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Two fermions occupying the same site of a lattice model with strongly repulsive Hubbard-type interaction U

form a doublon, a long-living excitation, the decay of which is suppressed because of energy conservation. By
means of an exact-diagonalization approach based on the Krylov-space technique, we study the dynamics of a
single doublon, of two doublons, and of a doublon in the presence of two additional fermions prepared locally
in the initial state of the extended Hubbard model. The time dependence of the expectation value of the double
occupancy at the different sites of a large one-dimensional lattice is analyzed by perturbative arguments. In this
way the spatiotemporal evolution of the doublon can be understood. The initial decay takes place on a short time
scale 1/U , and the long-time average of the decayed fraction of the total double occupancy scales as 1/U 2.
We demonstrate how the dynamics of a doublon in the initial state is related to the spectrum of two-fermion
excitations obtained from linear-response theory, we work out the difference between doublons composed of
fermions vs doublons composed of bosons, and we show that despite the increase of phase space for inelastic
decay processes, the stability of a doublon is enhanced by the presence of additional fermions on an intermediate
time scale.
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I. INTRODUCTION

Since the seminal work of Jaksch et al.,1 ultracold atomic
gases in optical lattices have served as a valuable testing ground
for the rich phenomenology of many-body models which
originally were introduced in the context of condensed-matter
physics.2–4 A nice example is the concept of repulsively bound
pairs of fermions which can be studied in the strong-coupling
regime of the Hubbard model or, as shown recently,5 in an
organic salt at room temperature by means of ultrafast optical
spectroscopy. Repulsively bound pairs, named doublons,
are already known since the early work of Hubbard6 and
were lately addressed in both theoretical and experimental
work in bosonic7–12 as well as fermionic13–21 Hubbard-type
models. The fermionic case directly refers to condensed-matter
systems, such as strongly correlated electrons in a valence band
of transition metals and their compounds, and two-particle
electron spectroscopy.

A doublon is a pair of two fermions tightly bound to
each other. The pair is itinerant; it propagates through the
lattice and thereby acquires a certain energy dispersion. The
pair may decay into its constituents. However, for strongly
repulsive interaction U > 0, this decay is suppressed very
efficiently. The stability of the doublon appears as counter-
intuitive since an energy of the order of U > 0 would be
gained if the two fermions were propagating through the
lattice independently. There is, however, a “repulsive binding”
originating from energy conservation: For U much larger than
the nearest-neighbor hopping J , the excess energy U cannot
be accommodated in the kinetic energy of the two independent
fermions which at most amounts to twice the bare bandwidth
W ∝ J .

In the strong-coupling limit, doubly occupied sites are
created in different types of electron spectroscopies:22 The
spectral function Aij (ω) at positive frequencies ω > 0, ob-
tained from the imaginary part of the one-particle Green’s
function 〈〈ĉiσ ; ĉ†jσ 〉〉, is related to inverse photoemission, and
the upper Hubbard band in the spectral function describes a
final state with doubly occupied sites. The lower Hubbard

band represents the analog of the upper Hubbard band
in case of photoemission. For the Hubbard model on a
bipartite lattice at half filling, it is obtained from the upper
one by a particle-hole transformation and thus describes
repulsively bound holes. Doublons can also be created in
an otherwise empty valence band in a two-particle process,
such as appearance-potential spectroscopy (APS), i.e., the
“time inverse” of Auger-electron spectroscopy (AES). Here,
two additional electrons (holes) are created, preferably at
the same site, in the final state of APS (AES). Doublon
bound states in APS/AES show up in the local two-
particle Green’s function 〈〈ĉiσ ĉiσ̄ ; ĉ†iσ ĉ

†
iσ̄ 〉〉 as is well known

from Cini-Sawatzky theory.22–25 Furthermore, doublons
appear in particle-hole excitations associated with Green’s
functions of the type 〈〈ĉ†iσ ĉjσ ; ĉ†kσ ĉlσ 〉〉. In all mentioned cases,
a doublon would be identified with a long-lived excitation at
energies of the order of U .

Since a pair of fermions has bosonic character, the exciting
question arises whether a macroscopically large number of
doublons could Bose condensate at sufficiently low tempera-
tures and high densities. This has been studied theoretically
for doublons of bosonic8 and of fermionic constituents.15

The two main questions in this context concern the doublon
stability and the effective interaction between doublons: First,
a sufficiently long lifetime of doublons is required for a
possible Bose condensation taking place in a metastable state.
Recent experiments with fermionic atoms in optical lattices18

in fact give a lifetime which increases exponentially with U .
Second, the physical interactions between the constituents
give rise to an effective doublon-doublon interaction in an
effective low-energy theory. A strong repulsive U , for example,
leads to an effectively attractive interaction between doublons
formed by two bosons. It has been shown that this inhibits
condensation but rather favors phase separation.8

The real-time dynamics of a spatially extended system
of strongly correlated fermions poses a notoriously complex
many-body problem which is hardly accessible to exact
analytical or numerical methods. Either one has to tolerate
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mean-field-type approximations like in the nonequilibrium
dynamical mean-field approach26–28 or has to restrict one-
self to one-dimensional or impurity-type systems to ren-
der an application of time-dependent renormalization-group
approaches29–31 possible. With the present paper we study a
simplified problem with a drastically reduced Hilbert space
dimension and focus on two and four spinful fermions with
on-site (U ) and nearest-neighbor interaction (V ) on large
one-dimensional lattices only. The time evolution of this
few-fermion quantum system is accessible by a numerically
exact Krylov-space approach.32–38 Our study tries to shed some
light on the following issues discussed extensively in the recent
literature:

For a single doublon prepared at a definite site initially,
we show how the resulting propagation pattern is affected by
U and V and how this is understood in terms of perturbative
arguments in the strong-coupling limit. The manifestation of
“energy conservation” will be analyzed by studying the short-
time dynamics of a doublon.

The real-time dynamics of a quantum system in a highly
excited state on the one hand and the spectrum of excitations
out of thermal equilibrium, as obtained in linear-response
theory, on the other hand are usually two completely different
issues. Here, we discuss a one-to-one relation that is obtained
for the case of a single doublon and therewith address the
physics of the long-time stability of a single doublon.

The real-time dynamics of two doublons in different initial
states is discussed. Particularly, the V dependencies are
interesting as there is a reduced effective doublon-doublon
attraction in the Fermi opposed to the Bose case which
is important to understand the competition between Bose
condensation and phase separation of doublons.8,15

For a thermodynamically relevant number of fermions, one
generally expects that with the presence of many additional
degrees of freedom there is an enhanced probability for
doublon decay since the doublon energy can be accommodated
among different particles in a high-order scattering event.
This is already seen by means of the ladder approximation
applicable to the low-density limit where a strong initial decay
at short times is observed followed by a slow exponential
decay at long times.19 Here, this question is studied for
the case of four fermions and discussed in the context of
recent time-dependent density-matrix renormalization-group
studies.16,20

The paper is organized as follows: The next section,
Sec. II, introduces the model, the central observables, and the
Krylov approach. We start with the analysis of single-doublon
propagation in Sec. III, discuss the effects of the nearest-
neighbor interaction in Sec. IV, and the short-time decay in
Sec. V. The relation to APS is worked out in Sec. VI, and the
long-time stability is discussed in Sec. VII. The second part of
the paper is devoted to our four-fermion results: We discuss the
dynamics of two doublons in Sec. VIII and doublon-fermion
scattering in Sec. IX. Final remarks and conclusions are given
in Sec. X.

II. EXTENDED HUBBARD MODEL AND BASIC THEORY

Ultracold atoms, loaded into an optical lattice, are subject
to different kinds of interaction.2–4 In the simplest cases these

are short-ranged, like van der Waals forces, scaling as 1/r6 and
hence approximately act on-site only. Depending on the atomic
species, however, more general interactions can occur. For
example, polarized dipolar atoms experience a dipole-dipole
interaction given by Udd ∝ (1 − 3 cos2 θ )/r3. Depending on
the angle θ between the dipole moments and their relative
displacement vector, this can either be repulsive or attractive.
It is comparatively long-ranged and usually modeled as an
interaction between nearest neighbors. Overall, this motivates
the extended Hubbard model:

H = −J
∑
〈ij〉

∑
σ

ĉ
†
iσ ĉjσ + U

∑
i

n̂c
i↓n̂c

i↑

+ V

2

∑
〈ij〉

∑
σσ ′

n̂c
iσ n̂c

jσ ′ =: HJ + HU + HV , (1)

which also applies as a model description to electrons interact-
ing via the screened Coulomb repulsion in condensed-matter
systems, e.g., transition-metal compounds, if orbital degrees
of freedom can be neglected. Here, i and j refer to the sites
of a one- or higher-dimensional lattice, 〈ij 〉 denotes nearest
neighbors, and σ =↑ , ↓ is the spin projection. J is the
nearest-neighbor hopping, and U and V the on-site and the
nearest-neighbor interaction strength.

Our central object of interest is the time-dependent expec-
tation value of both the local and the total double occupancy,
namely 〈Di(t)〉 and 〈D(t)〉 = ∑

i〈Di(t)〉, respectively. Here,
the local double-occupation operator is given by Di = n̂c

i↑n̂c
i↓

where n̂c
iσ = ĉ

†
iσ ĉiσ is the number operator and where c

(†)
iσ

denotes the annihilation (creation) operator for a fermion at
site i with spin σ . The time dependence of the expectation
value is due to the time dependence of the system’s state
|ψ(t)〉 = exp(−iHt)|ψini〉 where |ψini〉 is the state in which
the system was prepared initially at time t = 0.

For systems with moderately large Hilbert-space dimen-
sions d, the numerically exact time evolution of a given initial
state is accessible by means of a time-dependent Krylov-space
technique.32–38 Some details of the method are summarized in
Appendix A.

In the following we concentrate on a one-dimensional
lattice with L sites and two or four fermions with equal
number of up and down spins. Thereby different processes,
such as the propagation and decay of a single doublon as
well as doublon-fermion and doublon-doublon scattering, can
be studied. For two fermions, the Hilbert-space dimension is
d = L2 and we opt for a lattice with L = 100 sites. For four
fermions, it is d = L2(L − 1)2/4 and we shorten the lattice
to 50 sites. In either case, periodic boundary conditions are
assumed.

III. PROPAGATION OF A SINGLE DOUBLON

To begin with, we consider the two-fermion system and
assume that initially, at time t = 0, both fermions are at
the same site i0, i.e., |ψini〉 = ĉ

†
i0↑ĉ

†
i0↓|0〉. Figure 1 (left part)

shows the time evolution of the expectation value of the local
double occupancy at V = 0 and for strong on-site interaction
U = 8J . The nearest-neighbor hopping J = 1 fixes the energy
and time scales. We notice different effects. First of all, the
doublon delocalizes. The double occupancy 〈Di(t)〉 at the
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FIG. 1. (Color online) Temporal evolution of the expectation
value (see color code) of the double occupancy at sites i = 1, . . . ,L.
Left: Numerical results for the one-dimensional Hubbard model
(V = 0) with L = 100 sites and periodic boundary conditions at
U = 8J . Initially, at t = 0, the two-fermion state has been prepared
as a doublon at i0 = 50. Top: Time evolution of the expectation value
of the total double occupancy. Right: Corresponding analytical results
of the effective model; see Eq. (3). Note that most of the color range
is used to display expectation values less than 0.1, as shown in the
color bar below. The time t is measured in units of the inverse
hopping 1/J .

site where the doublon has been prepared initially (i0 = 50)
quickly decreases, and in the course of time 〈Di(t)〉 basically
spreads out over the entire lattice. For the time scale t < 100
shown in the figure, the “light cones” do not yet interfere
through the periodic boundary. Second, there is doublon decay.
The top panel of Fig. 1 shows the total double occupancy
〈D(t)〉 = ∑

i〈Di(t)〉. There is a significant decay from the
initial value 〈D(t)〉 = 1 to about 〈D(t)〉 ≈ 0.9 in a very short
time t � 0.5 (not resolved on the scale of the figure), followed
by an almost constant trend. The tiny fluctuations around the
constant “final” value are simply reflecting the fact that the total
double occupancy does not commute with the Hamiltonian.

Except for the decay of the doublon, all the details of
the entire propagation profile are fully captured by a simple
analytical description in an effective low-energy model; see the
right panel of Fig. 1. As described in Appendix B, this effective
model is obtained by a unitary transformation to project
out the energetically well separated high-energy part of the
spectrum, thereby generating effective low-energy couplings
perturbatively, in powers of J/U :39–43

H(d)
eff = J ′

2

∑
〈ij〉

d̂
†
i d̂j + (J ′ + U )

∑
i

n̂d
i − J ′

2

∑
〈ij〉

n̂d
i n̂

d
j . (2)

Here, d̂
†
i = ĉ

†
i↑ĉ

†
i↓ and d̂i describe hard-core bosons with the

constraint d̂
†
i

2 = 0. Furthermore, n̂d
i = d̂

†
i d̂i = n̂c

i↑n̂c
i↓ is the

local doublon number. Hence Eq. (2) involves doublon degrees
of freedom only and takes the form of an extended Bose-
Hubbard model with the effective hopping J ′ = 4J 2/U and an
(in case of positive U ) attractive nearest-neighbor interaction.

For a system with a single doublon only, the interaction
term can be disregarded, and the resulting free tight-binding
Hamiltonian is diagonalized by Fourier transformation. In the
limit L → ∞, the time-dependent local double occupancy in
the effective model is then found to be given by the kth Bessel
function of the first kind Jk ,

〈
Deff

i (t)
〉 = J 2

i−i0
(J ′t), (3)

if the doublon was prepared at site i0 initially. Note that the
total double occupancy is conserved, since

∑∞
k=−∞ J 2

k (x) = 1
for all x.

The time dependence of the expectation value of the local
double occupancy, as given by Eq. (3), is shown in Fig. 1
(right). While effects due to doublon decay are neglected at
this level, doublon-propagation effects should be captured
qualitatively correct. Comparing with the exact numerical
result (Fig. 1, left), we note that the effective model provides an
excellent description of the propagation already for U = 8J .

The effect of varying U can be seen in Fig. 2. The
panels Fig. 2(c), 2(h), and 2(m) give the result of the full
model for U = 0, U = 5J and U = 10J . We note that the
mobility of the doublon decreases with increasing U which,
in the effective model, is due to the reduced doublon hopping
∼1/U . The interference pattern visible for U = 5J in panel
Fig. 2(h) is due to the finite system size and periodic boundary
conditions. Apart from that, however, the pattern does not
change much qualitatively as compared to U = 10J . This is
worth mentioning since U = 5J is well below the critical U (of
the order of twice the free bandwidth 2W = 8J ) at which the
two-particle excitation spectrum, related to the APS Green’s
function 〈〈ĉiσ ĉiσ̄ ; ĉ†iσ ĉ

†
iσ̄ 〉〉, does change qualitatively since the

correlation satellite splits off (see Ref. 25, for example). This
reminds us that there is a clear conceptual difference between
the two-particle spectrum that refers to excitations starting
from the system’s ground state on the one hand and the
temporal evolution of a highly excited initial state on the other.

IV. EFFECTS OF NEAREST-NEIGHBOR INTERACTION

The remaining panels of Fig. 2 show propagations patterns
for finite nearest-neighbor interaction V . For U = 10J , see
last row in Fig. 2, we find a decreasing mobility of the
doublon with increasing difference between the on-site and
the nearest-neighbor interaction strengths U − V . Similar to
the discussion in the preceding section, this trend is easily
explained in an effective model that preserves the total double
occupancy. This can be derived, for example, by standard
second-order perturbation theory around the J = 0 limit and
yields an effective doublon hopping amplitude

J ′ = 4
J 2

U − V
. (4)

This corresponds to a sequence of two virtual hopping
processes: In the first, one of the two fermions composing
the doublon hops to a nearest-neighbor site. Thereby, for
U > V (U < V ), the energy U − V is gained (has to be
paid). The second nearest-neighbor hopping process leads to
the recombination of the doublon, either at the same or at one
of the adjacent sites.

Looking at the cone angle of the “light cone” in the
propagation patterns in the last row and comparing the results
with U − V = 20 to U − V = 5, the effective description
yields the correct trend: As the expectation value of the double
occupancy in the effective model depends on the product of J ′
and t only, see Eq. (3), the time axis scales linearly with J ′.
The effective doublon hopping also explains that the patterns
in panels Figs. 2(f) and 2(l) and the patterns in Figs. 2(g) and
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(a) U = 0, V = −10 (b) U = 0, V = −5 (c) U = 0, V = 0 (d) U = 0, V = 5 (e) U = 0, V = 10

(f) U = 5, V = −10 (g) U = 5, V = −5 (h) U = 5, V = 0 (i) U = 5, V = 5 (j) U = 5, V = 10

(k) U = 10, V = −10 (l) U = 10, V = −5 (m) U = 10, V = 0 (n) U = 10, V = 5 (o) U = 10, V = 10

FIG. 2. (Color online) Time-dependent expectation value of the local (main panels) and total double occupancy (small top panels) for two
fermions initially prepared at the same site i0 of a one-dimensional lattice with L = 100 sites and periodic boundary conditions. Results for
on-site interaction U = 0, 5, 10 and nearest-neighbor coupling V = 0, ±5, ±10, as indicated. Note that for the total double occupancy the
scale of the y axis differs from case to case. The color code is the same as in Fig. 1 and the same for all plots.

2(m) as well as Figs. 2(h) and 2(n) are almost equal as U − V

is constant, respectively.
For U = 5J , see middle row in Fig. 2, the results for

U − V = 5 and U − V = −5 differ significantly although
they should be described by the same effective hopping J ′,
apart from the sign. The sign, however, has no effect. The
difference is rather due to the residual influence of virtual
processes of fourth order in J where one of the fermions
hops two sites away, followed by a recombination of the
doublon. This leads to an asymmetry between the two cases,
±|U − V |, since for U > V all three intermediate states have
lower energy while for U < V two states are higher in energy
and one lower. With increasing interaction strengths U and
V , we find this asymmetry to be less and less efficient as
expected.

As can be seen by comparing Figs. 2(m) and 2(n), for
example, the “speed” of the doublon on the light cone increases
somewhat less than a factor 2 although J ′ is exactly twice
as large. Looking at Eq. (3), this hints to a breakdown of
the effective model with U − J → 0. In fact, for U = V ,
degenerate perturbation theory in J must be considered. Since
the states with two fermions at the same and at neighboring
sites have the same unperturbed energy U = V , decay and
recombination of the doublon becomes a very efficient process.
This leads to a maximum mobility as can be seen in Figs. 2(i)
and 2(o).

For U = V , first-order perturbation theory in J partially
lifts the degeneracy. Therefore the resulting effective model
actually describes the motion of a new eigenmode which is
a linear combination of a doubly occupied site with states
where the two fermions are found at adjacent sites. Rather
than doublon propagation, the physically adequate picture is

given by propagation of this extended object which we will
refer to as an “extended doublon” in the following.

A description by means of an effective model that preserves
the total double occupancy must break down for U = 0.
This explains the qualitatively different propagation patterns
in the first row of Fig. 2. For V = 0 the pattern is given
by 〈Dfree

i (t)〉 = J 4
i−i0

(2J t). For finite V , see Fig. 2(e), for
example, we note that besides the usual propagation pattern
describing the delocalization of the doublon initially prepared
at i0 = 50, there is a finite probability to find a doubly occupied
site around i = 1 at t ≈ 30J−1. The structure further evolves
in time and interferes with the main structure. This must be
considered as a finite-size effect resulting for U = 0 from the
very fast decay of the doublon into two independently moving
fermions. Due the periodic boundary condition, this implies
that the two fermions meet again and form a doubly occupied
site. The corresponding probability strongly decreases with
the system size L.

V. DECAY OF A DOUBLON AT SHORT TIMES

The main idea behind the concept of a repulsively bound
pair of fermions is that energy conservation prevents the decay
of a doublon at strong coupling U > 2W : The doublon energy
of the order of U cannot be transferred to two independently
moving fermions with a kinetic energy of the order of at
most W each. In Fig. 2, the small top panels show the time
dependence of the total double occupancy. In all cases we find
a relaxation of the total double occupancy from its initial unit
value to a nearly constant value after a short time. In many
cases, this quick initial decay is hardly resolved on the scale
of the figure; see U = 5 and U = 10 (V = 0) for example.
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FIG. 3. (Color online) (a) Short-time behavior of the total double
occupancy for U = 10, 12, 15, 20, 25, 30, 40 (from bottom to top)
and V = 0. (b) First local minimum point (“decay time”) of the
time-dependent total double occupancy plotted against 1/U . The
line is a guide to the eye.

Figure 3(a) shows 〈D(t)〉 for V = 0 and different U on a
much shorter time scale up to a few inverse hoppings 1/J .
To quantify the time scale for the doublon decay, we look
at the position of the first minimum. This “decay time” is
shown in Fig. 3(b) as a function of 1/U . We find a simple
linear relation. The depth of the first minimum also increases
with increasing interaction strength. In all cases, however, the
double occupancy does not recover completely to its initial
value but after some oscillations relaxes to a nearly constant
value which is becomes smaller for weaker U .

The question how the observed doublon decay is consistent
with energy conservation is easily answered by means of time-
dependent perturbation theory in J . For J = 0, the total double
occupancy is conserved. This already explains the high and
nearly constant 〈D(t)〉 for very strong U [see the result for
U = 40 in Fig. 3(a)]. For strong but finite U first-order-in-
J time-dependent perturbation theory predicts the transition
probability between two unperturbed energy eigenstates |ψm〉
and |ψn〉 to behave as44

|〈ψn|e−iHtψm〉|2 ∝ sin2
(

�Em→n

2 t
)

(�Em→n)2
. (5)

This reminds us that “energy conservation” as used in the
argument given at the beginning of the section holds in the
long-time limit only where the right-hand side of Eq. (5)
evolves into a δ function.

Doublon decay is possible (i) at short times or (ii) at long
times and consistent with energy conservation in the presence

of additional degrees of freedom to dissipate the excess energy.
Let us discuss the case (i) first [see Sec. IX for point (ii)]: As
a function of the energy difference �Em→n, the transition
probability has a peak structure with a width that scales as
1/t . Hence transitions are possible between states with energy
difference �Em→n � 1/t . To put it in other words, excitations
with energy �Em→n most probably occur on a time scale t �
1/�Ei→j . Therefore, since the dissociation of two fermions
in the strong-coupling regime involves energies of the order of
U , the position of the first minimum must scale with 1/U , as
demonstrated in Fig. 3(b).

At very short times, the decay is independent of the coupling
U , as seen in Fig. 3(a) for t � 0.2. This is easily explained by
Taylor expansion in t :

〈D(t)〉 = 1 − t2 �Eini + O(t4), (6)

where the variance of the total energy in the initial state is
proportional to the number of nearest neighbors z = 2,

�Eini = 〈ψini|H2|ψini〉 − 〈ψini|H|ψini〉2 = 2zJ 2, (7)

and thus depends on the hopping amplitude J only.

VI. DOUBLON DYNAMICS AND
APPEARANCE-POTENTIAL SPECTROSCOPY

The time-dependent expectation value of the double occu-
pancy at site i is

〈Di(t)〉 = 〈0|d̂i0
eiHt d̂

†
i d̂i e

−iHt d̂
†
i0
|0〉 = ∣∣〈0|d̂i e

−iHt d̂
†
i0
|0〉∣∣2

,

(8)

if a doublon has been prepared at t = 0 at the site i0, i.e.,
d̂
†
i |0〉 = ĉ

†
i↑ĉ

†
i↓|0〉. Note that the original expectation value can

be written as a square since (i) H commutes with the total
particle number and (ii) we start from the Fermi vacuum.
Namely, starting from the vacuum state |0〉, preparing of the
doublon at site i0, time propagation, and finally annihilation at
i, we must return to the same state |0〉.

The Fermi vacuum corresponds to an empty band in the
context of electron spectroscopy. Let us discuss the relation
of doublon dynamics to appearance-potential spectroscopy
(APS),45–47 in particular. Consider the following retarded
two-particle (two-electron) Green’s function:

Gii,i0i0 (t) = −i�(t)〈0|d̂i e
−iHt d̂

†
i0
|0〉. (9)

This is a ground-state quantity, the Fourier transform
of which, Gii,jj (ω + i0+) = 〈〈ĉi↑ĉi↓ ; ĉ†j↓ĉ

†
j↑〉〉ω, yields the

appearance-potential spectrum Aii,ii(ω) = −ImGii,ii(ω +
i0+)/π .22 Aii,ii(ω) describes the cross section in a nonradiative
two-electron process where an initial electron at high kinetic
energy occupies an empty state in the valence band of a
metal by transferring the energy difference to a core electron
which is lifted to another empty state in the band. The
process is essentially local and represents the “time inverse” of
high-resolution core-valence-valence (CVV) Auger-electron
spectroscopy.
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For an empty band, the equation of motion for the APS
Green’s function is readily solved:25

Gii,jj (ω + i0+) = 1

L

∑
k

eik(Ri−Rj ) 
k(ω + i0+)

1 − U
k(ω + i0+)
,

(10)

with


k(ω) = 1

L

∑
p

1

ω − ε( p) − ε(k − p)
. (11)

Here Ri denotes the position vector to the site i, k is a wave
vector of the first Brillouin zone, and the dispersion of the
tight-binding band ε(k) = −J

∑
� exp(−ik�) is obtained as

a sum over nearest-neighbors displacement vectors �.
For t > 0 we have 〈Di(t)〉 = |Gii,i0i0 (t)|2 and thus

〈Di(t)〉 =
∣∣∣∣ 1

2π

∫
dω e−iωtGii,i0i0 (ω + i0+)

∣∣∣∣
2

. (12)

At U = 0 this related to the Bessel function, 〈Dfree
i (t)〉 =

J 4
i−i0

(2J t). For U > 0, and using the fact that the Green’s
function is the Hilbert transform of the spectral function, we
find

〈Di(t)〉 =
∫

dω

∫
dω′ei(ω−ω′)tAi0i0,ii(ω)Aii,i0i0 (ω′). (13)

After substituting ω �→ ω + ω′, we see that the time de-
pendence of the local double occupancy is given by the
Fourier transform from frequency to time representation of the
self-convolution of the APS spectral function. This relation is
remarkable as it provides a link between the APS spectral
function, an equilibrium quantity describing two-particle
excitations within the framework of linear-response theory,
and the nonequilibrium time evolution of the local double
occupancy. It is by no means general, however, and can be
traced back to Eq. (8) which holds in the case of an empty
band only.

VII. DECAY OF A DOUBLON—LONG-TIME STABILITY

In the long-time limit, for an infinitely large system,
i.e., L → ∞, the local double occupancy 〈Di(t)〉 → 0 for
t → ∞ due to a complete delocalization of the doublon or
the two independent fermions, respectively. The total double
occupancy 〈D(t)〉, however, may relax to a finite value.
Still there are temporal fluctuations of 〈D(t)〉 as [D,H] = 0;
see Fig. 3(b) and also Fig. 2, for examples. However, the
fluctuations can be quite small as compared with the time
average

D = lim
T →∞

1

T

∫ T

0
dt 〈D(t)〉. (14)

To quantify these observations, the time average after the initial
decay at short times as well as the relative standard deviation

(D2 − D2
)1/2/D, as a measure for the temporal fluctuations,

are shown as contour plots in Fig. 4. Some sectional views are
given in Fig. 5.

For vanishing couplings U and V the doublon decays on
a short-time scale and is found anywhere in the lattice with
a probability of approximately 0.019 (for L = 100) at later

FIG. 4. (Color online) Long-time average (top) and relative
standard deviation (bottom) of the total double occupancy 〈D(t)〉
for interaction strengths −10 < U < 10 and −10 < V < 10. D and

(D2 − D2
)1/2/D are calculated for the time interval 50 < t < 100.

The color or grey-scale code is given on the right.

times but fluctuations are strong. For finite and increasing U ,
but keeping V = 0, the doublon stability rapidly rises while
the relative fluctuations decrease. This is understood easily as
the energy conservation described by Eq. (5) becomes strict
in the long-time limit, i.e., a single doublon in an otherwise
empty band is completely stable.48

FIG. 5. (Color online) Sectional views of the stability map
Fig. 4 for U,V = 0, 5, 10. Blue lines show D, error bars in-
dicate the absolute standard deviation. Green lines with error
bars: time average and standard deviation of the nearest-neighbor
occupancy, 〈 1

2

∑
〈ij 〉

∑
σσ ′ n̂c

iσ (t)n̂c
jσ ′ (t)〉. Red: sum of double and

nearest-neighbor occupancy.

205127-6



DOUBLON DYNAMICS IN THE EXTENDED FERMI- . . . PHYSICAL REVIEW B 85, 205127 (2012)

Using Eq. (13), we find the time average for T → ∞,

D ∝
∑

i

∫
dωAi0i0,ii(ω)Aii,i0i0 (ω), (15)

to be given by the integrated square of the nonlocal APS
spectral density. As Aii,i0i0 (ω) consists of a finite number
of δ peaks for any finite L, the integral in Eq. (15) is ill
defined. However, one can also compute D directly, starting
from Eq. (8), inserting resolutions of the unity in the form 1 =∑

m |m〉〈m| where |m〉 is the mth eigenstate of H. Assuming
the energy spectrum to be nondegenerate and assuming that
there is relaxation at all, we easily find

D =
∑

i

∑
m

∣∣〈0|d̂i0
|m〉∣∣2|〈0|d̂i |m〉|2. (16)

With the expressions Eqs. (10) and (12) for the corresponding
Green’s function, and using its Lehmann representation, this is
also seen to be consistent with Eq. (15). Equation (15) provides
the long-time “thermal” value of the total double occupancy.

For large U , the numerical results of Fig. 4 can be perfectly
fitted by

D � 1 − m

U 2
, (17)

with the constant m > 0 as a parameter. This behavior can
be understood by perturbative arguments using the canonical
transformation discussed in Sec. III and Appendix B: Using
the unitary transformation H′ = eiSHe−iS with the generator
S, we find

〈D(t)〉 = 〈0|d̂i0
e−iSeiH′t eiSDe−iSe−iH′t eiS d̂

†
i0
|0〉. (18)

Exploiting particle-number conservation, we then get

〈D(t)〉 =
∑

i

∣∣〈0|d̂i0
e−iSeiH′t eiS d̂

†
i |0〉∣∣2

. (19)

The state

|ψ ′
i 〉 ≡ eiS d̂

†
i |0〉 = d̂

†
i |0〉 + i[S,d̂

†
i ]|0〉 + O(J 2/U 2) (20)

is a linear superposition of a one-doublon and a zero-doublon
state:

|ψ ′
i 〉 = |ψ ′

i,1〉 − J

U
|ψ ′

i,0〉 + O(J 2/U 2), (21)

with |ψ ′
i,1〉 = d̂

†
i |0〉 and |ψ ′

i,0〉 = −∑n.n.
k (ĉ†k↑ĉ

†
i↓ + ĉ

†
i↑ĉ

†
k↓)|0〉.

This characteristic is, separately, preserved under the time
evolution eiH′t . After some algebra we find

〈D(t)〉 = 1 + J 2

U 2

∑
i

〈ψ ′
i,1|e−iHeff t

∣∣ψ ′
i0,1

〉〈
ψ ′

i0,0

∣∣eiHeff t |ψ ′
i,0〉

+ H.c. + O(J 4/U 4). (22)

Hence perturbative in 1/U corrections to the total double
occupancy are of the order J 2/U 2.

Equation (22) furthermore shows that in leading perturba-
tion order there is a separation of characteristic time scales.
The first matrix element involves energies in the one-doublon
subspace and thus a short-time scale 1/U . This is the time scale
of the strong initial oscillations of 〈D(t)〉, seen in Fig. 3, and
once more explains the 1/U dependence of the “decay time,”
i.e., the position of the first minimum. The second matrix

element between states in the zero-doublon subspace provides
a longer time scale ∼1/J . This is the scale on which the
oscillations decay. Finally, corrections to the 1/U scale are
provided by effective doublon-hopping processes. This results
in a scale 1/J ′ ∼ U/J 2 the effects of which, however, are too
weak to be seen in Fig. 3.

Finally, let us discuss the results for a finite nearest-neighbor
interaction V . As is shown in Figs. 4 and 5, the initially
prepared doublon is most unstable for V ≈ U . Here, the
transition d̂

†
i |0〉 → ĉ

†
i↑ĉ

†
i±1,↓|0〉 becomes resonant. A further

separation of the fermions beyond nearest-neighbor distances,
however, is the more suppressed the larger V gets. The latter is
obvious for reasons analogous to those given above regarding
the U dependencies. As already noted in the context of
propagation patterns above, for U = V = 0, an “extended
doublon” is formed as a linear combination of a doubly
occupied site with states where the two fermions are found at
adjacent sites. Though the probability for finding two fermions
at the same site anywhere in the lattice shows a minimum for
U = V in the stability map in Fig. 4, the one for finding them
as nearest neighbors is almost equally large as can be seen in
the sectional views of the stability map in Fig. 5. Furthermore,
the sum of both equals the one for the same value of U but
vanishing V . At the same time the oscillations of the double
occupancy as well as the one of nearest-neighbor state exhibit
a maximum (Figs. 4 and 5) whereas their sum does not. Hence
the oscillations cancel each other.

VIII. TWO DOUBLONS

The preceding examinations were restricted to the subspace
of two fermions. This lacks some important aspects, such
as doublon-doublon and doublon-fermion scattering. In the
following we therefore extend our study to four-fermion states.
The size of the one-dimensional lattice is fixed to L ≈ 50.

A. Initial state with neighboring doublons

To begin with, consider an initial state at t = 0 with two
doublons at neighboring sites: |ψini〉 = d̂

†
i d̂

†
j |0〉 with |i − j | =

1. In the strong-coupling limit U,V � J , this state has a
mean energy of the order of 2U + 4V + O(J 2/U,J 2/V ): A
state with two neighboring doublons entails two neighboring
fermions for each constituent fermion. Processes starting from
this state and involving a single or two hopping events will
dominate the physics in the strong-coupling case and are
sketched in Fig. 6.

Figure 7 shows the time-dependent local and total double
occupancy for different U and V . The overall trends can by
understood by focusing on certain resonant cases as follows.

(i) If V = −U the first-order process, referred to as (1)
in Fig. 6, becomes resonant: The initial and final state have
the same mean energy up to a small correction of the order
O(J 2/U,J 2/V ). In the strong-coupling limit a further spatial
separation of the fermions is suppressed as there is a large
excess energy U or V that cannot be accommodated in
the system. A propagation of the compound object over
many lattice sites is only possible via second-order hopping
processes with a very low probability as compared to the
first-order process (1). We therefore expect the two doublons
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FIG. 6. (Color online) Scheme of dominant first-order [(1), right]
and second-order [(2), left] hopping processes from an initial state
with two doublons on nearest-neighbor sites to the possible final
states. The involved interactions U and V are depicted by wiggly
lines in red and blue, respectively.

to be basically localized at their initial positions. This explains
the pattern shown in Fig. 7(ann).

After some settling time the total double occupancy [see
top panel in Fig. 7(ann)] tends to a value slightly less than
unity which is less than expected for both states that define
the process (1). We therefore conclude that there is a certain
nonzero probability for the decay of the compound object into
fragments without double occupancy that is not consistent with
energy conservation. As discussed for the two-fermion case,
this is possible at very short times.

The main dynamical effect, however, consists of a rapid
oscillation between the two states of process (1). In the map
for the time average D, see Fig. 8 (left), this manifests itself
as a “valley” along the bisecting line of the second and fourth
quadrant. Furthermore, this is accompanied by a maximum
in the relative fluctuations (not shown), similar as in the two-
fermion case.

(ii) Correspondingly, we find another “valley” along the
line given by V = −2U in Fig. 8 (left). This is associated
with the second-order process (2b) in Fig. 6 which is resonant
here. Again, there is mainly an oscillation between the two
states of (2b) which both have the energy 2U + 4V = 3V .
The process involves a virtual intermediate state with an off-
resonant energy U + 3V .

As before in case (i), a propagation of the compound object
over many lattice sites is suppressed as it necessarily involves
fourth-order processes. In fact, Fig. 7(bnn) shows that the
fermions essentially remain close to their initial sites.

An oscillation between the two states of (2b) clearly implies
the total double occupancy to oscillate between approximately
2 and 0. In the long-time limit it tends to relax to a value close
to or slightly less than 1.

(iii) In case of vanishing U , the second-order process (2a)
becomes resonant at the energy 2U + 4V = 4V . This causes
another branch of minima along the V axis in Fig. 8 (left).

Opposed to cases (i) and (ii), the four-fermion cluster may
propagate via the (2a) process followed by a process inverse
to (2a) but resulting in two neighboring doublons shifted
by one site to the left or right as compared with the initial
state. Repeated second-order hopping processes then lead to
a more efficient delocalization of the cluster and thus also of

(ann) U = 10, V = −10 (bnn) U = 5, V = −10 (annn) U = 5, V = 5 (bnnn) U = 10, V = 10 (asep) U = 5, V = 5

(cnn) U = 0, V = 10 (dnn) U = 5, V = 0 (cnnn) U = 0, V = 10 (dnnn) U = 6, V = 2 (bsep) U = 10, V = 5

(enn) U = 10, V = −5 (fnn) U = 10, V = 10 (ennn) U = 8, V = 2 (fnnn) U = 8, V = 4 (csep) U = 10, V = 0

FIG. 7. (Color online) Time dependence of the expectation value of the local (main panels) and the total double occupancy (small top
panels) for different U and V as indicated. Axis and color code as in Fig. 1. Calculations are performed for different initial states as indicated
by the bracketed symbols: two pairs fermions (two doublons) initially prepared as nearest neighbors (xnn), next-nearest neighbors (xnnn), or
further separated with |i − j | = 10 (xsep), respectively. Results for one-dimensional lattice with periodic boundary conditions and L = 50, 51,
and 49 sites, respectively.

205127-8



DOUBLON DYNAMICS IN THE EXTENDED FERMI- . . . PHYSICAL REVIEW B 85, 205127 (2012)

(a) nearest-neighbors (b) next-nearest-neighbors (c) further separated

FIG. 8. (Color online) Time average of the total double occupancy 〈D(t)〉 for interaction strengths −10 < U < 10 and −10 < V < 10.
Calculations for an initial state with two doublons placed at sites i and j . (a) i and j nearest neighbors, (b) next-nearest neighbors, and
(c) |i − j | = 10. Average over the time interval 50 < t < 100. The color code is given on the right.

the expectation value for the double occupancy as is seen in
Fig. 7(cnn).

(iv) For a vanishing V , the process (2d ) becomes resonant
at the energy 2U + 4V = 2U . This implies that the initial
cluster with two neighboring doublons can dissociate into two
doublons separated at arbitrarily large distances via second-
order hopping processes over off-resonant intermediate states.
Delocalization is thus very efficient and results in the pattern
displayed in Fig. 7(dnn).

The propagation pattern is obviously dominated by two
“light cones” with different velocities. This can be traced back
to the interaction between the two doublons by comparing
with the patterns in Figs. 7(bsep) and 7(csep) which refer to
an initial state where the two doublons are well separated
and prepared at a distance |i − j | = 10 and where the mode
with lower velocity is absent. It is an open question whether
the slow mode is due to the repulsive hard-core constraint or
due to the attractive interaction in the effective Hamiltonian
Eq. (2). The “light cone” associated with the higher velocity is
identical to the one found for propagation of a single doublon,
see Figs. 7(dnn) and 2(h) and mind the different lattice sizes.

In Fig. 8 (left), we find a signature of the resonant process
(2d ) along the V = 0 line. As in the two-fermion case, the
doublons are stabilized with increasing U .

(v) Finally, the process (2c) gets resonant if 2U + 4V =
U + 2V which again becomes manifest in a valley, given by
V = − 1

2U , in the map, Fig. 8 (left), which is clearly visible at
larger values of U and V .

Regarding the mobility, we note that the process (2c) can
be either inverted or the fermion triple can move resonantly
through the lattice. Both possibilities contribute to the propa-
gation pattern shown in Fig. 7(enn).

In all other cases, the initial state shows both a high
stability and a marginal mobility in the strong-coupling limit.
Figure 7(fnn) gives an example for U = V = 10. We note that
the relative fluctuations around the time average amounts to
approximately 1% only.

B. Next-nearest neighbors

Although the underlying physics is the same, the results are
completely different if the two doublons are prepared at sites
which are next-nearest neighbors. The calculated propagation
patterns are shown Fig. 7 in the third and fourth columns, while

Fig. 8 (middle) displays the corresponding time averages. The
dominant first-order and second-order hopping processes are
sketched in Fig. 9.

First, we note that the processes (1′
b), (2′

d ), (2′
e), and (2′

f )
are all independent of the problem’s four-particle character.
Provided that the physics is dominated by those processes,
one would expect the propagation pattern of two initially
next-nearest-neighboring doublons to essentially resemble that
of two independent doublons. In the strong-coupling limit, this
is the case for processes (1′

b), (2′
d ) if U = V and independently

of V for (2′
f ). As is seen Figs. 7(annn) and 7(bnnn), the doublons’

propagation is described by about the same maximal effective
hopping as in the case of a single doublon; see Fig. 2(o),
for example. There is, however, an additional mode visible in
Figs. 7(annn) and 7(bnnn) which results from the two doublons
resting more or less at their initial sites. This is caused by the
respective inverse hopping processes and basically disappears
with increasing interaction strengths U = V → ∞ and also
in the case where the two doublons are prepared at a larger

FIG. 9. (Color online) Scheme of dominant first-order [(1′), right]
and second-order [(2′), left] hopping processes from an initial state
with two doublons on next-nearest-neighbor sites to the possible final
states. The inverse of process (2d ) (see Fig. 6) is not shown again. U

and V are depicted by wiggly lines in red and blue, respectively.
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distance [see Fig. 7(asep)]. A branch of minima occurs along
the line U = V in the stability map, Fig. 8(b), which looks
similar to that obtained in the two-fermion case (cf. Fig. 4).
The process (2′

e) is resonant only if U = 0. Here the doublons
rapidly dissociate into more or less independent fermions
resulting in deep valley around U = 0 in Fig. 8(b).

The processes (1′
a), (2′

a), (2′
b), and (2′

c) are immanent to the
four-particle character of the problem and become resonant
if V = 1

3U , V = 1
4U , V = 1

2U , or V = 2
3U , respectively.

The same holds for the inverse to process (2d ) (see Fig. 6)
which becomes resonant if V vanishes. Except for the last
one, the doublon number is changed in all processes. We
therefore expect and find a region of instability, bounded from
below by V = 1

4U as can be seen from the level curves in
Fig. 8(b). Generally, the propagation patterns Figs. 7(dnnn),
7(ennn), and 7(fnnn) are not easily interpreted by means of
simple perturbative arguments.

It is worth mentioning that for vanishing nearest-neighbor
interaction V = 0 (not displayed) the doublons essentially
show the same spreading behavior as they did in the case of a
single doublon [see Fig. 7(dnn)] and their stability again rises
with |U |. Further, for large couplings of opposite sign U =
−V , all processes except for (2′

f ) are strongly suppressed.
The patterns (not displayed) are rather similar to those for a
single doublon [see Fig. 7(ann)].

C. Further separation in the initial state

The further away two doublons are prepared in the initial
state the less they influence each other. We therefore obtain
results similar to those for a single doublon. This can be seen
from our calculations with two doublons initially separated
by ten sites by comparing, e.g., the maps for the long-time
averages D, Figs. 8(c) and 4, as well as by comparing
the propagation patterns in Figs. 7 and 2 for corresponding
interaction strengths.

D. Comparison with the bosonic case

Generally, the propagation patterns considerably differ
from the corresponding ones for doublons formed by bosons.
Motivated by experiment,7 Petrosyan et al.8 consider the Bose-
Hubbard model, H = −J

∑
〈ij〉 b̂

†
i b̂j + (U/2)

∑
i n̂

b
i (n̂b

i − 1),
in the strong-coupling limit with an additional constraint
excluding states, analogous to the Fermi case, with two or
more bosons at the same site. Preparing an initial state with
two neighboring doublons, propagation patterns are obtained
which look very similar to our cases U = −V = 10 or
U = V = 10 [see Figs. 7(ann) and 7(fnn)], i.e., propagation is
strongly suppressed. This can be understood by again referring
to a respective effective model for the strong-coupling limit.
Canonical transformation yields8

Heff = J ′

2

∑
〈ij〉

d̂
†
i d̂j + (J ′ + U )

∑
i

n̂d
i − 2J ′ ∑

〈ij〉
n̂d

i n̂
d
j .

(23)

Here, d̂
(†)
i denotes the annihilation (creation) operator for

doublons made up of bosons (b̂(†)). As in the Fermi case, the ef-
fective hopping is given by J ′ = 4J 2/U . Equation (23) should

be compared with Eq. (2). In contrast to the fermionic case,
the attractive interaction between two nearest-neighboring
doublons is larger by a factor 4 for doublons made of
bosons. This explains the tendency to a strongly suppressed
propagation.

It also explains that, in the bosonic case, the formation
of clusters of doublons is favored and phase separation is
possible below some critical temperature.8 Contrary, in the
Fermi case, doubly occupied sites may Bose condensate under
certain circumstances.16 In fact, we did not find any indications
for a clustering of doublons. Two doublons are rather never
found to form a bound state unless an explicit nearest-neighbor
interaction V is present.

IX. DOUBLON-FERMION SCATTERING

The propagation and the decay of a repulsively bound
pair is expected to be strongly affected by the presence of
additional fermions. As a finite fermion density cannot be
studied reasonably by means of the Krylov approach, we will
here consider two additional fermions only. To this end we
first determine the ground state of the Hamiltonian in the
two-fermion subspace |�2〉 and subsequently add a doublon
at a certain site i0 to define the initial state d̂

†
i0
|�2〉. Since the

weight of doubly occupied sites in the ground state is almost
vanishing for a lattice with L = 50 sites, this setup allows us to
study the scattering of the doublon with almost independently
propagating fermions.

Here we focus on the decay of the doublon for the V = 0
case only but consider different initial states. Besides d̂

†
i0
|�2〉,

we also study the system’s time evolution starting from states
where two fermions are prepared at sites close to the initial
position of the doublon i0, i.e., |m,m′〉 ≡ ĉ

†
i0+m↑d̂

†
i0
ĉ
†
i0−m′↓|0〉.

This is compared to results obtained for two doublons
at nearest-neighboring sites, d̂

†
i0
d̂
†
i0+1|0〉, and two doublons

prepared at a distance of 2 and 10, i.e., d̂
†
i0
d̂
†
i0+2|0〉 and

d̂
†
i0
d̂
†
i0+10|0〉, respectively. In all cases we find a decay of the

doublon expectation value on a short-time scale 1/U followed
by a stabilization to a nearly constant value at large times.
The residual quantum fluctuations are disregarded by looking
at the time average D. As before, we find that the decayed
doublon fraction scales linearly with 1/U 2 for large times,
D(t) � 〈D(0)〉(1 − m/U 2). Hence in the strong-coupling limit
the doublon stability is quantified by the coefficient m. For
m = 0 there is no decay at all, and a small value for m indicates
a rather stable doublon. Our results for the different initial
states are shown in Fig. 10.

Generally, for a system with additional fermions, one
expects an hugely increased phase space for inelastic processes
leading to doublon decay. On the other hand, the energy-
conservation argument suggests that for strong U a rather
complex inelastic process has to take place to allow for decay,
namely a process of high order where a sufficient number
of particles must be involved to dissipate a large energy of
the order of U . While such processes are expected to be
exponentially suppressed for large U , they should contribute
to some degree and lead to a destabilization of a doublon.

However, our results for different initial states, as displayed
in Fig. 10, just show the opposite trend: The presence of two
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FIG. 10. (Color online) Coefficient m obtained from a fit of the
time-averaged expectation value for the total double occupancy D(t)
to the observed U dependence: D(t) � 〈D(0)〉(1 − m/U 2). m values
are obtained from linear regression of our data in the range 8 � U �
45. Results are shown for different initial states as indicated and
discussed in the text. n = 1 refers to the results of a time-dependent
DMRG calculation by Al-Hassanieh et al.; see Ref. 16 and text for
discussion.

additional fermions in the initial state in all cases leads to a
smaller coefficient m in the 1/U 2 decay law. The strongest
effect is visible for the initial state |1,1〉 where the two
fermions are neighbors of the doublon at i0. Here m is the
smallest and the doublon is most stable. m increases with
increasing distance of one of the fermions from the position
of the doublon; see the initial states |1,2〉 and |1,3〉. It further
increases if also the second fermion is positioned at a distance
from i0 (see |2,2〉, |3,3〉, and |4,4〉), and it approaches the value
obtained for the case where both fermions are delocalized in
the ground state d̂

†
i0
|�2〉. The maximum value is obtained for

the isolated doublon in an otherwise empty lattice, i.e., for
d̂
†
i0
|0〉. If the two fermions themselves form a second doublon,

see the results for d̂
†
i0
d̂
†
i0+x |0〉 in Fig. 10, this again tends to

stabilize the original one: m decreases with decreasing distance
x between the two doublons.

These trends can be understood if the doublon dynamics
is considered at short times: First-order-in-J time-dependent
perturbation theory shows that doublon decay is allowed on
a time scale 1/U as has been detailed in Sec. V. Here, one
can argue that an unoccupied site neighboring the doublon is
necessary for the decay process as the immediate surrounding
is relevant for its start. Hence the coefficient m is the smaller
and the doublon is more stable if decay channels are blocked
by localized fermions or doublons close to the doublon at i0

and, to a lesser extent and depending on the size of the lattice,
even by two delocalized fermions in the two-fermion ground
state. This nicely explains the results described above.

After that time scale, energy conservation as expressed by
Fermi’s golden rule, applies and the total double occupancy
virtually relaxes to a constant value. As analyzed in Sec. VII,
the probability for the dissociation of a doublon should then

scale as 1/U 2. On an for large U extremely long time
scale, which exponentially depends on U ,18 contributions from
higher-order perturbation theory in J/U become important
and would generally allow for further decay in more complex
processes.19

In this context it is interesting to compare our results with
the those of a time-dependent density-matrix renormalization-
group (DMRG) study by Al-Hassanieh et al.16 where the
decay of a doublon created by a nearest-neighbor particle-hole
excitation of a half filled one-dimensional Fermi Hubbard
model was considered. The DMRG calculations show (i) a
fast decay at a characteristic time scale 1/U , (ii) a basically
constant double occupancy at larger times up about 40J−1, and
(iii) a 1/U 2 scaling of the decayed fraction of the doublon. All
this agrees perfectly with our results obtained for four fermions
only. The m coefficient taken from the DMRG results16 is also
included in Fig. 10 (“n = 1”) and is found to be close to that
obtained for the |1,2〉 initial state. Even this is plausible since
the spin-dependent site occupations of the state |1,2〉 and of
the initial state of the DMRG calculation are the same in the
immediate environment of i0.

The at least qualitative agreement with the dynamics of
the half filled model on the time scale accessible to time-
dependent DMRG appears as surprising at first sight: Clearly,
the initial local blocking of decay channels is the same in the
four-fermion and in the half filled case but this would only
explain an agreement on a time scale much shorter than the
one accessible by DMRG. We suggest that it is important to
take into account an additional argument here, namely, the
fact that decay of the doublon on intermediate time scales
larger than 1/U is basically ruled out by energy conservation
while on time scales shorter than 1/U it is only the immediate
surrounding of the doublon that counts. This would explain
the almost quantitative agreement with the DMRG results of
Ref. 16.

On the other hand, this argument leaves the possibility
for an, e.g., exponential-in-t decay law on much larger time
scales.18,19 This might be expected on general grounds as
adding more degrees of freedom to the system should strongly
increase the phase space available for decay in energy-
conserving processes where the doublon energy U is dissipated
to a large number of particle-hole or spin excitations. Those
processes, however, require a huge time scale to contribute
significantly to the doublon decay, possibly well beyond the
time scales accessible by DMRG.

Note that a quantitative comparison with the DMRG study
of Ref. 20 for the half filled Hubbard model is not possible, as
an initial state where doubly occupied and empty sites alternate
is considered there. Still the qualitative features are rather
similar.

X. SUMMARY

Concluding, the real-time dynamics of two or a few more
strongly interacting Fermions moving in a periodic lattice
potential exhibits a surprisingly rich physics which is not only
linked to experiments with ultracold atoms trapped in optical
lattices but also to electron spectroscopy of metal surfaces
as well as to rather general questions on the propagation
and decay of bound quantum states and the relaxation of
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quantum systems prepared in a highly excited initial state.
Here we have employed a Krylov-space method32–38 to study
few-particle systems with a moderately large Hilbert-space
dimension. Even the analysis of the two-fermion case helps us
to understand important concepts such as the temporal stability
of a doublon, i.e., a repulsively bound pair of fermions.

The decay of a doublon in an otherwise empty system is
possible on a very short-time scale 1/U where energy conser-
vation, within the spirit of time-dependent first-order perturba-
tion theory, does not apply. Using perturbative diagonalization
of the Hamiltonian by means of a canonical transformation,
one can understand the observed 1/U 2 dependence of the
fraction of the doublon that has decayed in the long-time limit.

The time average of the total double occupancy is found
to be given by a quantity defined for the equilibrium or
ground state of the system, namely the integrated square of the
spectral density related to appearance-potential spectroscopy.
But also the fully time-dependent local double occupancy can
be expressed in terms of this spectral function, which must
be seen as an unexpected interrelation valid for a two-particle
system only.

The spatiotemporal evolution of the expectation value of
the local double occupancy can be understood by perturbative
arguments, even in the case of a nonzero nearest-neighbor
interaction V . In the case of four fermions, the propagation
patterns are much more complicated. Still, we could demon-
strate that the real-time dynamics after preparation of different
initial states can be understood in most but not all cases by
perturbative arguments.

The physics of a finite density of doublons consisting of
fermions is known to be rather different from the case of
doublons made of bosonic particles which undergo a transition
to a phase-separated state instead of Bose condensation.8,15

Consistent with this, we did not find any indications for a
clustering of doublons consisting of fermions unless an explicit
nearest-neighbor interaction V is present.

Surprisingly, there is a rather regular trend concerning
the decay of a single doublon in the presence of two more
fermions. The total double occupancy, apart from quantum
fluctuations, relaxes to a constant value after an initial decay
on a time scale 1/U , and the long-time average deviates
from the initial value by a fraction that scales with U as
1/U 2 in the strong-coupling limit, like in the case where
there are no additional fermions, but with a coefficient m that
characteristically depends on the initial state.

m is found to decrease and thus the stability of the
doublon is found to increase when two fermions are added—a
result which at first sight is conflicting with the expectation
that adding more degrees of freedom to the system should
strongly increase the phase space available for decay in energy-
conserving processes where the doublon energy U is dissipated
to a large number of particle-hole or spin excitations. Those
processes, however, require a huge time scale to contribute
significantly to the doublon decay. More important for the
stable fraction of the doublon is the local environment in the
initial state as the main effect of an additional doublon or of
additional fermions in its vicinity is to block decay channels
on the short-time scale on which decay is possible rather than
ruled out by energy conservation. This is a general argument
which apparently also applies to the half filled case, for

example. In fact, we find almost quantitative agreement with a
time-dependent DMRG calculation.16 On the other hand, the
argument leaves the possibility for an, e.g., exponential-in-t
decay law on much larger time scales which might be expected
on general grounds.18,19
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APPENDIX A: KRYLOV APPROACH

For a given vector u the nth Krylov subspace of the full
Hilbert space is defined by49

Kn(u,H) := span{u,Hu, . . . ,Hn−1u}. (A1)

Typically, the Krylov-space dimension n � d. An orthogonal
basis of Kn can be obtained efficiently via the Lanczos
recursion formula32

uk+1 = Huk − akuk − b2
kuk−1 (k = 0, . . . ,n − 1),

(A2)

with the coefficients ak = 〈uk|Huk〉/〈uk|uk〉 and b2
k =

〈uk|uk〉/〈uk−1|uk−1〉 and the initial values b0 = 0 and u−1 = 0.
In the normalized Lanczos basis {vi}, with vi = ui/‖ui‖,
the Hamiltonian is represented by a tridiagonal matrix T

with diagonal elements a0, . . . ,an−1 and secondary diagonal
elements b1, . . . ,bn−1. Hence we can write T = V †HV , where
the matrix V is made up by the basis vectors vi , i.e., V =
(v0, . . . ,vn−1).

The time evolution of a state ψ(t) ∈ Kn = Kn(t) ap-
proximates its time evolution in the whole Hilbert space:
ψ(t + �t) ≈ V e−iT (t+�t)V †ψ(t). Here ψ(t) is chosen to be
the start vector of the Lanczos recursion [Eq. (A2)], i.e., the
Krylov space at time t is adjusted to the system’s state at t . For a
given small time step �t , the approximation can be controlled
to a high accuracy by adjusting the Krylov-space dimension.
Longer time evolutions are carried out successively by using
the propagated state as the new initial state and adapting T

and V after each Lanczos time step. It is important to note that
this kind of approximation preserves the unitarity of the time
evolution.

Since the diagonalization of the fairly small n × n matrix T

is numerically cheap, the computational effort is dominated by
the n − 1 matrix-vector multiplications that are necessary to
construct the Lanczos basis and by the number of time steps.
In this work we dealt with Hilbert spaces with d = 104 . . . 106

dimensions. For calculations where, e.g., 200 time steps �t =
0.5 are performed, highly accurate results are obtained using
Krylov spaces with less than n ≈ 20 dimensions only.

APPENDIX B: EFFECTIVE LOW-ENERGY MODEL

We consider the Hamiltonian, Eq. (1), for V = 0 in the
strong-coupling limit U � J . The goal is to perturbatively
derive an effective low-energy Hamiltonian preserving the
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total double occupancy. This is done employing the method of
canonical transformations (see also Refs. 8 and 15).

First, the hopping term HJ is subdivided into parts pre-
serving or changing the total double occupancy of the system.
Expressing the identity by number operators for particles and
holes, namely 1iσ = ĥc

iσ + n̂c
iσ , one may write

HJ = −J
∑
〈ij〉

∑
σ

(
n̂c

iσ̄ ĉ
†
iσ ĉjσ n̂c

j σ̄ + ĥc
iσ̄ ĉ

†
iσ ĉjσ ĥc

j σ̄

)

− J
∑
〈ij〉

∑
σ

n̂c
iσ̄ ĉ

†
iσ ĉjσ ĥc

j σ̄ − J
∑
〈ij〉

∑
σ

ĥc
iσ̄ ĉ

†
iσ ĉjσ n̂c

j σ̄

= : H0
J + H+

J + H−
J , (B1)

where the double occupancy is raised/lowered by H±
J and

preserved by H0
J , since[
HU ,Hν

J

] = νUHν
J , ν ∈ {0,±}. (B2)

The unitary transformation is performed perturbatively:

H′ = eiSHe−iS ≈ H + i[S,H] + i2

2
[S,[S,H]] + · · · .

(B3)

H±
J can be eliminated by choosing the generator to be

S = − i
U

(H+
J − H−

J ). Up to order J 2/U , we end up with the
effective model

Heff = H0
J + HU + 1

U
[H+

J ,H−
J ], (B4)

which, besides the total particle number, conserves the total
double occupancy in addition. We can therefore restrict
ourselves to a system without any singly occupied site.
Exploiting this fact, Eq. (B4) takes, after some straightforward
algebra, the form given by Eq. (2).
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