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Effective electric and magnetic properties of metasurfaces in transition from crystalline
to amorphous state
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In this paper we theoretically study electromagnetic reflection, transmission, and scattering properties of
periodic and random arrays of particles which exhibit both electric-mode and magnetic-mode resonances. We
compare the properties of regular and random grids and explain recently observed dramatic differences in
resonance broadening in the electric and magnetic modes of random arrays. We show that randomness in the
particle positioning influences equally on the scattering loss from both electric and magnetic dipoles, however,
the observed resonance broadening can be very different depending on the absorption level in different modes as
well as on the average electrical distance between the particles. The theory is illustrated by an example of a planar
metasurface composed of cut-wire pairs. We show that in this particular case at the magnetic resonance the array
response is almost not affected by positioning randomness due to lower frequency and higher absorption losses
in that mode. The developed model allows predictions of behavior of random grids based on the knowledge of
polarizabilities of single inclusions.
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I. INTRODUCTION

Metamaterials are artificial composite materials which
possess unusual electromagnetic properties not normally
found in natural materials.1 Electromagnetic properties of
nanostructured metamaterials in the optical range are one of the
foci of interest in modern electromagnetics.2–7 Traditionally,
metamaterials and metasurfaces composed of small individual
resonant inclusions are realized as periodical arrays.8–13

However, most recently, random or amorphous metamaterials
start to attract attention, see Refs. 14–21. This is due to
novel technological possibilities to manufacture amorphous
structures cheaply and on a large scale, using advanced
self-assembly techniques. In addition, effects of strong spatial
dispersion (often undesirable) can be in some cases suppressed
in disordered structures. It is generally accepted that the elec-
tromagnetic properties of both regular and random arrays of
scatterers are quite similar if the distances between inclusions
are electrically small. The main difference in electromagnetic
response comes from scattering on the lattice inhomogeneities.
This apparently results in additional loss in amorphous
metamaterials, and for this reason regular metamaterial lattices
have been the preferred choice if low-loss response is desired.

However, it appears that in metamaterial structures exhibit-
ing resonant responses in several modes, the effects due to
position randomness of inclusions are more complicated. In
a recent paper14 by Helgert et al. reflection and transmis-
sion properties of regular and random (amorphous) planar
arrays of cut-wire particles were studied both numerically
and experimentally. Specially introduced position disorder of
individual scatterers allowed us to study the effect of distortion
of periodicity on the electromagnetic response of the array.
It was found that position randomness drastically affects the
electromagnetic behavior at the electric resonance, but makes
little impact at the array properties near the magnetic resonance
of the particles. These results were validated by numerical
simulations and confirmed in posterior work.15

The authors of Ref. 14 put forward a hypothesis that the
discovered dramatic difference between scattering properties

in electric and magnetic modes is caused by difference in
electromagnetic interactions between particles in different
modes. It was based on an observation that magnetic dipoles as
well as electric quadrupoles do not generate tangential electric
fields in the array plane, and it was assumed that this means
that magnetic scatterers are not interacting with each other, so
that the exciting field acting on a single particle is solely the
external illumination. On the other hand, the electric-dipole
scatterers interact strongly and the exciting field is affected by
positional disorder, which leads to resonance broadening and
damping. However, from the duality principle it is known that
in fact magnetic dipole particles interact via their magnetic
fields exactly as strongly as electric dipoles interact via their
electric fields, which means that the phenomenon discovered
in Ref. 14 must have some other physical reasons.

The goal of this paper is to study the phenomenon of
resonance damping and broadening theoretically and explain
the strong differences in resonance broadening in different
resonant modes. To this end, we analytically study the effect
of positional randomness on electromagnetic behavior of grids
of resonant particles which can exhibit both electric and
magnetic resonant responses. We introduce a simple model
which allows us to analyze the reflective, transmitting, and
absorptive properties of multiresonant grids, both in the regular
and amorphous states. The theory is confirmed by numerical
simulations using an example of the same metasurface as
that studied in Ref. 14. The results reveal the mechanisms
of resonance broadening and damping in amorphous struc-
tures and explain the earlier discovered differences in the
cases of electric (symmetric) and magnetic (antisymmetric)
resonances. Understanding physical phenomena which define
the differences between effective electromagnetic responses of
regular and disordered metamaterials is urgently needed before
the emerging amorphous metamaterials can find applications.
Developing analytical models of disordered structures will al-
low the design and optimization of future composite materials
with desired performance.
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II. ANALYTICAL THEORY OF PLANAR ARRAYS
WITH ELECTRICALLY AND MAGNETICALLY

RESONANT INCLUSIONS

Let us consider an optically dense planar array of optically
small resonant particles excited by normally incident plane
waves. We assume that the distance between the particles in
the grid a is smaller than the wavelength. We are interested in
the case when each particle exhibits both electric and magnetic
responses, that is, both electric and magnetic moments are
induced by local electric and magnetic fields, respectively. We
also assume that bi-anisotropic magnetoelectric coupling is
either forbidden due to the particle symmetry or it is negligible.
Many widely studied infra-red and optical metamaterial struc-
tures like the cut-wire pairs considered in Ref. 14 belong to
this class. In this paper we consider only electric and magnetic
dipole moments of particles, neglecting quadrupoles and
higher-order moments, concentrating on the influence of array
randomness on the reflection and transmission coefficients.
Relative strengths of dipolar and higher-order effects in cut-
wire pairs have been analyzed in Ref. 22.

Assuming for simplicity that no cross-polarized dipole
moments in the array plane are induced (the particles have
the form of disks or squares, for example) and considering
the excitation by normally incident plane waves, we can write
the relations between the induced electric dipole moment p,
magnetic dipole moment m, and the incident fields Einc and
Hinc as scalar relations

p = αee(Einc + βeep), m = αmm(Hinc + βmmm). (1)

Here αee and αmm are the electric and magnetic polarizabilities
of individual inclusions, respectively. Parameters βee and βmm

are called interaction constants and they measure contributions
of the fields created by all other particles of the array into the
local field Eloc = Einc + βeep exciting each particle (see, e.g.,
Ref. 23). The interaction constants for electric and magnetic
dipoles are related simply as

βmm = 1

η2
0

βee, (2)

where η0 = √
μ0/ε0 is the wave impedance of the surrounding

space. Fields created by magnetic dipoles do not contribute to
the electric local field exciting electric dipoles because the
tangential component of the electric field of the magnetic
dipole grid equals zero in the array plane. Likewise, fields
scattered by electric dipoles do not excite magnetically
polarizable particles positioned in the same plane. Most often,
both moments are actually induced in the same particles, but
the two modes have resonances at different frequencies.

Next we calculate the plane-wave electric fields created
by the surface averaged electric current sheet Je = − iωp

a2 and
the magnetic current sheet Jm = − iωm

a2 (the harmonic time
dependence assumption is of the form e−iωt and a is the period
of the grid):

Ee
ref = −η0

2
Je, H m

ref = − 1

2η0
Jm, (3)

Em
ref = −η0H

m
ref, Eref = Ee

ref + Em
ref . (4)

Here Ee
ref and Em

ref are reflected electric fields created by the
induced electric and magnetic currents Je and Jm, respectively,

and H m
ref is the reflected magnetic field created by the induced

magnetic current Jm. Solving (1) for the induced dipole
moments in terms of the incident fields and using (3) and
(4) we find the reflection and transmission coefficients in the
simple form

R = Eref

Einc
= Re+ Rm = iωη0

2a2

1
1

αee
− βee

− iω

2η0a2

1
1

αmm
− βmm

,

(5)

T = 1 + Re − Rm. (6)

Note that the minus sign before the last term in (5) and (6) is
due to the electric field definition of the partial reflection and
transmission coefficients Re = Ee

ref/Einc and Rm = Em
ref/Einc.

Here we have used the plane-wave relation between the
electric and magnetic incident fields: Hinc = Einc/η0. The two
partial reflections coefficients Re and Rm correspond to the
fields created by the induced electric and magnetic currents,
respectively. Since βee has the dimension of 1/(ε0a

3) and βmm

has the dimension of 1/(μ0a
3), it is convenient to multiply

and divide the reflection coefficients by ε0a
3 or μ0a

3. The
result is

Re = ik0a

2

1
ε0a3

αee
− β

, (7)

Rm = − ik0a

2

1
μ0a3

αmm
− β

, (8)

where k0 = ω
√

ε0μ0 is the wave number in the surrounding
space. The normalized dimensionless interaction constants are
the same for both electric and magnetic particles, and we
denote them as β:

β = ε0a
3βee = μ0a

3βmm. (9)

Let us assume a simple Lorentz-type resonant response model
of individual particles. This type of resonant response is very
common and approximates very well the particle response
near their resonances. Let us write down the inverse values of
the normalized polarizabilities to make it easy to discuss the
radiation loss factor:

ε0a
3

αee

=
(

Ae

ω2
0e − ω2 − iω�e

)−1

− i
k3

0a
3

6π
, (10)

μ0a
3

αmm

=
(

Am

ω2
0m − ω2 − iω�m

)−1

− i
k3

0a
3

6π
. (11)

Here �e,m model the dissipation losses in the particle (in
respective modes), while the last imaginary term is due to the
scattering (reradiation of power) loss.23,24 In case of regular
or “totally random” grids (on the wavelength scale) there
is no scattering loss, when the array period is smaller than
the wavelength. The term “totally random” means a structure
which appears uniform at the scale of the wavelength. This is
possible when the numbers of inclusions inside any area of the
size λ × λ is large and the distances between the inclusions are
small. In this case spherical-wave scattering from individual
particles is suppressed by interactions between the particles
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in the array. Correspondingly, the imaginary parts of the
interaction constants βee and βmm contain terms proportional
to k3

0 which compensate the corresponding terms in the inverse
polarizabilities (see, e.g., Refs. 23 and 25):

βregular = Re(β) − i
k3

0a
3

6π
+ i

k0a

2
. (12)

The other imaginary term corresponds to the plane waves
created by the surface-averaged currents. This term can be
derived from the definition of the normalized interaction con-
stant β = ε0a

3Ee
ref/p, where only the plane-wave component

of the field should be retained. Substituting Ee
ref = − η0

2 Je and
Je = − iωp

a2 we find that this component of the interaction
constant indeed reads β = i(k0a)/2. In case of amorphous
(on the wavelength scale) arrays particles scatter individually,
and there is no corresponding term in the interaction constants:

βamorph = Re(β) + i
k0a

2
. (13)

In the quasistatic limit Re(β) ≈ 0.36 (see Ref. 23).
Next, we substitute these interaction constants and the

Lorentz particle polarizabilities (10) and (11) in the general
formulas for the reflection coefficients (7) and (8). For regular
or totally random (on the wavelength scale) arrays we get

Re regular = i
k0a

2

Ae

ω̃2
0e − ω2 − iω�e − i k0a

2 Ae

, (14)

Rm regular = −i
k0a

2

Am

ω̃2
0m − ω2 − iω�m − i k0a

2 Am

. (15)

Here ω̃0 denotes the resonant frequency shifted due to
interactions between the particles in the grid. In the quasistatic
approximation for the real part of the interaction constant

ω̃2
0e,m ≈ ω2

0e,m − 0.36Ae,m. (16)

For amorphous grids we get

Re amorph = i
k0a

2

Ae

ω̃2
0e − ω2 − iω�e − ik3

0a3

6π
Ae − i k0a

2 Ae

,

(17)

Rm amorph = −i
k0a

2

Am

ω̃2
0m − ω2 − iω�m − ik3

0a3

6π
Am − i k0a

2 Am

.

(18)

Let us consider the case when electric and magnetic resonances
occur at different frequencies. Then in the vicinity of one of
the resonances the nonresonant moment varies weakly with the
frequency and we can find a simple estimation of the resonant
curve width (on the field-strength scale):

2�ωe,m regular = �e,m + k0a

2

Am

ω̃0e,m

(19)

for regular grids and

2�ωe,m amorph = �e,m + k3
0a

3

6π

Ae,m

ω̃0e,m

+ k0a

2

Am

ω̃0e,m

(20)

for amorphous grids.

We now see that if the condition

ω̃0e,m

�e,m

Ae,m

+ k0a

2
� k3

0a
3

6π
(21)

is satisfied, near the corresponding resonant frequency ω̃0e,m

the effect of inclusion position randomness is negligible, and
the response of regular and amorphous structures is nearly
the same. Physically, this condition means that absorption (the
first member of the left-hand side) and coherent plane-wave
reflection (the second member on the left) dominate over
scattering (the right-hand side term). The above relation shows
that this is the case of high dissipative losses, low resonance
strength, and small electrical size of the unit cell. Note that for
the case of negligible absorption, this condition simply tells
that scattering loss is negligible in random arrays if the distance
between particles is optically very small (k2

0a
2 � 3π ).

From the above results we can conclude that the effect of
strong widening of the resonant curve of the electric-dipole
mode and hardly any effect of array randomness on the
magnetic mode discovered in Ref. 14 can be due to two
reasons:

(1) At the frequency of the magnetic resonance the grid
is practically homogeneous on the wavelength scale (“totally
random”). Then the scattering term cancels out just like for
periodical grids, and there is no difference in the resonant
curve widths for regular and amorphous layers.

(2) At the magnetic resonance the particles are considerably
more lossy and weaker excited than at the electric resonance,
that is, (21) is satisfied near the magnetic resonance but not
satisfied near the electric-mode resonance.

III. EXAMPLE: ARRAYS OF CUT-WIRE PAIRS

As an example we consider the cut-wire pair structure which
was studied in Refs. 14, 26, and 27. A unit cell of the infinite
regular array is depicted in Fig. 1. The dimensions are the
same as in Ref. 14. The square lattice has the period of a =
512 nm along two transverse directions. The width of the
cut-wire pairs in both lateral directions is Wc = 180 nm. The
height of each gold pair is Hc = 30 nm. The gap between the
two elements in each pair equals g = 45 nm and it is filled
with a material with the relative permittivity equal to εr1 =
1.72. The structure is placed on top of a substrate with the
permittivity of εr2 = 1.5. The permittivity of gold is taken from
Ref. 28.

First we calculate the reflection and transmission coeffi-
cients for the regular array using the full-wave numerical
simulator Ansoft HFSS. Substituting the numerical data for
reflection and transmission coefficients in (7) and (8) and
using the quasistatic approximation for the real part of the
interaction constants β ≈ 0.36, we extract the polarizabilities
of individual inclusions. The results are shown in Fig. 2, and it
is apparent that the array has electric and magnetic resonances
in different frequency regions, as expected. In fact the array
is weakly bi-anisotropic due to the presence of the substrate
(omega-type magnetoelectric coupling29,30), which has been
neglected in the theory and in the parameter extraction. We
have checked that this approximation is valid by repeating the
simulations and parameter extraction for the same array in free
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FIG. 1. (Color online) Geometry of the unit cell of the cut-wire
array.

space. The results are presented in Fig. 3 and they show that
this simplifying assumption is reasonable: The substrate effect
is quite small. Behavior of the extracted electric and magnetic
polarizabilities is very close to the canonical Lorentz-type
resonant response.

Scattering losses which appear in transition from regular
to amorphous grids we model by the randomness parameter
0 � rn � 1, where unity corresponds to the case where the
scattering loss is completely compensated (regular array) and
rn = 0 means that the scattering loss is not compensated at all
(amorphous array, each inclusion scatters individually). Tran-
sition from regular to amorphous state we model modifying

the interaction constant (12) as follows:

β = Re{β} − rn

ik3
0a

3

6π
+ ik0a

2
, (22)

which corresponds to a continuous transition from (12) to
(13) with rn changing from unity to zero. It should be
noted that for simplicity the randomness factor rn is assumed
to be the same for both electric and magnetic interaction
constants. Due to differences in resonant frequencies, this
means that the same value of rn may correspond to some-
what different degrees of geometrical randomness of particle
positions.

It is clear that in the general case one has to modify
also the real part of interaction constant (Re{β}) in order
to fully consider the effect of randomness on the resonance
broadening and damping. The real part of the interaction
constant measures the reactive part of the interaction field
(near-field coupling with the neighboring inclusions), and its
random fluctuations lead to random shifts of the resonant
frequencies of the particles and broadening of the resonant
curve of the random array. The very good agreement of our
simple model (which ignores this effect) with the experiment
indicates that the effect of this random frequency shift is in
the studied case negligible. Let us estimate these random
variations of the resonant frequency. The frequency shift due
to particle interactions is given by (16), which we write in
terms of the relative shift:

ω̃0e − ω0e

ω0e

≈ −Re{β} Ae

2ω2
0e

. (23)

The resonance strength factor Ae can be estimated from the
known particle polarizability. Expecting formula (10) in the
limit of small frequencies we find that

Ae

ω2
0e

= αee

ε0a3

∣∣∣∣
ω→0

. (24)

This result shows that the frequency shift is determined by the
quasistatic polarizability and the array period: As expected, the
effect is stronger for high polarizabilities and dense arrays. An
important observation is that the polarizability value here is not
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FIG. 2. (a) Electric polarizability of a single cut-wire pair and (b) magnetic polarizability of the same particle.
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FIG. 3. (a) Electric polarizability of a single cut-wire pair in free space and (b) magnetic polarizability of the same particle.

the resonant value but the (small) low-frequency value. Now
we are ready to estimate the effect for our particular example.

The low-frequency value of the normalized polarizability we
find from Fig. 2(a). Substituting that and a = 512 nm, the
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FIG. 4. (Color online) (a) Amplitude of the reflection coefficient. (b) Amplitude of the transmission coefficient. (c) Phase of the reflection
coefficient. (d) Phase of the transmission coefficient for grids with different randomness levels (rn).
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FIG. 5. (Color online) Absorption in the array in transition from
regular to amorphous states.

result is
ω̃0e − ω0e

ω0e

≈ −0.14Re{β}. (25)

For the regular grid Re{β} approximately equals 0.36. Assum-
ing that in random arrays it may have 50 percent deviation from
this value, we come to an estimation of this frequency shift in
the range of 0.02–0.07, which is clearly negligible. The case
of magnetic mode can be considered analogously, but in that
case we cannot use the low-frequency limit of (11) to estimate
Am, because in that limit Am vanishes. However, from duality
we expect that the magnetic-mode frequency shift will be of
the same order as for the electric mode.

Next we investigate how the reflection, transmission, and
extinction change in transition from regular to amorphous
states, using the analytical formulas (7) and (8) with the
extracted values of the polarizabilities and the interaction
constant (22). Figures 4 and 5 show the randomness effects.
One can see that the developed simple model gives very good
agreement with the experimental and numerical data from
Ref. 14. Electrical response of the grid is strongly influenced
by randomness, while close to the magnetic resonance there
is almost no dependence on randomness. The reason for this
phenomenon is the difference in the ratio of the absorption and
scattering losses. Figure 5 shows that in the periodical case the
absorption is much stronger at the magnetic resonance than
at the electric one. Higher losses are mainly due to larger
imaginary part of gold permittivity, which is more than two
times higher at the magnetic resonance: Im(ε)1022 nm ≈ 3.2,
Im(ε)797 nm ≈ 1.5.

In addition, for the case of the grid in free space (Fig. 3) we
have fitted the numerically extracted polarizability curves to
the Lorentz model (10) and (11) and extracted parameters �e,m

and Ae,m. This allowed us to find the values in inequality (21).
At the resonant frequency of the electric polarizability we find
that the left-hand side equals 0.4 + 2.3, while the right-hand
side equals 5.6. Scattering effects are clearly dominating
and position randomness changes the array response quite
significantly. At the resonant frequency of the magnetic
polarizability the left-hand side reads 2.3 + 2, while the right-
hand side equals 3. In this case the terms are of the same order

and the randomness effect is much weaker. Note that condition
(21) is a simple approximation which assumes that the two
resonances are sharp and well separated. In this particular
example, in the frequency region of the magnetic resonance
the electric dipoles in fact give a significant contribution to the
total absorption and coherent reflection.

IV. CONCLUSIONS

In this paper we have developed a simple model which
explains the electromagnetic effects in transition from regular
to random states of resonant particle arrays. We have derived a
general condition under which randomizing particle positions
gives only negligible effects on the reflection and transmission
coefficients and explained the earlier discovered dramatic
differences in resonance damping for electric and magnetic
modes of particles. We have also shown that the physical
phenomena leading to the resonance damping in amorphous
structures are the same for electrically or magnetically polar-
izable particles. The widening of the resonances takes place
due to additional scattering losses, which are compensated in
the case of electrically dense periodical grids.

Studying transition to the amorphous state for a particular
example of cut-wire pairs we have found that the reason for
the much weaker resonance widening and damping in the
magnetic mode is strong absorption in that frequency range.
When scattering losses are much smaller than the dissipation
losses, they make little impact on the total extinction. On the
contrary, at the higher-frequency electric resonance scattering
losses are stronger than the dissipation ones, which leads
to strong resonance damping and distortion in the random
case. In other situations, different transition effects in different
resonant modes can also be caused by differences in the
electrical size of the unit cell. In the considered example, the
array period is comparable with the wavelength, thus, even for
geometrically random positions of the particles with respect
to the cell centers, the array cannot be made homogeneous on
the wavelength scale.

Our findings can have important implications in under-
standing the physical differences in electromagnetic responses
of regular and amorphous structures, in design of various meta-
material structures for such applications as subwavelength
imaging, control of thermal radiation, microwave, terahertz
and optical absorbers, and others. Using the developed model
it is possible to predict and engineer the effects of randomness,
relaxing conventional requirements on strong periodicity
and make use of inexpensive self-assembly techniques in
production of metamaterials.
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