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Observation of flat band for terahertz spoof plasmons in a metallic kagomé lattice

Yosuke Nakata,1,* Takanori Okada,2 Toshihiro Nakanishi,1 and Masao Kitano1,†
1Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

2Pioneering Research Unit for Next Generation, Kyoto University, Kyoto 611-0011, Japan
(Received 14 March 2012; revised manuscript received 17 April 2012; published 16 May 2012)

We study the dispersion relation of a metamaterial composed of metallic disks and bars arranged to have
kagomé symmetry and find that a plasmonic flat band is formed by the topological nature of the kagomé lattice.
To confirm the flat-band formation, we fabricate the metamaterial and make transmission measurements in the
terahertz regime. Two bands formed by transmission minima that depend on the polarization of the incident
terahertz beams are observed. One of the bands corresponds to the flat band, as confirmed by the fact that the
resonant frequency is almost independent of the incident angle.
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I. INTRODUCTION

Kagomé lattices have attracted considerable interest from
the aspect of geometric frustration in condensed-matter
physics.1 There is extensive degeneracy of nondispersing
resonant modes in a resonator system with kagomé symmetry.
These eigenmodes form a flat band, where the resonant
frequency of the band is the same for all wave vectors in
the first Brillouin zone. The flat band originates purely from
the topology of the lattice structure, and it remains flat even
when the couplings between the adjacent sites are significantly
large. Furthermore, such flat bands can lead to ferromagnetism
of itinerant fermions,2–5 supersolidity for bosons,6,7 crystalline
ordering,8 and other effects.

Although the flat-band formation is first expected in
quantum systems, it can occur in electromagnetic systems. The
presence of electromagnetic flat bands in kagomé lattices has
already been predicted theoretically in some electromagnetic
systems, such as two-dimensional photonic crystals9 and
metallophotonic waveguide networks.10 In the flat band, the
group velocity is slowed down in all directions and the effective
mass of the photons becomes very heavy. It is important
to study the flat band in the electromagnetic system with
kagomé symmetry in terms not only of fundamental physics,
but also from an application standpoint, such as slow light;11

however, there has been no experimental demonstration for the
electromagnetic flat band.

Here, we focus on the flat band for a terahertz (THz)
plasmonic mode. Although there is no surface plasmon of
metals in the THz region, the modes having the dispersion
relation similar to surface plasmons are formed in structured
metals, and called spoof surface plasmons.12–15 In this paper,
we theoretically and experimentally obtain the dispersion
relation for a spoof plasmon in the metallic kagomé lattice
and demonstrate the electromagnetic flat band in the THz
regime. Numerical simulations are also performed to provide
confirmation of the experiments.

II. THEORETICAL MODEL

We introduce kagomé-type bar-disk resonators (KBDRs),
shown in Fig. 1. Metallic disks and narrow bars are con-
nected to form a kagomé lattice. KBDRs are artificially
engineered metallic structures, and considered as a kind

of metamaterial.16–23 In KBDRs, electric charge stored on
each disk temporally oscillates between positive and negative
values. We discuss the formation of a flat band in KBDRs
by using a coupled oscillator model. We denote the electric
potential at the ith disk as φi . Introducing �i := ∫

φidt , we
obtain a Lagrangian L as

L= C
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2
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with capacitance C of the disk, inductance L of the bar,
coefficient of electric induction CM between nearest disks, and
adjacency matrix Aij of the kagomé lattice, whose element is
1 if the ith and j th disks are directly connected by a bar for
i �= j ; otherwise 0.24 The first, second, and third terms of
Eq. (1) represent the electric energy stored on disks, mutual
electric energy stored between disks, and magnetic energy
stored around bars, respectively. Here, we consider only the
nearest mutual couplings.

Using the Euler-Lagrange equation (d/dt)(∂L/∂�̇i) −
∂L/∂�i = 0, we obtain coupled charge equations as

q̈i + ω2
0

(
4qi −

∑
j

Aij qj

)
+ κ

∑
j

Aij q̈j = 0, (2)

with stored charge qi = C�̇i at the ith disk, resonant angular
frequency ω0 = 1/

√
LC, and coupling coefficient κ = CM/C.

In the frequency domain, we rewrite Eq. (2) as∑
j

Aij q̃j = 4 − (ω/ω0)2

1 + κ(ω/ω0)2
q̃i , (3)

where tildes represent complex amplitudes. Owing to the
lattice symmetry, we can reduce Eq. (3) to an eigenvalue
problem for a 3 × 3 matrix and obtain the dispersion relation
consisting of three bands as

ω

ω0
=

√
6

1 − 2κ
,

√
3 + 2(3 + F )κ ± (1 + 4κ)

√
3 + 2F

1 + 2κ − 2(1 + F )κ2
,

(4)

where F = cos k‖ · a1 + cos k‖ · a2 + cos k‖ · (a1 − a2) with
wave vector k‖ in the xy plane and unit-lattice vectors {a1, a2}
shown in Fig. 1(a). A calculated dispersion relation is shown
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FIG. 1. (Color online) (a) Schematic view of kagomé-type bar-
disk resonators (KBDRs). (b) The fabricated KBDRs on a stainless-
steel plate with l = 800, d = 10, and r = 145 μm, and thickness
h = 30 μm.

in Fig. 2 for κ = 0. It is clear that the highest band ω/ω0 =√
6/(1 − 2κ) is flat or independent of k‖. It can be seen that

the lowest band shows conical dispersion near the � point and
that the bending middle band touches the flat band at the �

point.
The flat band is caused by the interference of spoof plasmon

propagating in the kagomé lattice. The adjacency matrix Aij of
the kagomé lattice has eigenmodes localized at hexagonal sites
with an eigenvalue of −2. One of them is shown in Fig. 2(b).
The number of the eigenmodes is equal to the number of
hexagons in the kagomé lattice. The flat band is formed from
these degenerated localized modes, as they are not coupled
with each other.

III. EXPERIMENTAL SETUP

We fabricate KBDRs on a stainless-steel plate. The dimen-
sions depicted in Fig. 1(a) are as follows: period between bars
l = 800 μm, bar width d = 10 μm, disk radius r = 145 μm,
and metal thickness h = 30 μm. The size of the area patterned
KBDRs is 1.1 × 1.1 cm. A photomicrograph of a fabricated
sample is shown in Fig. 1(b).

To investigate the dispersion relation experimentally, we
perform THz time-domain spectroscopy (THz-TDS), shown in
Fig. 3. A THz emitter and detector (EKSPLA Ltd.) with dipole
antennas attached to Si lenses are used. These antennas are
integrated on low-temperature-grown GaAs photoconductors
and driven by a femtosecond fiber laser (F-100, IMRA
America, Inc.) with a wavelength of 810 nm and pulse duration
of 120 fs. The THz beam is collimated with the Si lens near the
emitter. The beam radius is about 3.7 mm, which covers a large
number of KBDRs. The THz electric field E(t) is coherently

FIG. 2. (Color online) (a) Dispersion relation of KBDRs for κ =
0. (b) Localized eigenmode of KBDRs.

FIG. 3. (Color online) Schematic view of the transmission exper-
iment. The plane of a sample is represented by the coordinate system
(x,y) shown in Fig. 1(a).

measured by the detector. We obtain the transmission spectrum
T (ω) in the frequency domain from T (ω) = |Ẽs(ω)/Ẽref(ω)|2,
where Ẽs(ω) and Ẽref(ω) are Fourier transformed electric fields
with and without the sample, respectively.

In order to obtain the band structure between the � point
and the M point, the sample is rotated by θ with respect to
the y axis from normal incidence (Fig. 3). The angles θ range
from θ = 0◦ to θ = 65◦ with a step 	θ = 2.5◦. The magnitude
of the wave vector k‖ on the sample plane is given by k‖ =
(ω/c) sin θ, where c is the speed of light.

We perform transmission experiments for two polarizations
along the x ′ axis (parallel configuration) and y axis (perpendic-
ular configuration). We denote the electric field of the incident
wave as E, and the projection of E to the sample plane as E‖.
For parallel or perpendicular configurations, E‖ is parallel or
perpendicular, respectively, to k‖. Wire-grid polarizers near
the emitter and detector are adjusted so that the emitted and
detected fields have the same polarization.

IV. RESULTS

Figure 4 displays the transmission spectrum for paral-
lel configuration. The wave vectors are estimated as k‖ =
(ω/c) sin θ . Transmission spectrum minima are observed
from 0.21 to 0.28 THz. With an increase of wave number,
the frequency of the transmission minimum decreases from
0.28 THz at the � point and approaches 0.21 THz at the M
point.

For further investigation, we calculate the electromagnetic
response of KBDRs for a parallel configuration. A commercial
finite-element method solver (Ansoft HFSS) is used. In the
simulation, a plane THz wave is injected into perfectly
conducting KBDRs at an incident angle θ . By using periodic
boundaries with some phase shifts, the transmission and
the electromagnetic fields in the unit cell are calculated for
an oblique incident plane wave. The measured transmission
spectra for θ = 20◦ are compared with the simulation in
Fig. 4(b). The frequency of the transmission minimum and
shape of the curve for the simulation are consistent with
the experimental result, which confirms the validity of the
assumption of perfect conductors.

Figure 4(c) shows the calculated distribution of surface
electric charges at a minimum (0.255 THz) for θ = 20◦. This
mode corresponds to the middle band. Disks along the x axis
are alternately charged. The in-phase currents along a1 and a2

are excited by the electromotive force due to E. No resonance
appears for θ = 0 because the current flowing into a disk is

205128-2



OBSERVATION OF FLAT BAND FOR TERAHERTZ SPOOF . . . PHYSICAL REVIEW B 85, 205128 (2012)

FIG. 4. (Color online) Parallel configuration (E‖ ‖ k‖). (a) Exper-
imentally obtained transmission diagram of KBDRs. Transmission
minima between 0.21 and 0.28 THz are observed and theoretically
fitted by a dotted line. The solid line corresponds to θ = 20◦. (b)
Transmission spectrum for θ = 20◦ obtained by simulation and
experiment. (c) Surface electric charge distribution obtained by
simulation at the transmission minimum 0.255 THz for θ = 20◦ in
the unit cell.

balanced by the current flowing out of it. For the excitation of
this mode, a phase-shifted field in the x direction is needed.

By using Eq. (4), the fitting parameters are obtained from
experimental data as ω0/(2π ) = 0.105 THz and κ = 0.103.
The resultant dispersion curve is represented as a dotted
curve in Fig. 4(a). Positive charges on one disk induce
negative charges on the other; therefore, κ < 0 is ordinarily
expected in the static limit (ω → 0). It seems strange that
κ would be positive. In our situation, it can be explained
by a retardation effect.25 The phase shift between nearest
disks is given by (ωc/c) × l/

√
3 ∼ 0.77 × π at the center

frequency ωc/(2π ) = 0.25 THz of the middle band. The near
π shift leads to κ > 0. Although κ depends on frequency,
we can approximately regard it as a constant between 0.2
and 0.3 THz.

Figure 5(a) displays the transmission spectrum for
perpendicular configuration. Unlike in the case of parallel
configuration, the flat band of the transmission minima is
observed around 0.28 THz.

In order to confirm that the flat band is due to the
interference of a spoof plasmon, we perform a simulation
for perpendicular configuration. A calculated transmission
spectrum by simulation for θ = 20◦ is shown in Fig. 5(b)
with the experimental data. We see a good agreement in the
frequency of the transmission minimum and the shape of the
curve. The calculated distribution of surface electric charges

FIG. 5. (Color online) Perpendicular configuration (E ⊥ k‖). (a)
Experimentally obtained transmission diagram of KBDRs. A flat
transmission band is observed around 0.28 THz and theoretically
fitted by the dotted line. The solid line corresponds to θ = 20◦.
(b) Transmission spectrum for θ = 20◦ obtained by simulation and
experiment. (c) Surface electric charge distribution obtained by
simulation at a transmission minimum of 0.278 THz for θ = 20◦

in the unit cell.

at a minimum (0.278 THz) for θ = 20◦ is shown in Fig. 5(c).
The resonant mode has antisymmetric amplitudes on the right
two disks and there is no charge stored on the left disk. This
mode can be constructed by the localized modes shown in
Fig. 2(b). Therefore, the flat transmission minima are caused
by the topological nature of the kagomé lattice. The mode is
excited by antiphase electromotive force caused by E along
bars parallel to a1 and a2. The electromotive force along
vertical bars does not contribute to the storage of charges on
disks because the currents flowing into and out of a disk are
balanced. In the case of θ = 0, the current flowing into a disk
is equal to the current flowing out of it and the flat-band mode
cannot be excited.

A dotted line in Fig. 5(a) represents the highest band
given by Eq. (4) with the previously derived parameters
ω0/(2π ) = 0.105 THz and κ = 0.103. It fits well with the
minima experimentally obtained. The bend of the flat band
caused by coupling to second (or higher) nearest sites is
negligibly small, so the assumption of only nearest mutual
disk coupling is appropriate.

V. DISCUSSION

Our bar-disk resonators (BDRs) are obtained by inverting
the metallic area and empty space of the slit-hole resonators
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(SHRs)26,27 composed of slits and holes engraved on an
ultrathin metallic plate. The BDRs and SHRs are comple-
mentary structures related through the Babinet principle,28–30

based on the electric/magnetic reciprocity of a vacuum. We
denote a pair of an electric field E and a magnetic field H
as (E,H). Due to the Babinet principle, the transmittance
of a complementary metallic screen with a complementary
incident wave, (E′,H′) = (Z0H, − E/Z0), is equal to the
reflectance of the original metallic screen illuminated by an
incident wave (E,H), where Z0 is the impedance of a vacuum.
Thus, the transmission peaks in SHRs correspond to the
transmission minima in BDRs. This fact shows the duality
of the Lagrangians of SHRs and BDRs.

Electromagnetic flat bands for all crystal directions have
been reported for photonic crystals with square symmetry,
theoretically31 and experimentally.32 In this case, the flat
bands are formed due to good lateral confinement (high Q

factor) of the quadropole modes, which lack preferential
coupling directions, at defects of photonic crystals. On
the other hand, the flat band for KBDRs is not caused
by highly confined modes, but by the topological nature
of the kagomé lattice. The kagomé lattice prevents spoof
plasmons from propagating despite the existence of strong
coupling. Thus, the physical origin of the flat band on KBDRs
differs from that for photonic crystals.31,32 The flat band
for propagating modes has been theoretically predicted for
square waveguide networks.33 Our system is considered as an
experimental realization of the flat band for the propagating
mode.

The flat band in the kagomé lattice comes from local
interference effects. The global symmetry (i.e., periodicity
of the lattice) is not necessarily required because local
symmetries can support the localized mode. The resonance
independent of the incident angle could be expected for
the metallic structure having localized modes with the same
resonant frequency, even without periodicity.

VI. CONCLUSION

In conclusion, we studied theoretically and experimentally
the electromagnetic flat band on a metallic kagomé lattice.
Kagomé-type bar-disk resonators were proposed to realize
the flat band. A dispersion relation composed of three bands
was theoretically predicted for KBDRs. The highest band was
flat for all wave vectors. Two bands formed by transmission
minima depending on the polarization of the incident terahertz
beams were observed experimentally. One of the bands
corresponded to the flat band. Theoretical fitting showed good
agreement for these modes. By simulation, we revealed that
the flat band was caused by the topological nature of the
kagomé lattice.

The flat band can be applicable to slow light, which is
useful for the control of group velocity,34,35 high sensitive
sensing, and other applications. In the flat band, the effective
mass of photons becomes very heavy and their correlation has
an important role. Multiphoton correlation effects in kagomé
lattices are important in terms of fundamental physics and
should be studied in the future.
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