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Composite spin liquid in a correlated topological insulator:
Spin liquid without spin-charge separation
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In this paper, we present an alternative type of insulator, namely composite spin liquid, which can be regarded
as a short-range B-type topological spin-density wave as proposed by J. He et al. [Phys. Rev. B 84, 035127
(2011)]. Composite spin liquid is a topological ordered state beyond the classification of traditional spin liquid
states. The elementary excitations are the “composite electrons” with both spin and charge degrees of freedom,
together with topological spin texture. This topological state supports the chiral edge mode but no topological
degeneracy.
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I. INTRODUCTION

The Fermi liquid based view of electronic properties has
been very successful as a basis for understanding the physics
of conventional solids including metals and (band) insulators.
For band insulators, due to the energy gap, the charge degree of
freedom is frozen. For magnetic insulators with spontaneous
spin rotation symmetry breaking, the elementary excitations
are gapped quasiparticles (an electron or a hole) that carry
both spin and charge degrees of freedoms and the gapless spin
wave (the Goldstone mode). For this case, the global symmetry
is broken from SU(2) down to U(1). Thus the low-energy
effective model is an O(3) nonlinear σ model (NLσM) that
describes long-wavelength spin fluctuations.

However, in some special insulators with spin-rotation
symmetry and translation symmetry, due to a big energy
gap of the electrons, the charge degree of freedom is totally
frozen, and there may be emergent gauge fields and deconfined
spinons (elementary excitations with only the spin degree of
freedom of an electron). These are referred to as quantum
spin liquids.1 Quantum spin liquid states have been pursued
in spin models for more than two decades.2–4 In certain spin
models, the quantum spin liquids are accessed (in principle)
by appropriate frustrating interactions. In general, there are
three types of ansatz of spin liquid: SU(2), U(1), and Z2.3,4

The three different states may have the same global symmetry.
This conflicts with Landau’s theory, in which two states with
the same symmetry belong to the same phase. Since one cannot
use symmetry and order parameter to describe quantum orders,
a new mathematical object—the projective symmetry group
(PSG)—was introduced3,4 to characterize the quantum order
of spin liquid states.

Recently, there have been attempts to find spin liquids in
the generalized Hubbard model of the intermediate coupling
region, e.g., the Hubbard model on a triangular lattice, the
Hubbard model on a honeycomb lattice, and the π -flux
Hubbard model on a square lattice.5–7 In addition, the quantum
spin liquid state near the Mott transition (MI) of the Hubbard
model on a honeycomb lattice has been confirmed by different
approaches.8–14 However, the nature of the spin liquid in
the generalized Hubbard model of the intermediate coupling
region is still a matter of debate.

We found that there may be another type of insulator with
spin-rotation symmetry and translation symmetry, of which

the elementary excitation has both spin and charge degrees
of freedom. We call it composite spin liquid. Composite spin
liquid (SL) can be regarded as short-range B-type topological
spin-density wave (B-TSDW), which is beyond the classifi-
cation of traditional spin liquid states. In a composite SL,
there is no spin-charge separation: the elementary excitation
is a so-called “composite electron”—a spin one-half charge
±e object trapping a topological spin texture (skyrmion or
antiskyrmion). In addition, the composite SL is a topological
spin liquid state with chiral edge states. However, similar to
the case of the integer quantum Hall state, composite SL has
no topological degeneracy for the ground state.

The paper is organized as follows. First, we write down
the Hamiltonian of the topological Hubbard model. Secondly,
we derive the effective O(3) nonlinear σ model with the
Chern-Simons-Hopf (CSH) term to learn its properties. Next,
chiral SL and composite SL are found to be the ground
state of the short-range A-type topological spin-density wave
and the short-range B-type topological spin-density wave,
respectively. Finally, the conclusions are given. In addition,
we compare composite SL with other exotic quantum states
including fractional quantum Hall states, spin liquids, and
topological insulators.

II. MODEL AND MEAN-FIELD RESULTS

The Hamiltonian of the topological Hubbard model on a
honeycomb lattice is given by15–17

H = −t
∑

〈i,j 〉,σ
(ĉ†iσ ĉjσ + H.c.) − t ′

∑
〈〈i,j 〉〉,σ

eiφij ĉ
†
iσ ĉjσ

−μ
∑
i,σ

ĉ
†
iσ ĉiσ + U

∑
i

n̂i↑n̂i↓

+ ε
∑

i∈A,σ

ĉ
†
iσ ĉiσ − ε

∑
i∈B,σ

ĉ
†
iσ ĉiσ . (1)

t and t ′ are the nearest-neighbor and next-nearest-neighbor
hoppings, respectively. We introduce a complex phase φij

(|φij | = π
2 ) to the next-nearest-neighbor hopping, of which

the positive phase is set to be clockwise. U is the on-site
Coulomb repulsion. μ is the chemical potential and μ = U/2
at half-filling. ε denotes an on-site staggered energy and is set
to be 0.15t .
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FIG. 1. (Color online) The dispersion of electrons for t ′ =
0.0288t when U = 0. We can see clearly that at the high symmetry
points, the energy gap is zero and the dispersions look like Dirac
cones.

In the noninteracting limit (U = 0), the ground state is a
Q = 2 topological insulator with a quantum anomalous Hall
effect (QAH) for t ′ > 0.0288t and a normal band insulator
(BI) for t ′ < 0.0288t . At t ′ = 0.0288t, the electron energy
gap closes at high symmetry points in momentum space.
As a result, a third-order topological quantum phase tran-
sition occurs between a QAH and a BI. See the dispersion
of electrons for t ′ = 0.0288t in Fig. 1.

When we consider the on-site Coulomb interaction, the
ground state can be an AF SDW order. We have calculated the
mean-field value of staggered magnetization M that represents
AF SDW order of the topological Hubbard model from the
definition 〈ĉ†i,σ ĉi,σ 〉 = 1

2 [1 + (−1)iσM] in Ref. 15. Based on
the mean-field results, the phase diagram has been obtained
in Fig. 7 of Ref. 15. From the phase diagram we get five
different quantum phases: two are nonmagnetic states with
M = 0: the BI and the QAH; three are magnetic states with
M �= 0: the A-type topological AF SDW state (A-TSDW), the
B-type topological AF SDW state (B-TSDW), and the trivial
AF SDW state.

Let us explain the quantum phase transitions for different
regions of t ′. For t ′ > 0.0288t, the quantum phase transition
between a QAH state and AF SDW order is always second
order. Thus when we raise the interaction strength U, due
to the smooth increase of the staggered magnetization, the
QAH state will turn into the A-TSDW after crossing a
magnetic phase transition, then into the B-TSDW crossing a
topological quantum phase transition, and eventually into the
trivial AF SDW state crossing another topological quantum
phase transition. However, in the region of t ′ < 0.0288t, the
quantum phase transition between a BI and AF SDW order
is first order, which is denoted by the black line in Fig. 7 in
Ref. 15. Due to the jumping of the staggered magnetization,
the BI state will turn into B-TSDW directly and eventually turn
into the trivial AF SDW state crossing a topological quantum
phase transition. In the limit t ′ → 0, the BI state will change
into the trivial AF SDW state directly and there is no
topological state at all. For the case of t ′ = 0.0288t, it is a
semimetal for the weak-coupling limit (U/t < 2.5) without
electron gap. When we raise the interaction strength U, due
to the smooth increase of the staggered magnetization, the
semimetal state will turn into the B-TSDW after crossing a
second-order magnetic phase transition, and will eventually
turn into the trivial AF SDW state crossing a topological
quantum phase transition.

III. EFFECTIVE NLσM FOR MAGNETIC STATES

For the topological Hubbard model on a honeycomb lattice,
there are three different magnetic states: A-TSDW, B-TSDW,
and trivial AF SDW. A question here is whether these three
SDWs with M �= 0 are real long-range AF order. The nonzero
value of M obtained by the mean-field method only indicates
the existence of effective spin moments. It does not necessarily
imply that the ground state is a long-range AF order because
the direction of the spins is chosen to be fixed along the ẑ axis
in the mean-field theory. Thus we will examine the stability of
magnetic order against quantum spin fluctuations of effective
spin moments based on a formulation by maintaining spin
rotation symmetry, σz → � · σ .

By replacing the electronic operators ĉ
†
i and ĉj by Grass-

mann variables c∗
i and cj , in the magnetic state we obtain the

effective Lagrangian with spin rotation symmetry as

Leff =
∑
i,σ

c∗
iσ ∂τ ciσ − t

∑
〈i,j 〉,σ

(c∗
iσ cjσ + H.c.)

− t ′
∑

〈〈i,j 〉〉,σ
eiφij c∗

iσ cjσ −
∑

i

(−1)i�Mc∗
iσ�i · σciσ

+ ε
∑

i∈A,σ

c∗
iσ ciσ − ε

∑
i∈B,σ

c∗
iσ ciσ , (2)

where �M = UM/2, Within Haldane’s mapping, the spins are

parametrized as �i = (−1)ini

√
1 − L2

i + Li .18–23 Here ni is
the Néel vector, |ni | = 1, and Li is the transverse canting field,
which is chosen to be Li · ni = 0.

Then we integrate fermions and the transverse canting field
and obtain the effective NLσM as

Ln = 1

2g

[
1

c
(∂τ n)2 + c(∇ · n)2

]
(3)

with a constraint n2 = 1. The coupling constant g and spin
wave velocity c are defined as

g = c

ρs

, c2 = ρs

χ⊥ . (4)

Here ρs is the spin stiffness and χ⊥ is the transverse
spin susceptibility. The detailed calculations are given in
Appendix A.

The properties of the effective NLσM are determined by
the dimensionless coupling constant α = g�. The cutoff is
defined as � = min(1,�E/c). Here �E is the energy gap of
electrons. In particular, there is a critical point αc = 4π (or
gc = 4π

�
). See the illustration in Fig. 2. The quantum critical

point (QCP) separates the long-range spin order from the short-
range spin order (the quantum disordered state). The dotted
line shows the renormalized spin stiffness of the long-range
spin order and the energy scale of the spin gap of the quantum
disordered state, respectively (see the discussion below).

For the case of α < 4π, we obtain solutions of the spin
condensed n0 and the spin gap ms at zero temperature:

n0 =
(

1 − g

gc

)1/2

, ms = 0. (5)

At finite temperature, the solutions become n0 = 0 and ms =
2kBT sinh−1[e− 2πc

gkB T sinh( c�
2kBT

)]. Because the energy scale of
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FIG. 2. The illustration of the relationship between AF order and
the quantum disordered state.

the spin gap ms is always much smaller than the temperature,
i.e., ms � kBT (or ωn), quantum fluctuations become negli-
gible in a sufficiently long-wavelength and low-energy regime
(ms < |cq| < kBT ). Thus in this region one may only consider
the purely static (semiclassical) fluctuations. The effective
Lagrangian of the NLσM then becomes

L = ρs,eff

2
(∇ · n)2, (6)

where ρs,eff = c( 1
g

− 1
gc

) is the renormalized spin stiffness. At
zero temperature, the mass gap vanishes, which means that
long-range AF order appears. To describe the long-range AF
order, we introduce a spin order parameter,

M0 = M

2
n0 = M

2

(
1 − g

gc

)1/2

, ms = 0. (7)

The ground state of the long-range AF ordered phase has a
finite spin order parameter, and in this region there are two
transverse Goldstone modes (between them the interaction is
irrelevant).

For the case of α > 4π, the interaction between Goldstone
modes becomes relevant and at low energy the renormalized
coupling constant diverges. Consequently, the spin gap opens
and the long-range spin order disappears, which mean that the
ground state may be a quantum disordered state, and we obtain
the effective model of massive spin-1 excitations,

Ls = 1

2g

[
(∂μn)2 + m2

s n2], (8)

with the solutions of n0 and ms as

n0 = 0, ms = 4πc

(
1

gc

− 1

g

)
. (9)

Using the CP(1) representation, we have

Ls = 2

g

[|(∂μ − iaμ)z|2 + m2
zz2

]
, (10)

where z is a bosonic spinon, z = (z1, z2)T , ni = z̄iσzi,

z̄z = 1, and aμ ≡ − i
2 (z̄∂μz − ∂μz̄z). Here aμ is introduced

as an assistant gauge field. Specifically, the local gauge
transformation is z → eiϕ(r,τ )z. mz denotes the mass gap for
spinons as mz = ms/2.

In addition, after integrating over fermions by using the
gradient expansion approach, we also obtain the Chern-

FIG. 3. (Color online) The phase diagram. There are seven
phases: QAH, band insulator, A-TSDW, B-TSDW, chiral spin liquid,
composite spin liquid, and trivial AF-SDW. The regions of chiral spin
liquid and composite spin liquid are the quantum disordered regions
of α > 4π .

Simons-Hopf (CSH) term as15,24

LCSH = −i
∑
I,J

KIJ

4π
εμνλaI

μ∂νa
J
λ , (11)

where K is a 2 × 2 matrix, aI=1
μ = Aμ, and aI=2

μ = aμ. Aμ

is the electric-magnetic field. The “charges” of Aμ and aμ

are defined by q and qs , respectively. Thus for different SDW
orders with the same order parameter M , we have different
K matrices : for A-TSDW order, K = ( 2 0

0 2 ); for B -TSDW

order, K = ( 1 1
1 1 ); for trivial SDW order, K = 0. See detailed

calculations in Appendix B.
For different regions of t ′, we calculated the dimensionless

coupling constant g (α) and derived the quantum phase
transitions between long-range and short-range AF SDW
order. Thus we can plot a new phase diagram in Fig. 3 that
shows the quantum disordered regions of α > 4π (the regions
of chiral spin liquid and composite spin liquid).

For a given t ′ bigger than 0.0288t, there are two situations.
Figure 4 shows the dimensionless coupling constant for one
situation with the parameter t ′ = 0.1t . In Fig. 4 there is a
quantum disordered region with α > αc = 4π in A-TSDW
that corresponds to the chiral spin liquid (yellow region). The
other case is shown in Fig. 5, of which the dimensionless

FIG. 4. (Color online) The dimensionless coupling constant α =
g� for the case of the parameter as t ′ = 0.1t. For the region with
α > 4π , the ground state is chiral spin liquid (yellow region).
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FIG. 5. (Color online) The dimensionless coupling constant α =
g� for the case of the parameter as t ′ = 0.033t. For the regions with
α > 4π , the ground states are spin liquid states—chiral spin liquid
(yellow region) or composite spin liquid (green region).

coupling constant for the parameter t ′ = 0.033t . There are
two quantum disordered regions with α > αc = 4π : one
corresponds to the chiral spin liquid (yellow region) in A-
TSDW, the other is composite spin liquid (green region) in
B-TSDW (see the discussion in the following sections). For
this case, we get the energy gap of spin order parameter M0

and spin excitations ms in Figs. 6 and 7. One can see that
in chiral spin liquid and composite spin liquid, M0 = 0 and
ms �= 0. For the case of t ′ = 0.0288t, we show the result of
the dimensionless coupling constant in Fig. 8, from which
one can see that there is a quantum disordered region with
α > αc = 4π in B-TSDW that corresponds to the composite
spin liquid (green region). For this case, we also get the spin
order parameter M0 and the energy gap of spin excitations ms

in Figs. 9 and 10. One can see that in composite spin liquid,
M0 = 0 and ms �= 0. For a given t ′ smaller than 0.0288t,

there are also two situations. For 0.023 77t < t ′ < 0.0288t,

from the result shown in Fig. 11 (t ′ = 0.025t), we found a
quantum disordered region with α > αc = 4π in B-TSDW that
corresponds to the composite spin liquid (green region). For

FIG. 6. (Color online) The spin order parameter M0 for the case
of the parameter as t ′ = 0.033t . Yellow region denotes chiral spin
liquid and green region denotes composite spin liquid, of which
M0 = 0.

FIG. 7. (Color online) The spin gap ms for the case of the
parameter as t ′ = 0.033t. Yellow region denotes chiral spin liquid
and green region denotes composite spin liquid, of which ms �= 0.

0 < t ′ < 0.023 77t, we found that the dimensionless coupling
constant α is always smaller than αc = 4π. That means there
is no quantum disordered region at all. We also plot Fig. 12 to
show this situation (t ′ = 0.02t).25

In the following sections, we will use the effective model
with CSH terms to learn the properties of different SDW
orders:15

Leff = Ls + LCSH,

where

Ls = 1

2g

[
(∂μn)2 + m2

s n2
]

and

LCSH =
∑
I,J

KIJ

4π
εμνλaI

μ∂νa
J
λ .

Thus an important issue is determining the nature of
these quantum disordered states with different CSH terms.
Our answer is as follows: for the case of A-TSDW with
K = ( 2 0

0 2 ), the quantum disordered state is a chiral spin liquid
with topological degeneracy and anyonic excitations (see the

FIG. 8. (Color online) The dimensionless coupling constant α =
g� for the case of the parameter as t ′ = 0.0288t. For the region with
α > 4π , the ground state is composite spin liquid (green region).
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FIG. 9. (Color online) The spin order parameter M0 for the case
of the parameter as t ′ = 0.0288t . The green region denotes composite
spin liquid, of which M0 = 0.

illustration in Fig. 13); for the case of B-TSDW with K =
( 1 1

1 1 ), the quantum disordered state is composite spin liquid
with chiral edge states, of which the elementary excitation is
spin one-half charge ±e objects trapping a topological spin
texture (see the illustration in Fig. 15).

IV. CHIRAL SPIN LIQUID–QUANTUM DISORDERED
STATE OF A-TSDW

First, we study the quantum disordered state of A-TSDW
that is described by

Leff = 1

2g

[
(∂μn)2 + m2

s n2]
+ 1

2π
εμνλAμ∂νAλ + 1

2π
εμνλaμ∂νaλ

or

Leff = 2

g

[|(∂μ − iaμ)z|2 + m2
zz2

]
+ 1

2π
εμνλAμ∂νAλ + 1

2π
εμνλaμ∂νaλ. (12)

FIG. 10. (Color online) The spin gap ms for the case of the
parameter as t ′ = 0.0288t. The green region denotes composite spin
liquid, of which ms �= 0.

FIG. 11. (Color online) The dimensionless coupling constant α =
g� for the case of the parameter as t ′ = 0.025t. For the region with
α > 4π , the ground state is composite spin liquid (green region).

At the low-energy limit, the kinetic term of gauge field aμ

is induced,

L(aμ) = 1

4e2
a

(∂μaν)2. (13)

The induced coupling constant of the three-dimensional gauge
field is e2

a = 3πm2
z . After considering the CSH term, we obtain

the effective Lagrangian as

Leff = 1

4e2
a

(∂μaν)2 + 1

2π
εμνλaμ∂νaλ

+ 1

2π
εμνλAμ∂νAλ. (14)

For the compact U(1) gauge theory in 2 + 1 dimensions,
there are instantons (space-time “magnetic” monopoles) that
generate 2π gauge flux of aμ, which indicates that the aμ gauge
field is “compact.”26 Without the CSH term, the monopoles
form Coulomb gas in 2 + 1 dimensions. Due to the Debye
screening in the monopole plasma, the gauge field aμ obtains
a mass gap, and bosonic spinons z that couple the gauge field
aμ are confined. It is pointed out in Ref. 27 that from the

FIG. 12. (Color online) The dimensionless coupling constant α =
g� for the case of the parameter as t ′ = 0.02t. We can see that the
dimensionless coupling constant α is always smaller than αc = 4π.

That mean there does not exist a quantum disordered region at all.
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FIG. 13. The illustration of the relationship between A-TSDW
and chiral spin liquid.

Berry phase of a path integral of a spin coherent state on a
honeycomb lattice, the ground state with spinon confinement
is really a VBS state with spontaneous translation symmetry
breaking.

However, due to the Chern-Simon term, 1
2π

εμνλaμ∂νaλ, the
instantons are confined by linear potential and are irrelevant
to low-energy physics. Thus the ground state cannot be a
VBS state and spinons are deconfined. In particular, the
Chern-Simons term for aμ has a nontrivial statistics effect.
Because the low-energy physics is dominated only by spinon
z, due to 1

2π
εμνλaμ∂νaλ, the statistics angle of z is π/2. As a

result, spinon z becomes a semi-ionic particle with spin J = 1
4 .

Therefore, the quantum disordered state of A-TSDW that is
described by the effective Lagrangian in Eq. (12) is really a
topological ordered state, i.e., chiral spin liquid. From the CSH
term, one may derive topological degeneracy—two degenerate
ground states of chiral spin liquid on a torus.28 The result is
consistent with that in Ref. 17.

In addition, one can also derive the edge states from the
effective CSH theory. There are two right-moving “spin” edge
excitations described by the following one-dimensional (1D)
fermion theory:29

Ledge =
∑

α

ψ†
αs(∂t − vR∂x)ψαs,

where α = 1,2. ψαs carries a unit of aμ charge. One can see
“spin” chiral edge states in Fig. 14 (the lines with arrows).
Correspondingly, one can obtain the quantized spin Hall

FIG. 14. (Color online) The illustration of the edge state of chiral
spin liquid. There exists a “spin” chiral edge state (the lines with
arrows) and a “charge” chiral edge state (the lines with dots).

conductivity,

σs = lim
ω→0

1

ω
εij 〈Jsi(ω,0)Jsj (−ω,0)〉 = 2e2

h
. (15)

Here Jsi denotes spin current, Jsi = −i〈∑a ψ̄aγin · σψa〉.
On the other hand, we discuss the properties of Aμ.

The gauge field Aμ is a classical field and has no dynamic
terms. Thus the Chern-Simons term for Aμ only indicates the
quantized anomalous charge Hall effect. From it, we find two
right-moving branches of “charge” edge excitations, which are
described by the following 1D fermion theory:30

Ledge =
∑

α

ψ†
c,α(∂t − vc∂x)ψc,α, (16)

where α,β = 1,2. ψc,α carries a unit of Aμ charge. One can
see a “charge” chiral edge state (the lines with dots) in Fig. 14.
Consequently, we get the quantized charge Hall conductivity
σH = 2e2

h
.

Finally, we identify the quantum disordered state of A-
TSDW characterized by g > gc as a chiral spin liquid with the
quantum anomalous Hall effect (see the illustration in Fig. 13).
For this system, there is spin-charge separation. In Fig. 13, the
QCP at g = gc denotes the quantum phase transition dividing
long-range A-TSDW and short-range A-TSDW (chiral SL). In
addition, we should emphasize the existence of the chiral spin
liquid due to strongly fluctuated spin moments characterized
by the divergent behavior of the spin coupling constant near
the quantum phase transition (yellow region) in Figs. 4 and
5 as g → gc. Thus the existence of the chiral spin liquid is
independent of the cutoff �.

V. COMPOSITE SPIN LIQUID–QUANTUM DISORDERED
STATE OF B-TSDW

Next we study the quantum disordered state of B-TSDW
that is described by the low-energy effective Lagrangian

Leff = 1

2g

[
(∂μn)2 + m2

s n2
] + 1

4π
εμνλAμ∂νAλ

+ 1

2π
εμνλAμ∂νaλ + 1

4π
εμνλaμ∂νaλ

or

Leff = 2

g

[|(∂μ − iaμ)z|2 + m2
zz2

] + 1

2π
εμνλAμ∂νaλ

+ 1

4π
εμνλAμ∂νAλ + 1

4π
εμνλaμ∂νaλ.

From Fig. 15, one can find that there is indeed a region of
short-range B-TSDW order that is characterized by g > gc.

First, we study the statistics of spinon z. To learn the
statistics of spinon z, we can set Aμ to be zero because Aμ is a
classical field. Thus the CS term is reduced to 1

4π
εμνλaμ∂νaλ.

We can see that the spinons are fermionic particles by binding
a 2π flux of aμ that is just a skyrmion (or an antiskyrmion).
On the other hand, due to the mutual Chern-Simons term

1
2π

εμνλAμ∂νaλ, a 2π flux of aμ will carry an electric charge.
Thus the z particle is really an “electron” or a “hole” binding
a skyrmion (or antiskyrmion). In the following, we will call
such a composite object a “composite electron (hole).”
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FIG. 15. The illustration of the relationship between B-TSDW
and composite spin liquid.

Due to the Chern-Simon term 1
4π

εμνλaμ∂νaλ, the instantons
are also confined by linear potential and are irrelevant to
low-energy physics. Thus the spinons are also deconfined.
Figure 16 shows the mass gap of the z particle for the
parameter t ′ = 0.033t , 2mz = 4πc( 1

gc
− 1

g
). One can see that

mz is always much smaller than the mass gap of electrons,
�E, as mz � �E. So the low-energy physics is dominated
by the z particle, the so-called composite electron (hole).

Secondly, we study the properties of gauge fluctuations. Af-
ter integrating the massive z particle, the effective Lagrangian
for gauge field aμ becomes

Leff = 1

4e2
a

(∂μaν)2 + 1

4π
εμνλaμ∂νaλ

+ 1

2π
εμνλAμ∂νaλ + 1

4π
εμνλAμ∂νAλ. (17)

Then the partition function of the effective model is written as

Z =
∫

D[a]e− ∫ β

0 dτLeff .

FIG. 16. (Color online) The charge energy gap for the case of
t ′ = 0.033t , ε = 0.15t : the charge carrier is a composite electron.
In composite SL, the charge energy gap is that of spin gap, ms ;
in B-TSDW, the charge energy gap is that of a skyrmion and an
antiskyrmion, �c. The energy gap of fermion quasiparticles is very
big (see inset).

FIG. 17. The illustration of the edge state of composite spin
liquid. There exists a single chiral edge mode.

We introduce a+,μ = Aμ + aμ, a−,μ = Aμ − aμ, and obtain
the partition function as

Z =
∫

D[a+]e− ∫ β

0 dτLeff ,

where

Leff = 1

4e2
a

(∂μaν,+)2 + 1

4π
εμνλaμ,+∂νaλ,+. (18)

With the Chern-Simons term 1
4π

εμνλaμ,+∂νaλ,+, the gauge
field aμ,+ indicates quantized spin-charge synchronized edge
states and the quantized spin-charge synchronized Hall effect
pointed out in Ref. 1. The edge excitation is described by the
following one-dimensional fermion theory:29,30

Ledge = ψ̃†(∂t − ṽ∂x)ψ̃, (19)

where ψ̃ carries a unit of a+,μ “charge.” One can see a chiral
edge mode (the lines in Fig. 17). Consequently, we get the
spin-charge synchronized Hall conductivity as

σ̃ = lim
ω→0

1

ω
εij 〈J̃i(ω,0)J̃j (−ω,0)〉 = e2

h
, (20)

where

J̃i = i

〈 ∑
a

ψ̄aγi(1 − n · σ )ψa/2

〉
. (21)

Finally, we use the duality relationship between spinons
and skyrmions to learn the quantum phase transition at g =
gc dividing long-range B-TSDW and short-range B-TSDW
(composite SL).

In B-TSDW, we can define the skyrmion
(or antiskyrmion) with winding number Q =∫

d2r 1
4π

ε0νλns · ∂νns × ∂λns = ±1, of which the solutions in
the continuum limit are31

ns =
(

λ(x − x0)

|r − r0|2 + λ2
,± λ(y − y0)

|r − r0|2 + λ2
,± λ

|r − r0|2 + λ2

)
.

(22)

Here λ is the radius of the skyrmion at r0 = (x0,y0). In
long-range B-TSDW, due to the “spin-charge synchronized
charge-flux binding” effect, the Q = ±1 skyrmion carries a
unit electric charge q = ∓1 and a unit “charge” qs = ∓1.
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Composite
electron :
S=1/2 charge e
composite object 
binding a 
skyrmion

FIG. 18. (Color online) The illustration of composite spin liquid,
of which the elementary excitations are the “composite electrons”
that are S = 1/2 charge ±e fermions with trapping a topological spin
texture.

With a unit “charge” qs , a Q = ±1 skyrmion gets half spin
and becomes a charged S = 1/2 fermion.

The mass of the skyrmion (or antiskyrmion) is associated
with

mskyrmion = mantiskyrmion = ρs,eff

2

∫
d2r(∇ · ns)

2 = 4πρs,eff,

where ρs,eff = (1 − g

gc
)ρs . This result indicates the charge gap

is really the mass gap of a skyrmion-antiskyrmion pair,

�c = mskyrmion + mantiskyrmion = 8π

(
1 − g

gc

)
ρs, (23)

that will close at the critical point g = gc, �c → 0. From
Fig. 5, one can see that there are two QCPs (g = gc) between
B-TSDW and composite SL where the charged excitations
have no energy gap, while the usual electrons without a
trapping spin texture still have a big mass gap �E � �c

(see the inset of Fig. 16). In B-TSDW, the low-energy charge
dynamics is dominated by fermionic charged skyrmions rather
than the electrons. At these QCPs, the system is a semimetal
with gapless charge excitations. The dotted line in Fig. 15 is
the energy scale of the charge gap.

Finally, we find that there is a new type of spin liquid–
composite spin liquid. The low-energy excitations are “com-
posite electrons” that are S = 1/2 charge ±e fermions trapping
a topological spin texture. See the illustration in Fig. 18. At
the QCPs between long-range B-TSDW and composite SL, the
system becomes a semimetal with gapless charge excitations
(even for gapped electrons).

VI. CONCLUSION AND DISCUSSION

We presented an alternative type of topological state
that we refer to as “composite spin liquid.” A composite
spin liquid state can be regarded as a short-range B-type
topological spin-density wave that is beyond the classification
of traditional spin liquid states. For traditional spin liquid
states there always exists spin-charge separation, while for
composite spin liquid there is no spin-charge separation.
Instead, the elementary excitations are “composite electrons”
with both spin and charge degrees of freedom, together
with topological spin texture. This topological state supports

charge e/3
anyon

FIG. 19. (Color online) The illustration of the fractional quantum
Hall state. Small blue balls with single arrows denote the anyonic
excitations with ±e/3 charge.

a single chiral edge mode but no topological degeneracy.
In addition, the QCPs between long-range B-TSDW and
composite SL are also nontrivial, therefore the system becomes
a semimetal with gapless charge excitations (even for gapped
electrons).

In addition, we compare different exotic quantum orders
beyond Landau’s theory:

(i) Fractional quantum Hall (FQH) state. Due to the charge-
flux binding effect, the elementary excitations are anyonic
excitations with fractional electric charge and fractional
quantized Hall conductivity.33,34 Figure 19 shows anyonic
excitations with ±e/3 charge (small blue balls with a single
arrow). The ground state on a torus has topological degeneracy.
For the open system, there are chiral edge states on its
boundary. Fractional quantized Hall states can be classified
into different Abelian states and non-Abelian states using
effective CS theories (or K-matrix theory24,35,36).

(ii) Topological band insulator (TBI). The elementary
excitations are gapped electrons (or holes). For this topological
state, there exist gapless edge states. However, there is no
topological degeneracy for the ground state. Topological band
insulators can be classified into Z2 type or Z type using the
“tenfold” random matrix.37–39

(iii) Spin liquid (SL). Due to the big electron gap (Mott
gap), the excitations are deconfined spinons with only a spin
degree of freedom. In Fig. 20, the blue arrow denotes an
S = 1/2 chargeless spinon. Quantum spin liquid states can be

S=1/2 chargeless
spinon

FIG. 20. (Color online) The illustration of quantum spin liquid.
The blue arrows denote an S = 1/2 chargeless spinon.
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TABLE I. The differences (the types of excitations, if there exists topological degeneracy for the ground states on
the torus, if there exist edge states, and the way to classify the topological states) between four exotic quantum orders
beyond Landau’s theory: the fractional quantum Hall state (FQH), a topological band insulator (TBI), spin liquid (SL),
and composite spin liquid (SL).

Excitations Topological degeneracy Edge state Classification

FQH state Charged anyon Yes Yes K matrix
TBI Electron No Yes Tenfold way
SL Spinon – – PSG
Composite SL Composite electron No Yes ?

classified into SU(2) type, U(1) type, or Z2 type using PSGs.3,4

For topological spin liquid (for example, chiral spin liquid)
there exist gapless edge states and topological degeneracy,
while for gapless spin liquid (for example, algebraic spin
liquid) there are no well-defined gapless edge states and
topological degeneracy. For this reason, we use “−” to denote
the uncertainty in Table I.

(iv) Composite spin liquid. The elementary excitations are
the “composite electrons” with both spin and charge degrees of
freedom, together with topological spin texture (see Fig. 18).
For this topological states, there exist gapless edge states but
no topological degeneracy. As of yet, we do not know how to
characterize composite spin liquid states. For this reason, we
use “?” to denote the situation in Table I.

Finally, we address the relevant experimental realization.
This topological Hubbard model on a honeycomb lattice
may be simulated in an optical lattice of cold atoms. In
Ref. 32, it is proposed that the (spinless) Haldane model on a
honeycomb optical lattice can be realized in cold atoms. When
two-component fermions with repulsive interaction are put
into such an optical lattice, one can get an effective topological
Hubbard model. It is easy to change the potential barrier by
varying the laser intensities to tune the Hamiltonian param-
eters, including the hopping strength (t term), the staggered
potential (ε term), and the particle interaction (U term).
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APPENDIX A: THEORY OF SPIN FLUCTUATIONS
TO OBTAIN THE O(3) NONLINEAR σ MODEL

The Hamiltonian of the topological Hubbard model on a
honeycomb lattice is given by

H = −t
∑

〈i,j 〉,σ
(ĉ†iσ ĉjσ + H.c.) − t ′

∑
〈〈i,j 〉〉,σ

eiφij ĉ
†
iσ ĉjσ

+U
∑

i

n̂i↑n̂i↓ − μ
∑
i,σ

ĉ
†
iσ ĉiσ

+ ε
∑

i∈A,σ

ĉ
†
iσ ĉiσ − ε

∑
i∈B,σ

ĉ
†
iσ ĉiσ . (A1)

t and t ′ are the nearest-neighbor and the next-nearest-neighbor
hoppings, respectively. We introduce a complex phase φij

(|φij | = π
2 ) to the next-nearest-neighbor hopping, of which the

positive phase is set to be clockwise. U is the on-site Coulomb
repulsion. σ are the spin indices representing spin-up (σ = ↑)
and spin-down (σ = ↓) for electrons, and ε denotes an on-site
staggered energy and is set to be 0.15t .

For free fermions (the on-site Coulomb repulsion U is zero),
the spectrum

Ek =
√

|ξk|2 + (ξ ′
k + ε)2, (A2)

where

|ξk| = t

√
3 + 2 cos (

√
3ky) + 4 cos (3kx/2) cos (

√
3ky/2)

and

ξ ′
k = 2t ′

∑
i

sin (k · bi), (A3)

where bi denotes the next-nearest vectors. According to this
spectrum Ek, we can see that there are energy gaps �f 1,
�f 2 near points k1 = − 2π

3 (1,1/
√

3) and k2 = 2π
3 (1, 1/

√
3)

as �f 1 = |2ε − 6
√

3t ′| and �f 2 = 2ε + 6
√

3t ′, respectively.
There are two phases separated by the phase boundary 2ε =
6
√

3t ′, namely the quantum anomalous Hall (QAH) state and
the normal band insulator (BI) state with trivial topological
properties.

Because the Hubbard model on bipartite lattices is unstable
against antiferromagnetic instability, at half-filling the ground
state may be an insulator with AF-SDW order with increasing
interacting strength. Such AF-SDW order is described by the
following mean-field order parameter: 〈(−1)i ĉ†i σ

zĉi〉 = M.

Here M is the staggered magnetization. In the mean-field
theory, the Hamiltonian of the topological Hubbard model
is obtained as

HMF = H −
∑

i

(−1)i�Mĉ
†
i σzĉi , (A4)

where �M = UM
2 . Then in momentum space we get

H =
∑

k

c
†
khkck, (A5)

where c
†
k = (c†k,A↑,c

†
k,A↓,c

†
k,B↑,c

†
k,B↓) and

hk =
(

ξk′ + UM
2 σz + ε ξk

(ξk)∗ −ξk′ − UM
2 σz − ε

)
.

After diagonalization, we can obtain the quasiparticle spectra,

Ek1 = ±
√

(ξ ′
k + �M + ε)2 + |ξk|2 (A6)
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and

Ek2 = ±
√

(ξ ′
k − �M + ε)2 + |ξk|2. (A7)

By minimizing the ground state’s energy, the self-consistent
equation in the reduced BZ is reduced to

1 = 1

NsM

∑
k∈BZ

[
ξ ′

k + �M + ε

2Ek1

− ξ ′
k − �M + ε

2Ek2

]
, (A8)

where Ns is the number of unit cells. The phase diagram
has been obtained in Ref. 15. There are a total of five
phases: the NI state, the QAH state, the A-TSDW state,
the B-TSDW state, and the trivial AF-SDW state. They are
separated by two types of phase transitions: (i) the magnetic
phase transition [denoted by (U/t)M ] between a magnetic
order state with M �= 0 and a nonmagnetic state with M = 0,
and (ii) the topological quantum phase transition [denoted
by (U

t
)c1 or (U

t
)c2] that is characterized by the condition of

zero fermion energy gaps, �f 1 = −6
√

3t ′ + 2ε + UM = 0
or �f 2 = 6

√
3t ′ + 2ε − UM = 0.

We deal with the spin fluctuations by using the path-integral
formulation of electrons with spin rotation symmetry. The
interaction term can be handled by using the SU(2) invariant
Hubbard-Stratonovich decomposition in the arbitrary on-site
unit vector �i ,

n̂i↑n̂i↓ = (ĉ†i ĉi)2

4
− 1

4
[�i ·ĉ†i σ ĉi]

2. (A9)

Here σ =(σx,σy,σz) are the Pauli matrices. By replacing the
electronic operators ĉ

†
i and ĉj by Grassmann variables c∗

i and
cj , the effective Lagrangian of the 2D generalized Hubbard
model at half-filling is obtained:

Leff =
∑
i,σ

c∗
iσ ∂τ ci,σ − t

∑
〈i,j 〉,σ

(c∗
iσ cjσ + H.c.)

− t ′
∑

〈〈i,j 〉〉,σ
eiφij c∗

iσ cjσ − �M

∑
i,σ

c∗
i,σ �i · σci,σ

+ ε
∑

i∈A,σ

c∗
iσ ciσ − ε

∑
i∈B,σ

c∗
iσ ciσ . (A10)

To describe the spin fluctuations, we use Haldane’s map-
ping:

�i = (−1)ini

√
1 − L2

i + Li , (A11)

where ni = (nx
i ,n

y

i ,n
z
i ) is the Néel vector that corresponds

to the long-wavelength part of �i with a restriction n2
i = 1.

Li is the transverse canting field that corresponds to the
short-wavelength parts of �i with a restriction Li · ni = 0.
We then rotate �i to the ẑ axis for the spin indices of the
electrons at i site:

ψi = U
†
i ci , (A12)

U
†
i ni · σUi = σ z, (A13)

U
†
i Li · σUi = li · σ , (A14)

where Ui ∈ SU(2)/U(1).

One then can derive the following effective Lagrangian after
such spin transformation:

Leff =
∑
i,σ

ψ∗
i,σ ∂τψi,σ +

∑
i,σ

ψ∗
i,σ a0(i)ψi,σ

− t
∑

〈i,j 〉,σ
(ψ∗

i,σ eiaij ψj,σ + H.c.) − t ′
∑

〈〈i,j〉〉,σ
eiφij ψ∗

i,σ eiaij ψj,σ

+ ε
∑

i∈A,σ

ψ∗
i,σ eiaii ψi,σ − ε

∑
i∈B,σ

ψ∗
i,σ eiaii ψi,σ

−�M

∑
i,σ

ψ∗
i,σ

[
(−1)iσ z

√
1 − l2i + li · σ

]
ψi,σ , (A15)

where the auxiliary gauge fields aij = aij,1σx + aij,2σy and
a0(i) = a0,1(i)σx + a0,2(i)σyare defined as

eiaij = U
†
i Uj , a0(i) = U

†
i ∂τUi. (A16)

In terms of the mean-field result M = (−1)i〈ψ∗
i σ zψi〉 as

well as the approximations,√
1 − l2i � 1 − l2i

2
, eiaij � 1 + iaij ,

we obtain the effective Hamiltonian as

Leff �
∑
i,σ

ψ∗
i,σ ∂τψi,σ +

∑
i,σ

ψ∗
i,σ [a0(i) − �li · σ ]ψi,σ

−�M

∑
i,σ

(−1)iψ∗
i,σ σ zψi,σ − t

∑
〈i,j〉,σ

ψ∗
i,σ (1 + iaij )ψj,σ

− t ′
∑

〈〈i,j 〉〉,σ
eiφij ψ∗

i,σ (1 + iaij )ψj,σ + �M
∑
i,σ

l2i
2

+ ε
∑

i∈A,σ

ψ∗
i,σ (1 + iaii)ψi,σ − ε

∑
i∈B,σ

ψ∗
i,σ (1 + iaii)ψi,σ .

(A17)

By integrating out the fermion fields ψ∗
i and ψi, the effective

action with the quadric terms of [a0(i) − �σ · li] and aij

becomes

Seff = 1

2

∫ β

0
dτ

∑
i

[
−4ς [a0(i) − �Mσ · li]

2

+ 4ρsa
2
ij + 2�2

M

U
l2i

]
. (A18)

To give ρs and ς for calculation in detail, we choose Ui to
be

Ui =
(

z∗
i↑ z∗

i↓
−zi↓ zi↑

)
, (A19)

where ni = z̄iσzi ,zi = (zi↑,zi↓)T ,z̄izi= 1, and the spin fluc-
tuations around ni = ẑi are

ni = ẑi + Re(φi)x̂ + Im(φi)ŷ, (A20)

zi =
(

1 − |φi |2/8
φi/2

)
+ O

(
φ3

i

)
. (A21)
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Then the quantities U
†
i Uj and U

†
i ∂τUi can be expanded in

powers of φi − φj and ∂τφi,

U
†
i Uj = e−i

φi−φj

2 σy , (A22)

U
†
i ∂τUi =

(
0 1

2∂τφi

− 1
2∂τφi 0

)
. (A23)

According to Eq. (A16), the gauge fields aij and a0(i) are given
as

aij = −1

2
(φi − φj )σ y, (A24)

a0(i) = i

2
∂τφiσ y. (A25)

Supposing aij and a0(i) to be a constant in space and denoting
∂ iφi = a and ∂τφi = iBy , we have

aij = − 1
2 a · (i − j)σy, (A26)

a0(i) = − 1
2Byσy. (A27)

The energy of the Hamiltonian of Eq. (A18) becomes

E(By,a) = − 1
2ζB2

y + 1
2ρsa2. (A28)

Then one could get ζ and ρs from the following equations by
calculating the partial derivative of the energy:

ζ = − 1

N

∂2E0(By)

∂B2
y

∣∣∣∣
By=0

, (A29)

ρs = 1

N

∂2E0(a)

∂a2

∣∣∣∣
a=0

. (A30)

Here E0(By) and E0(a) are the energy of the lower Hubbard
band,

E0(By) =
∑

k

(
E

ζ

+,k + E
ζ

−,k

)
, (A31)

E0(a) =
∑

k

(
E

ρ

+,k + E
ρ

−,k

)
, (A32)

where E
ζ

+,k, E
ζ

−,k and E
ρ

+,k, E
ρ

−,k are the energies of the
following Hamiltonian Hζ and Hρ :

Hζ = −t
∑

〈i,j 〉,σ
(ψ∗

i,σψj,σ + H.c.) − t ′
∑

〈〈i,j 〉〉,σ
eiφij ψ∗

i,σψj,σ + ε
∑

i∈A,σ

ψ∗
i,σψi,σ−ε

∑
i∈B,σ

ψ∗
i,σψi,σ

+
∑
i,σ

ψ∗
i,σ a0(i)ψi,σ − �M

∑
i,σ

(−1)iψ∗
i,σσ zψi,σ , (A33)

Hρ = −t
∑

〈i,j〉,σ
ψ∗

i,σ eiaij ψj,σ − t ′
∑

〈〈i,j 〉〉,σ
eiφij ψ∗

i,σ eiaij ψj,σ + ε
∑

i∈A,σ

ψ∗
i,σ eiaii ψi,σ − ε

∑
i∈B,σ

ψ∗
i,σ eiaii ψi,σ

−�M

∑
i,σ

(−1)iψ∗
i,σσ zψi,σ . (A34)

Using the Fourier transformation for Hζ , we have the spectrum of the lower band of Hζ :

E
ζ

±,k = −1

2

√
4|ξk|2 + 2a2 + B2

y + 2d2 ± 2
√

a4 + B2
ya

2 − 2a2d2 + B2
yd

2 + 4B2
y |ξk|2 + d4 + 2adB2

y , (A35)

where a = ξk′ + UM
2 + ε and d = ξk′ − UM

2 + ε.

Using ς = − 1
N

∂2E0(By )
∂B2

y
|By=0 and E0(By) = ∑

k(Eς

+,k + E
ς

−,k), we can obtain ς as

ς = −1

Ns

∑
k

1

8
√

2

⎛
⎜⎝ −2 + 2[4|ξk |2+(a+d)2]√

(a2−d2)2√
a2 + 2|ξk|2 + d2 −

√
(d2 − a2)2

−
2 + 2[4|ξk |2+(a+d)2]√

(a2−d2)2√
a2 + 2|ξk|2 + d2 +

√
(d2 − a2)2

⎞
⎟⎠ . (A36)

Similarly, using the Fourier transformation for Hρ , we have the spectrum of the lower band of Hρ :

E
ρ

±,k = − 1
2 [4|ψ |2 + 2G2 − 4B2 + 4|ϕ|2 + 2A2 ± 2(4|ψ |2G2 − 8AG|ψ |2 + 8ABψ∗ϕ (A37)

− 8ABϕ∗ψ + 8Bψ∗ϕG − 8ϕ∗BψG − 2A2G2 − 4(ϕ∗ψ − ψ∗ϕ)2

− 8AGB2 − 4G2B2 + G4 − 4B2A2 + A4 + 4A2|ψ |2)
1
2 ]

1
2 , (A38)

where

A = 2t ′
∑

i

cos

(
1

2
a · bi

)
sin (k · bi) + ε + UM

2
, G = 2t ′

∑
i

cos

(
1

2
a · bi

)
sin (k · bi) + ε − UM

2
,

B = −2it ′
∑

i

sin

(
1

2
a · bi

)
cos (k · bi), ϕ = −t

∑
δ

eik·δ cos

(
1

2
a · δ

)
, ψ = −t

∑
δ

eik·δ sin

(
1

2
a · δ

)
.
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Using ρs = 1
N

∂2E0(a)
∂a2 |a=0 and E0(a) = ∑

k (Eρ

+,k + E
ρ

−,k), we can get ρs = ρs1 + ρs2, where

ρs1 = −1

Ns

∑
k

{
− 9t2 cos

(
3kx

2

)
cos

(√
3ky

2

)
− 36t ′2[−1 + cos (

√
3ky)] sin2

(
3kx

2

)
− 9t ′(P + Q) cos

(
3kx

2

)
sin

(√
3ky

2

)

+
[

3{t2[(P − Q)2 + 6t2] + 18t ′2(P + Q)2 − 18[t4 + t ′2(P + Q)2] cos (3kx)} − 4t2(P − Q)2 cos

(
3kx

2

)
cos

(√
3ky

2

)

+{t2[(P−Q)2 + 18t2] − 18t ′2(P+Q)2 + 18[t ′2(P + Q)2 − t4] cos (3kx)} cos (
√

3ky) − 9t ′(P − Q)2(P + Q) cos

(
3kx

2

)

× sin

(√
3ky

2

)
+ 72t2t ′(P + Q) sin2

(
3kx

2

)
sin (

√
3ky)

]/√
(P 2 − Q2)2

}/
8
√

2
√

P 2 + Q2 + 2|ξk|2 +
√

(P 2 − Q2)2

(A39)

and

ρs2 = −1

Ns

∑
k

{
− 9t2 cos

(
3kx

2

)
cos

(√
3ky

2

)
− 36t ′2[−1 + cos (

√
3ky)] sin2

(
3kx

2

)
− 9t ′(P + Q) cos

(
3kx

2

)
sin

(√
3ky

2

)

−
[

3{t2[(P − Q)2 + 6t2] + 18t ′2(P + Q)2 − 18[t4 + t ′2(P + Q)2] cos (3kx)} − 4t2(P − Q)2 cos

(
3kx

2

)
cos

(√
3ky

2

)

+{t2[(P − Q)2 + 18t2] − 18t ′2(P + Q)2 + 18[t ′2(P+Q)2 − t4] cos (3kx)} cos (
√

3ky) − 9t ′(P − Q)2(P+Q) cos

(
3kx

2

)

× sin

(√
3ky

2

)
+ 72t2t ′(P + Q) sin2

(
3kx

2

)
sin (

√
3ky)

]/√
(P 2 − Q2)2

}/
8
√

2
√

P 2 + Q2 + 2|ξk|2 −
√

(P 2 − Q2)2,

(A40)

where P = ξk′ − UM
2 + ε and Q = ξk′ + UM

2 + ε.

In addition, we study the continuum theory of the effective action. In the continuum limit, we denote ni , li , iaij � U
†
i Uj − 1,

and a0(i) = U
†
i ∂τUi by n(x,y), l(x,y), U †∂xU (or U †∂yU ), and U †∂τU, respectively. From the relations between U †∂μU and

∂μn,

a2
τ = a2

τ,1 + a2
τ,2 = −1

4
(∂τ n)2, τ = 0, (A41)

a2
μ = a2

μ,1 + a2
μ,2 = 1

4
(∂μn)2, μ = x,y, (A42)

a0·l = − i

2
(n × ∂τ n) · l, (A43)

the continuum formulation of the action becomes

Seff = 1

2

∫ β

0
dτ

∫
d2r

[
ς (∂τ n)2 + ρs(∇ · n)2 − 4i�Mς (n × ∂τ n) · l +

(
2�2

M

U
− 4�2

Mς

)
l2

]
, (A44)

where the vector a0 is defined as a0 = (a0,1, a0,2, 0).
Finally, we integrate the transverse canting field l and obtain the effective NLσM as

Seff = 1

2g

∫ β

0
dτ

∫
d2r

[
1

c
(∂τ n)2 + c (∇ · n)2

]
(A45)

with a constraint n2 = 1. The coupling constant g and spin wave velocity c are defined as g =
√

1
ρsχ⊥ ,c2 = ρs

χ⊥ , and χ⊥ is the

transverse spin susceptibility,

χ⊥ = [ς−1 − 2U ]−1. (A46)

In addition, we need to determine another important parameter—the cutoff �. On the one hand, the effective NLσM is valid
within the energy scale of the electrons’ gap, �E. On the other hand, the lattice constant is a natural cutoff. Thus the cutoff is
defined as the following equation:

� = min

(
1,

�E

c

)
. (A47)
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APPENDIX B: INDUCED CSH TERMS

In this Appendix, we will derive the low-energy effective
theory of (T-)SDW states by considering quantum fluctuations
of effective spin moments based on a formulation by keeping
spin rotation symmetry, σz → n · σ , where n is the SDW order
parameter, 〈ĉ†i σ ĉi〉 = Mn.

On a honeycomb lattice, after dividing the lattice into
two sublattices, A and B, the dispersion can be obtained
from Eq. (2). In the continuum limit, the Dirac-like effective
Lagrangian describes the low-energy fermionic modes near
two points, k1 = − 2π

3 (1, 1√
3
) and k2 = 2π

3 (1, 1√
3
), as

Lf =
∑

a

[iψ̄aγμ(∂μ − iAμ)ψa + maψ̄aψa

− δ�Mψ̄aσ · nψa], (B1)

which describes low-energy charged fermionic modes a = 1
near k1,

ψ̄1 = ψ
†
1γ0 = (ψ̄↑1A, ψ̄↑1B, ψ̄↓1A, ψ̄↓1B ) (B2)

and a = 2 near k2,

ψ̄2 = ψ
†
2γ0 = (ψ̄↑2B, ψ̄↑2A, ψ̄↓2B, ψ̄↓2A ). (B3)

The masses of two-flavor fermions are

m1 = ε − 3
√

3t ′ (B4)

and

m2 = ε + 3
√

3t ′. (B5)

γμ is defined as γ0 = σ0 ⊗ τz,γ1 = σ0 ⊗ τy, γ2 = σ0 ⊗ τx

with σ0 = (1 0
0 1 ). τx, τy, τz are Pauli matrices. δ= 1 for a = 1

and δ = −1 for a = 2. We have set the Fermi velocity to be
unit vF = 1.

In the CP1 representation, we may rewrite the effective
Lagrangian of fermions in Eq. (B1) as

Lf =
∑

a

ψ̄ ′
a(iγμ∂μ + γμAμ − γμσ3aμ + ma − δ�Mσ3)ψ ′

a

(B6)

with

ψ
′
a(r,τ ) = U †(r,τ )ψa(r,τ ),

where U (r,τ ) is a local and time-dependent spin SU(2)
transformation defined by

U †(r,τ )n · σU (r,τ ) = σ3

and aμ is introduced as an assistant gauge field as

iσ3aμ ≡ U †(r,τ )∂μU (r,τ ).

An important property of the model in Eq. (B6) is the current
anomaly. The vacuum expectation value of the fermionic
current,

Jμ
a,σ = i〈ψ̄a,σ γ μψa,σ 〉, (B7)

can be defined by

Jμ
a,σ = i{γ μ[(iD̂ + ima,σ )†(iD̂ + ima,σ )]−1(iD̂ + ima,σ )†},

(B8)

where

D̂ = γμ(∂μ − iAμ + iσaμ) (B9)

and the mass terms are ma,σ = ma − δ�Mσ . The topological
current J

μ
a,σ is obtained to be

Jμ
a,σ = 1

2

1

4π

ma,σ

|ma,σ |ε
μνλ(∂νAλ − σ∂νaλ). (B10)

Then we derive the CSH terms as40–42

LCSH = −i
∑
a,σ

(Aμ − σaμ)Jμ
a,σ . (B11)

To make an explicit description of SDWs, we introduce
the K-matrix formulation that has been used to characterize
FQH fluids successfully.24 Now the CSH term is written
as

LCSH = −i
∑
I,J

KIJ

4π
εμνλaI

μ∂νa
J
λ , (B12)

where K is a 2 × 2 matrix, aI=1
μ = Aμ, and aI=2

μ = aμ. The
“charges” of Aμ and aμ are defined by q and qs , respectively.

Thus for different SDW orders with the same order
parameter M , we have differentKmatrices: for m1,m2 > �M,

K =
(

2 0
0 2

)
, (B13)

for m2 > �M > m1,

K =
(

1 1
1 1

)
, (B14)

for m1, m2 < �M ,

K = 0. (B15)

These results are consistent with those of Ref. 15.
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