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Lattice and surface effects in the out-of-equilibrium dynamics of the Hubbard model
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We study, by means of the time-dependent Gutzwiller approximation, the out-of-equilibrium dynamics of a
half-filled Hubbard-Holstein model of correlated electrons interacting with local phonons. Inspired by pump-
probe experiments, where intense light pulses selectively induce optical excitations that trigger a transient
out-of-equilibrium dynamics, here we inject energy in the Hubbard bands by a nonequilibrium population of
empty and doubly-occupied sites. We first consider the case of a global perturbation, acting over the whole
sample, and find evidence of a mean-field dynamical transition where the lattice gets strongly distorted above
a certain energy threshold, despite the weak strength of the electron-phonon coupling by comparison with the
Hubbard repulsion. Next, we address a slab geometry for a correlated heterostructure and study the relaxation
dynamics across the system when the perturbation acts locally on the first layer. While for weak deviations from
equilibrium the excited surface is able to relax by transferring its excess energy to the bulk, for large deviations,
the excess energy stays instead concentrated in the surface layer. This self-trapping occurs both in the absence as
well as in the presence of electron-phonon coupling. Phonons actually enforce the trapping by distorting at the
surface.
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I. INTRODUCTION

The transient dynamical behavior of correlated materials
optically excited far from equilibrium is currently attracting
growing interest due to the impressive advances in time-
resolved spectroscopy with femtosecond resolution. By shin-
ing the sample with intense ultrafast pulses (pump), one
can trigger nonequilibrium transient states, whose physical
properties are then recorded by a second pulse arriving
at fixed time delay (probe). The unique feature of these
experimental techniques is to give access to dynamical infor-
mation unavailable to conventional time-averaged frequency
domain spectroscopies.1 In addition, when irradiation is
sufficiently strong, one can even stabilize transient states
with fundamentally different physical properties,2 thus paving
the way to a complete control of material properties by
light.3 As correlated electron systems are often on the verge
of a Mott metal-to-insulator transition, this portends the
utmost important possibility of optically manipulating their
conducting properties on ultrashort time scales.4

Motivated by these achievements, the research activity on
transient ultrafast dynamics in correlated electronic systems
has rapidly grown in recent years.5–9 From a theoretical
perspective, one can expect a nontrivial and rich transient
dynamical behavior to emerge, reflecting the complex inter-
play between electrons, phonons, spins, and orbital degrees
of freedom that characterizes the phase diagram of these
materials. On a more fundamental level, the crucial question
concerns whether these experiments could allow to explore
novel metastable phases of correlated quantum matter that can
only be accessed along nonthermal pathways.

A common wisdom is that the effect of perturbing the
system by an ultrashort laser pulse can be qualitatively
accounted for by an effective-temperature description.10–13

Within this picture, the injected energy would turn first, on

few femtoseconds, into heat for the electron subsystem only.
At later times, picoseconds, the electronic heat is gradually
transferred to the lattice so that, eventually, the whole system
flows to a thermal state at higher temperature than the initial
one. Under such a thermodynamic assumption, optical pump-
ing should mimic the role of heating, hence allow accessing,
possibly much faster, all phases that are reached upon raising
temperature at equilibrium. In the specific case of correlated
materials, this entails the possibility of photoinducing metal-
to-insulator transitions. Indeed, there exist many examples of
Mott insulators that can be driven metallic upon increasing
temperature, like, e.g., V2O3 (see Ref. 14 and 15) and VO2

(see Ref. 15), and, vice versa, metals that turn Mott insulating
upon heating, like the same V2O3 (see Ref. 14 and 15) at higher
temperatures, or like doped manganites.16

However, a deeper thought of what is known about
correlated systems in equilibrium already raises questions on
this point of view. Indeed, according to this picture, one must
conclude that energy pumping, assumed to be equivalent to
temperature raising, should make a metal less metallic and a
band insulator less insulating. It is believed17 that a correlated
metal near a Mott transition actually shares properties of
both metals and insulators; itinerant quasiparticles narrowly
centered around the chemical potential coexisting with in-
coherent atomiclike high-energy excitations, the so-called
Hubbard bands. If intense light exposure is the same as
heating, and since the light is selective via its frequency
and polarization, then one could envisage the quasiparticles
or else the Hubbard bands being heated first, which would
correspond, respectively, to conductivity decrease or increase.
Such a nonmonotonous behavior would, however, contrast the
effect of raising temperature at equilibrium, which is sup-
posed to always lower conductivity.17 The above observation
thus challenges the picture of pump-probe experiments as
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effective thermodynamic perturbations. Indeed, while temper-
ature excites the system incoherently by making high-energy
states contribute with their own Boltzmann factor and density,
light is able to selectively create specific excitations. This
property may lead to substantial differences from thermal
effects, especially, in the case of correlated metals, where the
same conduction electrons are characterized by well distinct
energy scales, some corresponding to itinerant and other to
more localized excitations.

A different perspective, pointing toward an intrinsic kinetic
nature of these experimental settings, is offered by the
intense research activity around the non equilibrium dynamics
of closed isolated many-body systems, which has recently
attracted lot of interest in the different context of cold atoms
trapped in optical lattices.18 In this respect, it is by now well
established that, when driven out of equilibrium by intense sud-
den perturbations, strongly correlated systems can be trapped
into long-lived metastable states that differ qualitatively from
their equilibrium counterpart. An example along this line is
provided by the single-band Hubbard model, likely the sim-
plest model to describe strong-correlation physics. Different
theoretical approaches19–21 have shown, for example, that a
sudden increase of the Hubbard repulsion drives the system
into a long-lived metastable state which, although highly
excited, shows intrinsic features of a zero-temperature metallic
state, rather than incoherent finite-temperature effects as one
would have guessed by thermodynamic arguments. Seemingly,
suddenly switching on a large Hubbard repulsion stabilizes
metastable phases rich of energetically unfavorable doubly
occupied sites, which are kinetically blocked20 and unable to
decay22 or even to coherently propagate.23 A qualitative picture
of the crossovers or genuine dynamical transitions between
different metastable states in the Hubbard model driven by
sudden quantum quenches has been recently obtained using
a time-dependent extension of the Gutzwiller approximation
(t-GA).24,25 While missing important quantum fluctuations,
which are crucial for the long-time dynamics, this approximate
scheme has been shown to capture important qualitative
features of the intermediate time evolution, which is actually
of interest in the description of the pump-probe dynamics.

In this work, we aim to elaborate further on this out of
equilibrium perspective by including additional ingredients
that might play an important role in modeling pump-probe
experiments on actual correlated materials. Firstly, we add
phonons to the half-filled single-band Hubbard model and
study the transient dynamics induced by a sudden perturbation.
It is worth noticing that lattice vibrations play a crucial role in
actual experiments by triggering selective perturbation for the
electronic subsystem,26 and their role in ultrafast pump probe
experiments is a subject of current experimental interest.27–29

Here, we consider Einstein phonons coupled to the local charge
and study the dynamics of the resulting Hubbard-Holstein
model using a suitable extension of t-GA. Although extremely
simplified, this model represents a first attempt to figure out
how highly excited electrons succeed in transferring their
excess energy to the lattice. Results reveal, akin to the pure
Hubbard model, the existence of a metastable state for high
enough excitation, where phonons get strongly displaced in
spite the large Coulomb repulsion and in striking contrast to
what one would have guessed in equilibrium.

A second important ingredient that we add to the description
builds on the observation recently reported in a number of
theoretical investigations that nonthermal metastable states
are extremely sensitive to spatial fluctuations and prone to
spontaneous generation of inhomogeneities,23,30 which could
play a crucial role in the dynamics, in particular, around
dynamical transition points.25,31 To investigate this issue, we
consider the same Hubbard-Holstein model at half-filling but
now in a slab geometry that lacks translational symmetry,
modeling ultrafast dynamics in correlated heterostructures.29

We assume that, initially, only the surface layer is driven out
of equilibrium and study by t-GA how the excess energy
is redistributed inside the bulk. Remarkably, if the energy
initially stored on the surface exceeds a critical threshold, it
remains trapped on the uppermost layers. Concomitantly, the
phonons distort at the surface, providing a further trapping
potential. This result demonstrates not only the importance
of inhomogeneities, but also suggests that, under specific
circumstances, the lattice might not provide a dissipative bath
to speed up relaxation, but rather play the opposite game to
slow down thermalization.

The paper is organized as follows. In Sec. II, we introduce
the model and an out-of-equilibrium version of the Gutzwiller
approximation that may cope with the electron-phonon cou-
pling. In Sec. II A, we show that the method is equivalent to the
mean-field approximation applied to a model of free electrons
coupled to phonons and Ising spins. In Sec. III, we move to
discuss the results for two different cases. First, in Sec. III A,
we study the time evolution when the whole bulk is suddenly
driven out of equilibrium. Next, in Sec. III B, we consider the
situation in which an external pulse only excites the surface
layer, and study if and how the surface can relax by transferring
energy to the bulk. Finally, Sec. IV is devoted to concluding
remarks.

II. THE MODEL AND THE GUTZWILLER
APPROXIMATION

We consider a half-filled Hubbard-Holstein model de-
scribed by the Hamiltonian

H = −t
∑
〈ij〉σ

(c†iσ cjσ + H.c.) + U

2

∑
i

(ni − 1)2

+ ω

2

∑
i

(
p2

i + x2
i

) − g
∑

i

xi (ni − 1),

where c
†
iσ (ciσ ) creates(annihilates) an electron with spin σ

at site i, xi is the phonon displacement at that site, and pi

its conjugate variable. The hopping is restricted to nearest
neighbors and ni is the electron number operator. We note that
Eq. (1) is invariant under particle-hole transformation provided
xi → −xi .

In the following, we study the unitary dynamics induced by
the Hamiltonian (1) using the Gutzwiller variational scheme
introduced at equilibrium by Barone et al.32,33 and extended
to the time-dependent case following Ref. 24. It is worth
mentioning that at equilibrium the method is able to reproduce
even quantitatively the exact results of DMFT, as discussed
extensively in Ref. 33, which is important in view of the present
extension to the out-of-equilibrium dynamics.
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We emphasize at this point that, in real experiments, the
light pulse couples via the vector potential to the electronic
degrees of freedom. While, in principle, the variational
description could be extended to include this feature, here
we assume for the sake of simplicity that the effect of the
pump is mainly to induce an initial nonequilibrium distribution
of electronic degrees of freedom, whose dynamics is then
driven by the Hubbard-Holstein Hamiltonian. Furthermore,
while in real experimental settings, the system is always in
contact with a thermostat that eventually allows the injected
energy to flow away, here we assume the whole system made
by electrons and lattice to be isolated. While in different
contexts, e.g., when current-carrying stationary states driven
by static electric fields are present, this assumption may be
highly questionable, here we stress that our focus concerns
the transient relaxation dynamics on time scales of electronic
and phononic degrees of freedom. As the coupling with the
environment is typically very weak, we do not believe that this
assumption can qualitatively change the physical picture that
we will draw.

With these assumptions on the theoretical side, we now
introduce our time-dependent variational wave function for
the dynamics of the Hubbard-Holstein model (1). Specifically,
we write

|�(t)〉 =
∏

i

Pi(xi,t) |�0(t)〉, (1)

where |�0(t)〉 is a time-dependent Slater determinant, to
be determined variationally, and Pi(xi,t) a time-dependent
electron operator at site i that depends explicitly on the
phonon coordinate xi . We define, neglecting the index i for
convenience,

P =
√

2 φ0(x,t) |0〉〈0| +
√

2 φ1(x,t) (| ↑〉〈↑ | + | ↓〉〈↓ |)
+

√
2 φ2(x,t) |2〉〈2|, (2)

where φn(x,t) are site-dependent phonon wave functions and
|�〉〈�| is the projector onto the site being empty � = 0, singly
occupied by a spin up � =↑, or down � =↓ electron, or, fi-
nally, doubly occupied � = 2. Particle-hole symmetry implies
that under n → 2 − n, φn(x,t) → φ2−n(−x,t), namely,

φ0(x,t) = φ2(−x,t), φ1(x,t) = φ1(−x,t).

We evaluate average values on the wave function (1) by means
of the Gutzwiller approximation, following Refs. 34 and 32,
which amounts to impose that∫

dx |φ0(x,t)|2 + |φ1(x,t)|2 = 1.

The above condition implies that the average over the Slater de-
terminant |�0(t)〉 and the phonons of the operator that remains
after extracting from Pi(xi,t)†Pi(xi,t) any two fermionic
operators vanishes identically. This property allows to evaluate
explicitly all average values on the wave function (1) in the
limit of infinite lattice coordination,34,35 although it is common
to use the same results also for lattices with finite coordination
numbers, hence the name Gutzwiller approximation.

Within the Gutzwiller approximation, the average value of
the Hamiltonian (1) on the wave function |�(t)〉 can be shown

to coincide with the average on |�0(t)〉 of the Hamiltonian

H∗(t) = −t
∑

<ij>σ

Ri(t) Rj (t) (c†iσ cjσ + H.c.)

+ 1

2

∑
i

∫
dx (U + 2gx) |φ0i(x,t)|2

+ ω

2

∑
i

∑
n=0,1

∫
dx φni(x,t)∗ h(x) φni(x,t) , (3)

where h(x) = (−∂2
x + x2). The parameters

Ri(t) =
∫

dx[φ1i(x,t)∗φ0i(x,t) + c.c.], (4)

are commonly interpreted as the amplitudes of quasiparticles at
sites i, hence H∗ as their effective noninteracting Hamiltonian
with renormalized hopping tij (t) ≡ Ri(t)Rj (t) t .

The variational principle that we assume is the saddle point
of the action S = ∫

dt L(t), i.e., δS = 0, whose Lagrangian is

L(t) = i〈�(t)|�̇(t)〉 − 〈�(t)| H |�(t)〉, (5)

which, within the Gutzwiller approximation,25 reads simply

L(t) = i
∑

i

∑
n=0,1

∫
dx φni(x,t)∗ φ̇ni(x,t)

+ i〈�0(t)|�̇0(t)〉 − 〈�0(t)|H∗(t)|�0(t)〉. (6)

We define on each site i a normalized two-component spinor

|	i〉 = 	i(xi) ≡
(

φ1i(xi)

φ0i(xi)

)
, (7)

so that

〈	i |(. . .)|	i〉 =
∫

dx 	i(x)† (. . .) 	i(x)

and further introduce Pauli matrices σa , a = x,y,z, which act
on the two components of the spinor. With the above notations,
the saddle point equations read

i|	̇i〉 = ω

2
h(x)|	i〉 − t

n.n. of i∑
j

Rj wij σ x |	i〉

+ 1

4
(U + 2gx) (1 − σ z)|	i〉, (8)

i|�̇0〉 = H∗|�0〉, (9)

where

Ri = 〈	i |σx |	i〉, (10)

wij =
∑

σ

〈�0|(c†iσ cjσ + H.c.)|�0〉. (11)

It is worth noticing here that, when the electron-phonon
interaction vanishes, the two subsystems decouple and the
above dynamics reduces, for the electronic degrees of freedom,
to the one studied in Ref. 24 for the simple Hubbard model. In
the general case, one has to integrate the equations of motion
starting from initial values for the spinor wave functions and
the Slater determinant. In order to integrate the spinor part,
we follow the approach outlined in Ref. 32 and project each
component on the basis of eigenfunctions of the harmonic
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oscillator, the Hermite functions ϕn(x), namely, we write for
ν = 0,1,

φν(x,t) =
∞∑

n=0

cν
n(t) ϕn(x) (12)

and obtain time-dependent equations for the complex coeffi-
cients cν

n(t) by plugging this expansion into Eq. (8). In practice,
we truncate the basis set to a finite number of coefficients
n = 0, . . . ,Nb and check that convergence is guaranteed by
choosing Nb � 60. All calculations that are presented here
have been performed on a cubic lattice using U = 12t and
the phonon frequency ω = t . An important scale of energy is
the value of the critical Uc at the equilibrium Mott transition
in the absence of phonons. In the cubic lattice and within the
Gutzwiller approximation Uc = 16t , whose inverse we shall
use as the unit of time. As we mentioned, the Eqs. (8)–(11)
are strictly valid only in lattices with infinite coordination
numbers, therefore our use in a cubic lattice is just an
approximation.

A. The Gutzwiller approximation as a mean-field theory

Equations (9) and (8) resemble time-dependent mean-field
equations, with the Schrœdinger-like evolution of |�0〉 that
depends implicitly on the average values of selected operators
over the wave functions |	i〉, and vice versa for the latter ones.
Indeed, one recognizes readily that, given the Hamiltonian

HI = −t
∑
〈ij〉σ

σ x
i σ x

j (c†iσ cjσ + H.c.)

+ 1

4

∑
i

(U + 2gxi)
(
1 − σ z

i

) + ω

2

∑
i

(
p2

i + x2
i

)
,

(13)

where σa
i , a = x,y,x, are Ising variables defined on each site

i, and assuming a factorized wave function

|�I 〉 = |Ising+phonons〉 × |electrons〉, (14)

where

|Ising+phonons〉 =
∏

i

|Ising+phonons〉i ,

the same variational principle δS = 0 that we applied before
would lead right to Eqs. (9) and (8). The Hamiltonian (13) thus
extends to the Hubbard-Holstein model the mapping derived
in Ref. 25 for the simple Hubbard model. We just recall that
the mapping states that, if Z is the partition function of the
original model with the Hamiltonian H of Eq. (1), and ZI that
one of the Hamiltonian HI of Eq. (13), then, in the limit of
infinite coordination lattices and at particle-hole symmetry,

Z =
(

1

2

)N

ZI , (15)

where N is the number of sites.25 Essentially, the mapping
demonstrates that the constraint required to implement the so-
called slave-spin representation of the Hubbard model36–38 is
actually unessential in the limit of infinite lattice-coordination
and at particle-hole symmetry. The advantage of dealing with
HI instead of the original Hamiltonian is that it provides a

simple framework to disentangle already at the mean-field
level the quasiparticle degrees of freedom, the fermionic
operators, from the Hubbard bands, the Ising variables.

The chosen factorization (14), where the phonon degrees
of freedom are entangled with the Hubbard bands and both
influence in a mean-field fashion the quasiparticles, is actually
inspired by the DMFT result that, for large repulsion and
weak electron-phonon coupling, phonon signatures are hardly
visible in the quasiparticle spectrum but quite evident in the
Hubbard bands.39 Different choices could be more appropriate
in different contexts or easier to deal with, as the extreme
factorization |�I 〉 = |Ising〉 × |phonons〉 × |electrons〉.

III. RESULTS

We shall now analyze the time-dependent mean-field
equations (9) and (8) that describe within t-GA the evolution
of a variational wave function under the action of the Hubbard-
Holstein Hamiltonian, or equivalently the Hamiltonian (13).

We will assume that the pump that drives the system out
of equilibrium is selective in the sense that it only injects
energy in the Hubbard bands, i.e., in the Ising subsystem,
specifically increasing the concentration of doubly occupied
sites (doublons), hence of empty sites (holons) because of
particle conservation. In the Ising language, it corresponds to
assuming that initially the average values of σ z

i are lower than
those at equilibrium. We note that the equilibrium conditions
are obtained by replacing the time-dependent mean-field
equations (9) and (8) with stationary mean-field equations. In
particular, the equilibrium values of |	i〉 are the lowest energy
eigenstates of the right-hand side of Eq. (8), which must be
self-consistently determined since the effective Hamiltonian
depends on Rj = 〈	j |σx |	j 〉.40

As we mentioned earlier, in real experiments the light
pulse couples via the vector potential to both Hubbard bands
and quasiparticles. Therefore the above assumption is only
an approximation, whose validity we intend to weight up in
the near future, while, in the present work, we shall keep
assuming that the initial state is just characterized by an
out-of-equilibrium equal population of doublons and holons.
We will consider first the case in which such a population is
uniformly distributed over the whole sample and next move to
inhomogeneous situations.

A. Whole bulk driven out of equilibrium

Let us therefore consider the Hubbard-Holstein Hamilto-
nian (1) at half-filling and assume that the system is initially
prepared with a uniform concentration of doublons and holons
higher than at equilibrium. The system is then let evolve, its
time evolution being approximated within t-GA by Eqs. (9)
and (8). This case is actually similar to the quench described
in Ref. 24; the new ingredient being just the electron-phonon
coupling.

We first need to determine the equilibrium condition
in the presence of the electron-phonon coupling. This is
accomplished by a self-consistent iterative mapping method
similar to the one described in Ref. 41. The outcome is a
homogeneous wave function, with the same spinor at any site,
and the Slater determinant that is just the uniform ground state
of the hopping energy. The concentrations of doublons and
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holons are then artificially augmented by the same amount,
while keeping the phonon wave-function unaltered. This is
accomplished by the scale transformation φ0(x) → λ0φ0(x)
and φ1(x) → λ1φ1(x), with λ0 > 1 and λ1 < 1 such that
normalization is maintained,∫

dx λ2
0|φ0(x)|2 + λ2

1|φ1(x)|2 = 1,

but the concentration of doubly occupied and empty sites is
increased. The system is then allowed to evolve as previously
explained. The novelty with respect to Ref. 24 is that we
can now monitor how the energy, initially injected in the
electron subsystem only, is transferred to phonons. We note
that because translational symmetry is preserved by the
time evolution, the effective Hamiltonian H∗(t) in Eq. (3)
has Ri(t) = Rj (t) = R(t), ∀i,j , hence describes at all times
a simple tight-binding model with uniform time-dependent
nearest-neighbor hopping. As a result, the Slater determinant
that is initially the lowest energy eigenstate of the hopping,
does not change in time, hence cannot provide dissipative
channels for the spinor evolution. For this reason, the dynamics
of both electronic and phononic observables lack relaxation to
a steady state but rather shows undamped coherent oscillations.
Still, as shown in Ref. 24, the mean-field dynamics captures
important features of the nonequilibrium problem and provides
a qualitatively correct picture of the short-to-intermediate time
dynamics.

In Fig. 1, we plot the time evolution of the renormalization
factor Ri(t) = R(t), Eq. (10), which shows two distinct
regimes of oscillations depending on the amount of doublons
injected, δD, which measures the strength of the nonequilib-
rium perturbation and that we define as δD ≡ D(t = 0) − Deq,
with D(t = 0) the initial value and Deq the equilibrium one.

For small perturbations, R oscillates around a finite average,
while, upon increasing δD above a threshold, it oscillates from
−1 to +1, with average zero. In the Ising model language of
Sec. II A, this behavior is representative of the transition from
the ordered phase, 〈σx〉 = 0, to the disordered one, 〈σx〉 = 0.
A similar dynamical transition was observed in Ref. 24 for
the pure Hubbard model without electron-phonon coupling.
The mean-field coherent oscillations, although artificial, reflect
the real tendency of the system to be trapped into long-lived
prethermal metastable states whose properties are correctly

FIG. 1. (Color online) The time evolution of the parameter Ri =
R, Eq. (10) for two different concentrations δD of injected doublons,
one below and the other above the critical point, see Fig. 2. Below
the critical point, δD = 4% (blue curve), R oscillates around a finite
value, while, above, δD = 17% (red curve), it oscillates between + 1
and −1 with zero average.

FIG. 2. (Color online) The time average value of the percentage
of doubly occupied sites as a function of the percentage δD of
doublons, hence holons, injected in the initial state with respect to
the equilibrium value. We plot three values of the electron-phonon
couplings, g = 0 (black), g = 0.1t (blue), and g = 0.2t (red). Larger
g correspond to more pronounced kinks near the critical point, which
is identified by the point at which the double occupancy drops down.

captured by the long-time averages of the mean-field dynam-
ics.

With this insight, we plot in Fig. 2 the time-averaged
double occupancy as a function of the concentration of injected
doublons δD. The first observation is that the electron-phonon
interaction does not change qualitatively the behavior with
respect to the Hubbard model alone, see Ref. 24; namely,
we still find two distinct regimes separated by a critical
point where the double occupancy goes to zero, although
numerically we cannot hit the precise value when this occurs.
We note that the location of the critical point is not appreciably
affected by phonons because of the tiny electron-phonon
coupling (g2/ω ∼ 10−3 U ).

We find that the transition occurs right when the initial
energy happens to coincide with the equilibrium energy at the
Mott transition,24,31 which is simply the zero-point energy of
the phonons for our model Hamiltonian (1) and within the
Gutzwiller approximation. In fact, one readily realizes that
Eqs. (8) and (9) admit another stationary point besides the one
that corresponds to the equilibrium condition, namely, φ0(x) =
0 hence R = 0, with energy just ω/2. We finally mention that,
unlike in the absence of phonons,24 here the critical point is
not associated to an exponential relaxation toward a stationary
state that seems to be a characteristic of integrable dynamics,31

which is presumably not our case.
We now move our attention to the phonon sector, in order to

unveil the entanglement between the electrons and the lattice as
the former are driven out of equilibrium. A natural quantity to
look at would be the average lattice displacement 〈xi〉, which,
however, is constrained to be zero on average by particle-hole
symmetry. Still, we can define as a measure of the effective
displacement the average of the operator qi ≡ xi(ni − 1),
which is just the electron-phonon coupling operator. In Fig. 3,
we plot the relative variation of the time-averaged effective
displacement

q∗ = lim
τ→∞

1

τ

∫ τ

0
dt 〈qi(t)〉, (16)
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FIG. 3. (Color online) The time average value of the lattice
distortion, defined as the relative variation with respect to the
equilibrium value, as function of the percentage of doublons δD

injected in the initial state with respect to the equilibrium value. The
curve that is more singular near the critical point corresponds to
g = 0.1t (blue), the other to g = 0.2t (red).

i.e., (q∗ − qeq)/qeq, where qeq is the equilibrium value, as
a function of the concentration of injected doublons. We
note that, at small concentrations, the displacement is mostly
unchanged from its equilibrium value. However, for higher
concentrations past the critical point, the displacement starts
increasing substantially; a growing distortion being a way to
store the initial excess energy.

Although the gross behavior seems not to be affected
by phonons, there are details that feature their presence. In
particular, we note some anomalies, tinier in Fig. 2 and more
visible in Fig. 3. These anomalies appear when the oscillation
frequency of the electronic dynamics, which decreases on
approaching the critical point, hits the renormalized phonon
frequency, or a multiple of it. Since the latter is small,
these resonances occur near the critical point. This is evident
in Fig. 4, where we draw by a color plot the spectral
decomposition of the time evolutions both of the double
occupancy and the phonon distortion as a function of the
concentration of injected doublons and of the frequency of the
signal. In particular, we observe the avoided crossing between
the two lowest frequencies around δD ∼ 5% that causes the
kink visible in Fig. 2. Among these two frequencies, the
lowest one is visible mostly in the dynamics of q(t), hence
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FIG. 4. (Color online) Color plot of the Fourier transform (in
arbitrary units) of the time evolutions of the double occupancy and
the effective phonon distortion, as a function of the concentration of
injected doublons and of the frequency in units of Uc.

FIG. 5. (Color online) Slab geometry for simulating the hypo-
thetical experiment in which only the surface layer is driven out of
equilibrium.

can be regarded as a renormalized phonon frequency that blue
shifts upon increasing δD, i.e., the energy injected into the
system. As we mentioned, the transition point in this case
is not associated to a simple exponential relaxation as in the
absence of phonons.24 This is evident in the Fourier spectrum
of Fig. 4, which shows that the time signal is characterized
by many different oscillatory components also nearby the
transition, thus preventing us from identifying unambiguously
a diverging time scale. However, the observation that the
transition is associated, in the Ising language, to a dynamical
order-to-disorder transition, suggests that such a time scale
should exists, even though we are unable to extract it.

B. Surface driven out of equilibrium

Let us now consider a slab geometry as depicted in Fig. 5,
denoting by z the direction perpendicular to the surface, which
lies in the xy plane. This setting allows us to mimic the
nonequilibrium dynamics across a correlated heterostructure
that has recently attracted experimental interest.29 We consider
a system described by the Hubbard-Holstein model and
consider a perturbation acting only at the surface layer by
triggering an out-of-equilibrium population of doublons and
holons, while keeping the bulk in its equilibrium ground-state
configuration. This initial state is then let evolve and its time
evolution is approximated by the Eqs. (9) and (8).

This particular geometry has the additional complication
that, at equilibrium, the optimized |	i〉 are layer dependent
and the optimized Slater determinant is not uniform anymore.
Therefore the first step we need to undertake is solving the
equilibrium problem, which we accomplish by the method
developed in Ref. 41. Because of the slab geometry, we can
choose a basis of single-particle wave functions for building
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the Slater determinant defined by

ψεk(r,i) = eik·r
√

A
ψεk(i),

where r is the space coordinate and k = (kx,ky) the momentum
in the xy plane, which is assumed to contain A lattice sites,
while i = 1, . . . ,N is the layer index, and typically, we used
N = 100 layers. Since there is translational symmetry in the
xy plane, we can choose the spinor |	i〉 to depend only on the
layer index i. Then, the stationary solution of Eqs. (8) and (9)
amounts to solve at fixed Ri the eigenvalue problem

ε ψεk(i) = t R2
i εk ψεk(i) − t Ri

∑
a=±1

Ri+a ψεk(i + a), (17)

where εk = −2(cos kx + cos ky) with the boundary condition
ψεk(0) = ψεk(N + 1) = 0. The lowest energy eigenfunctions
ε < εF , εF = 0 because of particle-hole symmetry, are then
used to define the Slater determinant |�0〉 and the average
hopping between layer i and i + a,

wi→i+a = 1

A

∑
ε<0

∑
k�ε<0

[ψεk(i)∗ψεk(i + a) + c.c.], (18)

as well as the average hopping within layer i,

wi→i = 1

A

∑
ε<0

∑
k�ε<0

εk |ψεk(i)|2. (19)

These parameters are used to solve the spinor eigenvalue
problem

E|	i〉 = ω

2
h(x)|	i〉 − tRi wi→i σ

x |	i〉

− t
∑
a=±1

Ri+a wi→i+a σ x |	i+a〉

+ 1

4
(U + 2gx)(1 − σ z)|	i〉, (20)

whose lowest energy solution defines new parameters Ri =
〈	i |σx |	i〉 that are used to solve again Eq. (17) and so on,
until convergence is reached.40,41

The breaking of translational symmetry by the presence of
the surfaces is actually amplified by electron correlations that
create a surface dead layer,41,42 with suppressed double oc-
cupancy, hence reduced hopping renormalization parameters
Ri . The dead layer penetrates inside the bulk over a length
proportional to the Mott-transition correlation length.41,42

Given this starting state, we suddenly increase the popula-
tion of doublons and holons on the first layer i = 1 and let the
system evolve. Essentially, we simply turn Eqs. (17) and (20)
into self-consistent nonlinear time-dependent Schrœdinger
equations that we solve numerically. Unlike in the homoge-
neous case of Sec. III A, here the Slater determinant evolves
with time because the wave functions ψεk(i,t) acquire a non-
trivial time dependence, which provides additional dissipative
channels that were previously absent. In other words, the
hopping parameters wi→i+a(t) and wi→i(t) defined in Eqs. (18)
and (19) become time-dependent and influence the evolution
of |	i〉, see Eq. (20), which in turns affects ψεk(i,t) via the
parameters Ri(t).

The mutual feedback between |�0〉 and the |	i〉’s brings
about a nontrivial dynamics much richer than in the example

FIG. 6. (Color online) Time evolution of the percentage of doubly
occupied sites on three different layers, indicated in the figure, for
small percentage of injected doublons. The time is measured in units
of the inverse of Uc. The simulation is performed with a slab of 100
layers.

discussed in Sec. III A. Nevertheless, even in this case, we do
find two completely different dynamical behaviors, depending
on the amount of injected doublons.

For small values, the perturbed surface layer is able to relax
by dissipating its excess energy inside the bulk, see Fig. 6.
Indeed, the time-average values of the double occupancies on
each layer tend toward their equilibrium values, which, as we
mentioned, are lower the closer the layer to the surface. We
emphasize that here, as opposed to the previous case and to
the case of global quantum quenches, the perturbation is local
and the energy injected does not scale with the system size.
As a result, the relaxation dynamics we find in this regime
is toward the equilibrium ground state and no heating or
finite-temperature effects are expected in the long-time limit.
This is a specific example of a local quantum quench and shows
that our time-dependent Gutzwiller approximation, with the
above mentioned feedback between variational parameters and
Slater determinant, is able to describe thermalization. We also
mention that, working with a finite-size geometry, recurrence
effects are present at long enough times, when the perturbation
reaches the opposite surface and starts oscillating back and
forth. In particular, we find that the perturbation propagates
ballistically with a large speed that seems to be controlled by
the bare value of the hopping. For this reason, we cannot really
reach the equilibrium state, which would be, e.g., signaled by
the second layer double occupancy in Fig. 6 reaching the same
value as at the initial time t = 0, because the perturbation
hits the opposite end of the slab before equilibration sets in.
We expect that by taking the thermodynamic limit in the
z direction, these finite-size effects will be washed away.
Nevertheless, even for finite lengths the relaxation and the
trend toward equilibrium are clearly evident.

Upon increasing the concentration of injected doublons a
different dynamical behavior emerges. In particular, above
a certain threshold, the excitation remains trapped near the
surface, see Fig. 7. This is quite remarkable because, as we
mentioned, the Slater determinant now adjusts to the spinors
|	i〉 during the time evolution, hence could, in principle,
absorb the excess energy and transfer it in the interior of the
bulk. What actually happens is that the parameters Ri and
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FIG. 7. (Color online) Same as Fig. 6 at higher percentage of
injected doublons.

Ri+1 of adjacent layers interfere destructively, i.e., oscillate out
of phase, at some i near the surface, effectively suppressing
the quasiparticle interlayer hopping tii+1 = Ri Ri+1 t , hence
cutting layer i from the rest of the bulk. In the particular case
that Fig. 7 refers to, it is actually the first layer, i = 1, that
decouples from the rest of the slab, a consequence of having
injected energy only in such a layer that already at equilibrium
is poorly connected to the bulk. In the Ising language of
Sec. II A, this behavior is easier to comprehend. Essentially,
the Ising order parameter R1 = 〈σx

1 〉 starts to oscillate between
+1 and −1 with vanishing average, signaling that layer 1
is driven into the symmetric phase. The order parameter of
layer 2, R2 = 〈σx

2 〉, also oscillates but around a small yet finite
value. However, because the oscillations are not synchronized,
R1 · R2 averages to zero; the first layer decouples effectively
from the second. This anomalous trapping exists also in the
absence of electron-phonon coupling, hence it is primarily
an electronic effect, presumably the dynamical counterpart
of the surface dead layer at equilibrium.41,42 What changes
at finite electron-phonon coupling is that this phenomenon is
accompanied by a lattice deformation, also localized on the
uppermost layers, see Fig. 8.

The physical picture that emerges can be visualized much
better by the long-time layer-dependent profiles of the per-
centages of doubly occupied sites and of the distortion, shown
in Fig. 9. We observe that the deviations of both quantities

FIG. 8. (Color online) The lattice distortion on three different
layers with the same amount of injected doublons as in Fig. 7.

FIG. 9. (Color online) The percentage of doubly occupied sites
and of the lattice distortion at each layer at very long times.

with respect to equilibrium are indeed concentrated just near
the surface, while the bulk is practically unaffected. Also
instructive are the profiles of the intralayer and interlayer
hopping renormalization factors, R2

i and Ri Ri+1, shown in
Fig. 10. We note that the first layer has a much larger hopping
renormalization factor R2

1 than at equilibrium, when it would
be very small due to the dead layer phenomenon.41,42 However,
this layer is practically decoupled from the second layer, R1 R2

being vanishingly small.
We end by mentioning that, in contrast to the case of

Sec. III A, the two different regimes that we observe seem not
to be separated by a genuine dynamical critical point, but rather
by the dynamical counterpart of a first-order phase transition.
Indeed, in the intermediate regime, the system does not show
a well defined behavior but instead oscillates between the two
distinct phases above. Right for the same reason, we cannot
state that the change of behavior occurs when the energy stored
in the first layer is that of a Mott insulating layer. However,
what we can definitely state, especially in view of the Ising
analogy of Sec. II A, is that what we observe is a genuine
surface dynamical-phase transition, presumably first order as
far as we can judge.

FIG. 10. (Color online) The intralayer, bottom panel, and inter-
layer, top panel, hopping renormalization factors at long times.
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IV. CONCLUSIONS

In this work, we have studied the real time dynamics of
the Hubbard-Holstein model at half-filling by a very simple
extension of the Gutzwiller approximation in two different
toy cases: (i) a bulk system is prepared with an equal out-of-
equilibrium population of doubly occupied and empty sites and
let evolve in time, and (ii) a slab is considered and it is assumed
that only the surface layer is initially driven out of equilibrium.

In case (i), we find similar results as in the quantum quench
of the pure Hubbard model: a dynamical critical point that
separates two different regimes. The novel feature introduced
by the phonons is the presence of a substantial phonon
displacement that occurs for large enough deviation from
equilibrium, a remarkable outcome in that the electron-phonon
coupling we consider is extremely small as compared with the
Hubbard repulsion.

In the slab geometry (ii), we still find two dynamical
behaviors, although this time without a true dynamical
transition in between. If the energy injected at the surface
is below a threshold, it is able to flow within the bulk and
the system seems to relax toward the equilibrium ground state
with the dead layer near the surface.41,42 On the contrary, if the
excess energy at the surface exceeds that threshold, it does not
succeed anymore to flow in the bulk and remains concentrated
practically at the surface, bringing about a substantial phonon
displacement. Surprisingly, we find that the first layer has
a larger hopping renormalization factor than at equilibrium,
which can be sustained because the layer effectively decouples
from the rest of the system. However, we can not conclude that
such an enhancement corresponds to an increased metallicity,
which would be indeed a remarkable result. In fact, we tend to
believe that the hopping renormalization as defined within the
Gutzwiller approximation is a measure of the whole, coherent
plus incoherent, single-particle spectrum at low energy, not
just of the quasiparticle coherent contribution alone. Therefore,
what we feel safe to state is just that the low-energy spectral
weight grows in the first layer, whatever being its nature.

We cannot exclude that such a long-lived localized excita-
tion could indeed correspond to some kind of exciton already

present in the equilibrium spectrum, which can be unveiled by
our variational technique only because we are exploring the
dynamics. It is also plausible that such a localized excitation
exists just in correspondence with the surface dead layer,41,42

where the low-energy spectral weight is negligible hence there
is room for excitons inside the preformed Mott-Hubbard gap.
Indeed, if we repeat the calculation by pumping energy on a
layer inside the slab, we do find a similar behavior but for
much higher values of the concentration of injected doublons.
Therefore we tend to believe that, should a Mott exciton exist,
it would be more likely visible on the surface dead layer. It
is as well possible that our finding is actually related to the
debated issue about the lifetime of doublons in the strongly
interacting Hubbard model,9,22,43 which could also be the clue
to understand the lack of thermalization of highly excited
states when correlation is strong. Further investigations with
different and complementary approaches are needed to clarify
these interesting issues.

Finally, we think it is worth discussing how it could be
possible to detect experimentally such a surface trapping. In
principle, for a laser pump with grazing incidence, only the first
uppermost surface layers are effectively excited. If the fluence
is high so that the injected energy per unit area is large enough,
it could be possible to drive the surface layers sufficiently far
from equilibrium to observe the phenomenon. In this case,
we expect that more than a single layer should be involved.
Nevertheless, if the incident angle between the probe beam
and the surface can be varied, one could discriminate between
the response of the surface layers and the bulk ones, hence
observe what we predict.
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