†
1/2,−c

†
−1/2,+c

†
−3/2,− 0 0 . . . +1 ± 1

2 0 . . . 0 n0 b,c

I + II + IV c
†
3/2,+c

†
1/2,+ 0 +1 . . . 0 ± 1

2 ±1 . . . ±1 n0 + 2n1 + 2n3 α

I + II + IV c
†
3/2,+c

†
1/2,− 0 +1 . . . 0 ± 1

2 0 . . . 0 n0 β

I + III + IV c
†
3/2,+c

†
1/2,+c

†
−1/2,−c

†
−3/2,− 0 . . . 0 +1 ± 1

2 . . . ± 1
2 0 n0 + n2

I + III + IV c
†
3/2,+c

†
1/2,−c

†
−1/2,−c

†
−3/2,+ 0 . . . 0 +1 ± 1

2 . . . ∓ 1
2 0 |n0 − n2|

I + III + IV c
†
3/2,+c

†
1/2,+c

†
−1/2,− 0 . . . +1 0 ± 1

2 . . . ± 1
2 ± 1

2 n0 + n2 + n3

I + III + IV c
†
3/2,+c

†
1/2,−c

†
−1/2,− 0 . . . +1 0 ± 1

2 . . . ∓ 1
2 ∓ 1

2 |n0 − n2 − n3|
I + II + III c

†
3/2,+c

†
1/2,+c

†
−1/2,− 0 0 +1 . . . ± 1

2 ±1 ± 1
2 . . . n0 + 2n1 + n2 a

I + II + III c
†
3/2,+c

†
1/2,−c

†
−1/2,+ 0 0 +1 . . . ± 1

2 0 ± 1
2 . . . n0 + n2 b

I + II + III c
†
3/2,+c

†
1/2,−c

†
−1/2,− 0 0 +1 . . . ± 1

2 0 ∓ 1
2 . . . |n0 − n2| c

I + II + III c
†
3/2,+c

†
1/2,+ 0 +1 0 . . . ± 1

2 ±1 ±1 . . . n0 + 2n1 + 2n2 α

I + II + III c
†
3/2,+c

†
1/2,− 0 +1 0 . . . ± 1

2 0 0 . . . n0 β

II + III + IV c
†
3/2,+c

†
1/2,+c

†
−1/2,−c

†
−3/2,− . . . 0 0 +1 . . . ±1 ± 1

2 0 2n1 + n2

II + III + IV c
†
3/2,+c

†
1/2,−c

†
−1/2,+c

†
−3/2,− . . . 0 0 +1 . . . 0 ± 1

2 0 n2

II + III + IV c
†
3/2,+c

†
1/2,+c

†
−1/2,− . . . 0 +1 0 . . . ±1 ± 1

2 ± 1
2 2n1 + n2 + n3

II + III + IV c
†
3/2,+c

†
1/2,−c

†
−1/2,+ . . . 0 +1 0 . . . 0 ± 1

2 ± 1
2 n2 + n3

II + III + IV c
†
3/2,+c

†
1/2,+ . . . +1 0 0 . . . ±1 ±1 ±1 2(n1 + n2 + n3)

II + III + IV c
†
3/2,+c

†
1/2,− . . . +1 0 0 . . . 0 0 0 0

I + II + III + IV c
†
3/2,+c

†
1/2,+c

†
−1/2,−c

†
−3/2,− 0 0 0 +1 ± 1

2 ±1 ± 1
2 0 n0 + 2n1 + n2 a

I + II + III + IV c
†
3/2,+c

†
1/2,−c

†
−1/2,+c

†
−3/2,− 0 0 0 +1 ± 1

2 0 ± 1
2 0 n0 + n2 b

I + II + III + IV c
†
3/2,+c

†
1/2,−c

†
−1/2,−c

†
−3/2,+ 0 0 0 +1 ± 1

2 0 ∓ 1
2 0 |n0 − n2| c

I + II + III + IV c
†
3/2,+c

†
1/2,+c

†
−1/2,− 0 0 +1 0 ± 1

2 ±1 ± 1
2 ± 1

2 n0 + 2n1 + n2 + n3 a

I + II + III + IV c
†
3/2,+c

†
1/2,−c

†
−1/2,+ 0 0 +1 0 ± 1

2 0 ± 1
2 ± 1

2 n0 + n2 + n3 b

I + II + III + IV c
†
3/2,+c

†
1/2,−c

†
−1/2,− 0 0 +1 0 ± 1

2 0 ∓ 1
2 ∓ 1

2 |n0 − n2 − n3| c

I + II + III + IV c
†
3/2,+c

†
1/2,+ 0 +1 0 0 ± 1

2 ±1 ±1 ±1 n0 + 2n1 + 2n2 + 2n3 α

I + II + III + IV c
†
3/2,+c

†
1/2,− 0 +1 0 0 ± 1

2 0 0 0 n0 β
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The quantum numbers of the mixed phases are harder
to figure out. The phase I + II has been studied in Sec. II
and the relevant operators have quantum numbers �N1 = 1
and D0 = ±1/2, while D1 is an integer, 0 or 1. Similarly
for I + IV, �N3 = 1, �N0 = 0, D0 = ±1/2, and D3 is an
integer, which we choose 0 (two forward and two backward
movers). Finally, for I + III, we have �N2 = 1, D0 = ±1/2,
and D2 either ±1/2 or ∓1/2. Hence, in this case, there
are two sets of quantum numbers and, consequently, two
operators for the same phase. The occupations of the bands are
n3/2 = n0 + n2 and n±1/2 = n2, while n−3/2 = 0. In terms of
atom creation operators, these operators are c

†
3/2,±c

†
1/2,±c

†
−1/2,∓

and c
†
3/2,±c

†
1/2,∓c

†
−1/2,∓, where again the +/− signs refer to

forward/backward movers. Hence, there are two competing
correlation functions and the one with smaller critical exponent
is expected to be the dominant one.

For the mixed phase II + IV, the population of the levels
are n3/2 = n1/2 = n1 + n3 and n−1/2 = n−3/2 = n3. There are
four operators for superfluidity, two corresponding to �N3 =
1, c

†
3/2,±c

†
1/2,±c

†
−1/2,∓c

†
−3/2,∓ and c

†
3/2,±c

†
1/2,∓c

†
−1/2,±c

†
−3/2,∓,

and two to �N1 = 1, c
†
3/2,±c

†
1/2,∓ and c

†
3/2,±c

†
1/2,±. The

backscattering quantum numbers Dq can now be determined.
For the first �N3 = 1 operator only D1 = ±1 is different
from zero, for the second operator, all Dq vanish, while for
the first �N1 = 1 operator all Dq = 0 and for the second,
D1 = D3 = ±1.

For the mixed phase III + IV, n3/2 = n1/2 =
n−1/2 = n2 + n3 and n−3/2 = n3, there are three
operators with �N3 = 1, c

†
3/2,±c

†
1/2,∓c

†
−1/2,±c

†
−3/2,∓,

c
†
3/2,±c

†
1/2,±c

†
−1/2,∓c

†
−3/2,∓, and c

†
3/2,±c

†
1/2,∓c

†
−1/2,∓c

†
−3/2,±,

yielding D2 = ±1/2 while all other Dq = 0. For
�N2 = 1, there are three operators, c

†
3/2,±c

†
1/2,∓c

†
−1/2,±,

c
†
3/2,±c

†
1/2,±c

†
−1/2,∓, and c

†
3/2,±c

†
1/2,∓c

†
−1/2,∓, yielding D2 =

D3 = ±1/2.
In the phase II + III, n3/2 = n1/2 = n1 + n2, n−1/2 =

n2, and n−3/2 = 0, there are again two pair correlation
functions, c

†
3/2,±c

†
1/2,∓ and c

†
3/2,±c

†
1/2,±. The correspond-

ing quantum numbers are �N1 = 1, and D2 = D1 = 0
and D2 = D1 = ±1, respectively. There are also three
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FIG. 4. (Color online) Dressed generalized charges for a homogeneous fermion gas of spin S = 3/2 with |c| = 1 and H = 1.0 as a function
of μ. H = 1.0 corresponds to one of the dashed vertical lines in Fig. 2. The zlq determine the interplay between the different Fermi points in
the system. The thin vertical lines refer to the crossing between different phases. (a) corresponds to l = 0, i.e. z0q , panel (b) to l = 1 (z1q ), panel
(c) to l = 2 (z2q ) and panel (d) to l = 3 (z3q ). All dressed generalized charges are different from zero for the mixed phase I + II + III + IV. As
the individual phases disappear with decreasing μ the effective dimension of ẑ is reduced. The curves for q = 0 are in red, the ones for q = 1
are green, magenta the ones for q = 2 and blue if q = 3. Note that many of the charges vary discontinuously at the transitions.
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�N2 = 1 operators, c
†
3/2,±c

†
1/2,±c

†
−1/2,∓, c

†
3/2,±c

†
1/2,∓c

†
−1/2,±

and c
†
3/2,±c

†
1/2,∓c

†
−1/2,∓, yielding D1 = ±1 and D2 = ±1/2

for the first operator and D1 = 0 and D2 = ±1/2 for the
remaining two operators. It is more tedious to obtain the quan-
tum numbers for mixed phases with three or four bands. The
most relevant sets of possible quantum numbers contributing to
correlation functions for superfluidity are displayed in Table I.

The superfluidity correlation functions can now be calcu-
lated. The procedure is analogous to that for Cooper pairs
in Sec. II D. For each operator O† in Table I the correlation
function is similar to expression (14), only that the product in
the denominator is from l = 0, . . . ,4 and D0p0 + D1p1 in the
exponential is to be replaced by

∑4
l=0 Dlpl = ∑4

l=0 2πDlnl .
The conformal dimensions are defined as

2�±
l = 2n±

l +
⎡
⎣ 3∑

q=0

zqlDq ± 1

2

3∑
q=0

(ẑ−1)lq�Nq

⎤
⎦

2

. (31)

The leading terms of the equal time correlation function for
the O† operators are then of the form (all n±

q = 0)

〈O†(x,0)O(0,0)〉 = Ax−θ cos(πx/λ) (32)

for the phase under consideration. The amplitude A cannot
be determined from conformal field theory. The exponent θ is
given by

θ = 2
3∑

q=0

(�+
q + �−

q ), n±
q = 0 (33)
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FIG. 5. (Color online) Critical exponents for the correlation
functions for S = 3/2 with H = 1.0 and |c| = 1 as a function of μ.
H = 1.0 corresponds to one of the dashed vertical lines in Fig. 2. The
exponents are all discontinuous at the transitions. The dashed curves
correspond to the four-particle bound state correlation functions,
the solid curves to the three-particle bound state responses and the
dash-dotted curves to the pairs (cyan). According to Table I there
are three three- and four-particle correlators in the mixed phase
I + II + III + IV; they are denoted with (a) (red), (b) (green), and
(c) (blue). There are two four-particle correlation functions in the
phase I + II + IV. There are also two correlation functions for pairs
denoted by (α) and (β), respectively. Note that curve (α) has been
rescaled by a factor of f = 1/2.

and the distance between nodes λ is given by
1/|2 ∑4

q=0 Dqnq |. The expressions for 1/λ are shown in
Table I in the column previous to the last one. Note that for fixed
μ/c2 and H/c2, the dressed generalized charges and hence the
exponents θ are independent of the coupling strength |c|.

V. RESULTS

In this section, we discuss the matrix of dressed generalized
charges, critical exponents, and the periods of oscillation of the
correlation functions along the vertical (dashed) lines in Fig. 2,
i.e., H = 1.0 and H = 2.0. These two examples correspond
to two very different situations.

A. The H = 1.0 line

The components of the matrix of dressed generalized
charges for a homogeneous Fermi gas for |c| = 1, S = 3/2
and H = 1.0 as a function of μ are displayed in Fig. 4. The
zlq determine the interplay between the different Fermi points
in the system. The thin vertical lines refer to the transitions
between the different phases. The four panels show (a) z0q ,
(b) z1q , (c) z2q , and (d) z3q , with q = 0, . . . ,3. With decreasing
μ the dressed energy bands gradually are emptied and the
effective dimension of ẑ is reduced as the individual phases
disappear. All dressed generalized charges are different from
zero for the phase mixed I + II + III + IV. In general, the zlq

for l �= q are always negative, while diagonal elements are
positive. Note that many of the charges vary discontinuously
at the transitions.
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I
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FIG. 6. (Color online) Distance between nodes of the correlation
functions for S = 3/2 with H = 1.0 and |c| = 1 as a function of μ.
H = 1.0 corresponds to one of the dashed vertical lines in Fig. 2.
Some of the periods of spatial oscillation are discontinuous at the
transitions between the phases. The dashed curves correspond to the
four-particle bound-state correlation functions, the solid curves to
the three-particle bound state responses and the dash-dotted curves
to the pairs (cyan). According to Table I, there are three three- and
four-particle correlators in the mixed phase I + II + III + IV; they
are denoted with (a) (red), (b) (green), and (c) (blue). There are
two four-particle correlation functions in the phase I + II + IV. There
are also two correlation functions for pairs denoted by α and β,
respectively.
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Figure 5 presents the critical exponents for the same
parameters as Fig. 4. The exponents of the pair correlation
functions (pairing of particles with Sz = 3/2 and 1/2) are
shown as the dashed dotted (cyan) curves and denoted with α

and β, respectively. Note that the curve α has been reduced
by a factor 1/2. The operator corresponding to curve α

carries a large momentum, π (n0 + 2n1 + 2n2 + 2n3), while
the momentum of the operator for β is just πn0. The exponent
of β is the smallest of all exponents and, hence, this correlation
function has the longest range.

There are three three-particle and three four-particle cor-
relation functions in the I + II + III + IV phase. Only the
four-particle responses survive into the I + II + IV and I + IV
phases. The green curves [denoted with (b)] have the smallest
exponent and, hence, these correlation functions are the ones
with longest range within the �N2 and �N3 categories,
since they have the slowest decay with distance. The wave
numbers of the oscillation are π (n0 + n2 + n3) and π (n0 +
n2), respectively.

Figure 6 displays the corresponding distance between
nodes, λ, that appears in the oscillating factor. The λ for the
dominant response functions for three- and four-particle bound

states are the green curves denoted with (b). The corresponding
one for the pair correlation function (β) is shown as the (cyan)
dash-dotted curve.

As discussed in Sec. II, in the presence of an array
of tubes, there is the possibility of Josephson tunneling of
individual particles, pairs and three- and four-particle bound
states, which eventually will give rise to superfluid long-
range order.1,21,47 The order is quasi-one-dimensional, since
the particles predominantly move along the tubes, i.e., the
Fermi surfaces remain being one-dimensional, but there is
coherence between the different tubes. The Luttinger liquid
properties remain then valid in the disordered phase and the
one-dimensional correlations functions determine the three-
dimensional order. There is a fundamental difference with the
ordinary BCS theory because the bound states are preformed
and already exist in the normal phase. The binding energy of
Cooper pairs due to long-range order is the primary energy
gain for superconductivity in the BCS theory, but that is not
the case for the present quasiparticles, since the bound states
are preformed.

It is a difficult task to figure out which operator is the one
leading to finite T superfluidity from the normal phase. There
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FIG. 7. (Color online) Dressed generalized charges for a homogeneous fermion gas of spin S = 3/2 with |c| = 1 and H = 2.0 as a function
of μ. H = 2.0 corresponds to one of the dashed vertical lines in Fig. 2. The zlq determine the interplay between the different Fermi points in the
system. The thin vertical lines refer to the crossing between different phases. (a) corresponds to l = 0, i.e., z0q , panel (b) to l = 1 (z1q ), panel
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205129-12



FERMI GAS WITH ATTRACTIVE POTENTIAL AND SPIN . . . PHYSICAL REVIEW B 85, 205129 (2012)

are three possible criteria (i) the correlation function with the
smallest exponent θ is the one with the longest range, (ii) a
large λ favors order because nodes in the order parameter are
generally energetically unfavorable, and (iii) the bound states
should have a small momentum, since a large momentum of the
bound states is unfavorable to a condensate. The critical scaling
dimension in one dimension is 2, so that only operators with a
θ less than 2 are favorable to order. The conditions (ii) and (iii)
are related with each other. The argument that it is unfavorable
to create large momentum carrying bound states can be ruled
out because their binding energy is already build into the Bethe
Ansatz solution of the model. The long-range order is expected
to have similar properties as the ones predicted by Fulde,
Ferrell, Ovchinnikov, and Larkin,46 i.e., the order parameter is
modulated. The period of the sinusoidal modulation is given by
the momentum differences of the Fermi points involved and,
hence, the same as the one given by λ in the present calculation.

The dominant correlation function is the one expected to
give rise to the strongest long-range order parameter. An
additional variable entering the problem is, which bound
states can tunnel most efficiently between tubes. We will
assume that the tunneling amplitude is about the same for
all the bound states. From Fig. 5, we see that the pairing
operator [(β), dash-dotted, cyan] has the smallest exponent
θ and a relatively large distance between nodes, λ. Pairing
is also the only operator satisfying θ < 2 throughout all the
phases. Hence pairing appears to be the most favorable for the
first superfluid ordered phase when coming from the normal
phase. Other superfluid phases are expected to emerge at lower
temperatures.
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FIG. 8. (Color online) Critical exponents for the correlation
functions for S = 3/2 with H = 2.0 and |c| = 1 as a function of μ.
H = 2.0 corresponds to one of the dashed vertical lines in Fig. 2. The
exponents are all discontinuous at the transitions. The dashed curves
correspond to the four-particle bound state correlation functions,
the solid curves to the three-particle bound state responses and the
dash-dotted curves to the pairs (cyan). According to Table I, there
are three three- and four-particle correlators in the mixed phase
I + II + III + IV; they are denoted with (a) (red), (b) (green), and
(c) (blue). There are three �N2 = 1 correlation functions in the phase
I + II + III. There are also two correlation functions for pairs denoted
by (α) and (β), respectively.

B. The H = 2.0 line

The sequence of phases along the H = 2.0 line is different
from that along the H = 1.0 line. For H = 2.0 at large μ,
all four bands are partially occupied (I + II + III + IV mixed
phase) and as μ decreases first the IV phase disappears, then
the III phase and finally the pairs, leaving only spin-polarized
unpaired particles. The components of the matrix of dressed
generalized charges for |c| = 1 and S = 3/2 are presented in
Fig. 7 as a function of μ. The thin vertical lines refer to the
transitions between the different phases. Again, all diagonal
zlq are positive and all off-diagonal elements are negative.
Again, all dressed generalized charges are different from zero
for the phase mixed I + II + III + IV. As the phases drop out
as a function of μ the dimension of the matrix is reduced
accordingly. Some of the dressed generalized charges vary
discontinuously at the phase transitions. The discussion on
the FFLO phase in Sec. V A remains valid here. The spatial
oscillation of the order parameter is given by the respective λ.

The critical exponents for the same parameters as in Fig. 7
are displayed in Fig. 8. As for the H = 1.0 case, there are
two two-particle, three three-particle, and three four-particle
correlation functions in the I + II + III + IV phase. With
decreasing μ, first the four-particle correlators disappear,
then the three-particle response functions, and finally, the
Cooper-pair functions. The dominant four-particle operators
correspond to curves (b) and (c) (dashed, green and blue,
respectively), which carry a smaller momentum as compared
to (a). On the other hand, curves (a) and (b) (solid, red and
green, respectively) correspond to the dominant exponents for
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FIG. 9. (Color online) Distance between nodes of the correlation
functions for S = 3/2 with H = 2.0 and |c| = 1 as a function of μ.
H = 2.0 corresponds to one of the dashed vertical lines in Fig. 2.
Some of the periods of spatial oscillation are discontinuous at the
transitions between the phases. The dashed curves correspond to
the four-particle bound state correlation functions, the solid curve to
the three-particle bound state responses and the dash-dotted curves
to the pairs (cyan). According to Table I, there are three three- and
four-particle correlators in the mixed phase I + II + III + IV; they are
denoted with (a) (red), (b) (green), and (c) (blue). There are three
three-particle correlation functions in the phase I + II + III. There
are also two correlation functions for pairs denoted by α and β,
respectively.

205129-13



P. SCHLOTTMANN AND A. A. ZVYAGIN PHYSICAL REVIEW B 85, 205129 (2012)

the three-particle bound states. There are two exponents for
the pair correlation functions denoted with α and β (cyan
dashed dotted curves). Among the pair correlation functions,
the β curve corresponds to the operator carrying the smaller
momentum, πn0, and has the lowest critical exponent. This
response function has the most extended correlations in all
phases and again is the only one with a θ below the critical
scaling dimension of 2.

Figure 9 shows the corresponding distance between nodes,
λ, arising from the sinusoidal factor. For the four-particle
bound states, this distance is very long for curve (c) and shorter
for curve (b). This makes (c) the more likely candidate for
an instability among the four-particle bound states. For the
same reason, (b) is the most likely candidate among the three-
particle bound states. For pairs, the candidate is curve β, shown
as the dashed-dotted cyan curve in Fig. 9. Again, the pairs β

are the most likely candidate for order from the normal phase.
Other phases are expected to emerge at lower temperatures.

VI. CONCLUSIONS

We studied an ultracold gas of fermionic atoms with S =
3/2 interacting via an attractive contact potential by solving
the corresponding Bethe Ansatz equations and obtained the
phase diagram in a magnetic field (μ versus H ) within the
grand-canonical ensemble. Four elementary states can occur:
(i) polarized unbound atoms with spin-component Sz = 3/2,
(ii) bound pairs of atoms with spin-components Sz = 3/2 and
1/2, (iii) bound states of three particles with spin-components
Sz = 3/2, 1/2, and −1/2, and (iv) bound states of four parti-
cles, one with each spin-component. Mixed phases of different
classes of bound states dominate the phase diagram. For a
given chemical potential, the phases are homogeneous and
display no long-range order. The transitions between phases
are crossovers of the Prokovskii-Talapov type. The phase
diagram for larger spin values has been obtained the same
way,39 but the calculations and the results are considerably
more involved and complicated. Possible applications are to
ultracold Fermi gases of 40K (spin 9/2), 43Ca (spin 7/2), 87Sr
(spin 9/2), 173Yb (spin 5/2), 9Be (spin 3/2), 135Ba (spin 3/2),
137Ba (spin 3/2), and 53Cr (spin 3/2) atoms.

We investigated the possibility of finding inhomogeneous
phases in the gas of two types: (a) we considered the scenario
of phase separation along the tube and (b) modulations of the
order parameters of the FFLO type. In case (a), the confining

harmonic potential varies with the position along the tube.
Within the local density approximation, which absorbs this
variation into the chemical potential, μ is a function of x, and
hence different phases are represented along the trap giving
rise to phase separation.1–3

In case (b), inhomogeneities like modulations of the order
parameter of the FFLO type, may arise in an array of tubes
from Josephson tunneling between tubes and interactions
between particles in different tubes.21,47 This gives rise to
a dimensional crossover from one-dimension to a higher
dimension and opens the possibility for superfluid long-range
order. The response functions in the disordered phase still
have the Luttinger properties of the one-dimensional gas.
These correlation functions determine the instability toward
superfluidity from the normal phase. There are three possible
criteria for the dominating order: (i) the correlation function
with the smallest exponent θ is the one with the longest range
and hence favorable if θ < 2, i.e., less than the critical scaling
dimension, (ii) a large λ favors order because nodes in the
order parameter are further apart and hence energetically less
unfavorable, and (iii) the bound states should carry a small
momentum, since a large momentum of the bound states is
unfavorable to a condensate.

There are three possible order parameters for superfluidity,
namely, pairs of the Cooper type, three-particle bound states
and four-particle bound states. The corresponding correlation
functions have been calculated using conformal field theory.
The calculation reveals that bound pairs are the bound states
most likely to yield long-range order. The equal time response
functions consist of the product of a power-law dependence of
distance and a sinusoidal dependence of x. The oscillating fac-
tor is determined by the population imbalance of the different
bands and is the same to be expected in the space modulation of
the FFLO order parameters. This calculation is the extension
of FFLO to spins larger than 1/2.21 Note that the two main
conditions for realization of the FFLO phase are satisfied in
cold atom tubes: (1) the system is very pure (no impurities)
and (2) it has a low effective dimension (extreme anisotropy).
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