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Electron-hole puddles in the absence of charged impurities
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It is widely believed that carrier-density inhomogeneities (“electron-hole puddles”) in single-layer graphene on
a substrate such as quartz are due to charged impurities located close to the graphene sheet. Here we demonstrate
by using a Kohn-Sham-Dirac density-functional scheme that corrugations in a real sample are sufficient to
determine electron-hole puddles on length scales that are larger than the spatial resolution of state-of-the-art
scanning tunneling microscopy.
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Introduction. Graphene, a single layer of carbon atoms
arranged in a honeycomb geometry, is a two-dimensional
(2D) system whose carriers are subject to a large number
of scattering mechanisms affecting its transport properties in
a number of intriguing ways.1–3 When a graphene sample
produced by mechanical exfoliation is deposited on a substrate
such as SiO2, it displays a maximum mobility ≈1.0 ×
104–1.5 × 104 cm2/(V s). The main scattering mechanism
limiting the mobility of such samples is to date still unclear
and the subject of a very intense debate.2,3

Martin et al.4 were the first to demonstrate by means of
a single-electron transistor (SET) that close to the charge
neutrality point the carrier density distribution in a graphene
sheet is highly inhomogeneous. Disorder-induced potential
fluctuations break up the electron liquid into “electron-hole
puddles.” These findings have been subsequently confirmed by
other groups5–7 by means of scanning tunneling spectroscopy
(STS). The typical STS spatial resolution is roughly two orders
of magnitude higher than that of the SET employed in Ref. 4
(�SET ≈ 150 nm).

Due to the linear dependence of conductivity on carrier
density,1 charged impurities located near the graphene sheet
have been early on recognized as important actors8 and have
been invoked9 to predict electron-hole puddles. Quantitative
theories of carrier-density inhomogeneities taking into account
many-body effects have also been put forward.10,11 Despite
other alternatives such as frozen ripples12 and resonant
scatterers12,13 having been proposed, long-range Coulomb
disorder is currently the most “popular” candidate for the
main scattering mechanism limiting mobility in samples on
a substrate.3

Charged-impurity scattering as the main mechanism of
disorder has faced, however, severe experimental (and theoret-
ical) difficulties. Ponomarenko et al.14 have studied exfoliated
samples deposited on various substrates and found a rather
weak dependence of the mobility on the type of substrate.
In particular, the authors of Ref. 14 have studied transport in
flakes embedded in media with high dielectric constants, such
as glycerol, ethanol, and water, and measured only a small
increase in the mobility (at temperatures above the freezing
temperature of these substances). Couto et al.15 have recently
reported on low-temperature transport properties of graphene
on SrTiO3, a well-known insulator with a dielectric constant

varying (with temperature) in the range 3 × 102 � εsub �
5 × 103. The authors of this work have clearly demonstrated
that (i) neither the carrier mobility nor the amplitude of
the carrier-density fluctuations δn are affected by the large
change in the dielectric constant of the substrate and (ii)
these quantities are practically identical to those measured
in a typical graphene sheet on SiO2.

From the theoretical point of view, we will show
elsewhere16 that charged impurities randomly located on a
plane (parallel to and) at an average distance d ≈ 1 nm
from the graphene sheet17 create extremely sharp features in
the carrier-density spatial profile, in stark contrast with the
smooth inhomogeneities measured using STS.5,6 Moreover,
the Dirac-point mapping procedure exploited in Refs. 5 and 6
fails to yield trustable results for the reconstructed carrier
density at distances d � 2 nm.16

Motivated by this large body of literature, in this Rapid
Communication we demonstrate that, contrary to common
wisdom,2,3,9 charged impurities are not a necessary ingredient
for the existence of electron-hole puddles close to charge
neutrality. We establish indeed that smooth electron-hole
puddles emerge also in the presence of scalar and vector
potentials induced only by corrugations. Carrier density
inhomogeneities stemming from ripples and corrugations have
already been studied by a few authors.18,19 These studies,
however, have focused on artificial samples whose ripples
have been calculated by Monte Carlo or molecular dynamics
simulations. The key added value of the present work is
twofold: (i) We study a real sample using STS experimental
data20 for the height fluctuations of a graphene sheet on
SiO2, and (ii) we present an approximate theory that allows
to calculate corrugation-induced scalar and vector potentials
from the knowledge of the STS height-fluctuation maps.

From height fluctuations to scalar and vector potentials.
We analyze the 20 nm × 20 nm corrugated graphene sample
shown in Fig. 1. The modulations in the height are defined
by a height-corrugation profile h(r), where r = (x,y) is a
2D vector. The function h(r) is known experimentally.20

Modulations in the height lead to stresses and to effective
scalar and gauge potentials which couple to the orbital
degrees of freedom of the electron gas in the sheet, thereby
changing the electronic spectrum.21 In what follows we lay
down an approximate theory that allows us to calculate
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FIG. 1. (Color online) Three-dimensional plot of the corrugated
graphene sample studied in this work [experimental data are a
courtesy of Geringer (Ref. 20)]. The color/grayscale coding of
the surface labels the local value of the induced carrier density
δn(r) as calculated from the Kohn-Sham-Dirac self-consistent theory,
Eqs. (5)–(9). The data in this figure have been obtained by setting
g1 = 3 eV, αee = 0.9, and n̄c ≈ 2.5 × 1011 cm−2 (see text).

corrugation-induced scalar and vector potentials from the
knowledge of the map r �→ h(r).

We introduce the deformation tensor21–24 uij = uij (r) as

uij = 1
2 (∂jui + ∂iuj + ∂ih∂jh), (1)

where ui with i = x,y are the Cartesian components of the 2D
displacement vector u = (ux,uy) and ∂x (∂y) is a shorthand
for ∂/∂x (∂/∂y). In writing Eq. (1) we have neglected two
nonlinear terms, i.e., (∂iux)(∂jux) and (∂iuy)(∂juy), which are
at least one order of magnitude smaller that the other terms.
The only nonlinear contribution to uij we have retained is the
last term of Eq. (1), which is of the same order of magnitude
as the first two terms in the same equation.

The free-energy of the lattice in the presence of deforma-
tions can be written as E[u,h] = ∫

d2rEel[u(r),h(r)] where
the elastic free-energy density per unit area Eel is given by21–24

Eel = κ

2

[∇2
r h(r)

]2 + λ

2

[∑
i

uii(r)

]2

+ μ
∑
i,k

u2
ik(r). (2)

Here κ ≈ 1 eV is the bending rigidity and λ = 2.57 eV Å
−2

and μ = 9.95 eV Å
−2

are the Lamé constants of graphene25

at a temperature T = 300 K (μ has the physical significance
of shear modulus). In what follows we neglect the first
term in Eq. (2) since this is important only at length scales
� � (h/|u|)(κ/λ)1/2 ≈ 1 nm (estimating h ≈ 1 nm and |u| ≈
0.5 Å).

The equilibrium condition in the absence of external
forces reads

∑
k ∂kσik = 0, where σik = δE[u,h]/δuik =

λδik

∑
j ujj (r) + 2μuik(r) is the stress tensor.22 Solving the

two equilibrium equations for i = x,y allows us to calculate

the induced in-plane displacements u(r) and the deformation
tensor uij (r). In Fourier transform with respect to r we find

uij (q) =
[

(λ + μ)

(λ + 2μ)

qiqj

|q|4 − δij

2|q|2
]
F(q), (3)

where F(q) ≡ ∑
i,k qiqkfik(q) − |q|2 ∑

i fii(q) =
2qxqyfxy(q) − q2

yfxx(q) − q2
xfyy(q) and fij (q) is the

Fourier transform of the tensor field fij (r) = ∂ih(r)∂jh(r).
Scalar V1 and vector V2 = Ax − iAy potentials can be

easily calculated from the following relations26 V1 = g1(uxx +
uyy) and V2 = g2(uxx − uyy + 2iuxy), where g1 and g2 are two
coupling constants. Using Eq. (3) we find

V1(q) = −g1
μ

λ + 2μ

q2
x + q2

y

|q|4 F(q),

Ax(q) = g2
λ + μ

λ + 2μ

q2
x − q2

y

|q|4 F(q),

Ay(q) = −2g2
λ + μ

λ + 2μ

qxqy

|q|4 F(q).

(4)

For the coupling constant g1 we use the values g1 = 3 eV
and g1 = 20 eV,27 while g2 = 3cβγ0/4, where β = −∂

log (γ0)/∂ log(a0) ≈ 2, γ0 ≈ 2.7 eV is the nearest-neighbor
hopping parameter, a0 ≈ 1.42 Å is the carbon-carbon distance,
and c ≡ μ/(B

√
2). For the bulk modulus (B = λ + μ) we use

B = 12.52 eV Å−2 at T = 300 K.25 We thus find that c ≈ 0.56
at this temperature.

The real-space scalar potential V1(r) and the two compo-
nents of the vector potential A(r) calculated from Eq. (4) for
g1 = 3 eV and for the sample in Fig. 1 have been reported
in Fig. 2. Since the experimental sample does not respect
periodic boundary conditions (which are used in the numerical
calculations below) we actually work with a 40 nm × 40 nm
sample which has been obtained by suitably replicating the
original one.28 All numerical results shown in this Rapid
Communication refer to the experimentally relevant portion
of the simulation box.

Self-consistent Kohn-Sham-Dirac theory of the induced
carrier density. The external scalar V1(r) and vector A(r)
potentials plotted in Fig. 2 and calculated from Eq. (4) are
responsible for carrier-density inhomogeneities, which can be
quantified by the deviation δn(r) of the local density n(r)
from the “background” value n0 = 2η/A0 + n̄c. Here 2/A0

is the density of a neutral graphene sheet, A0 = 3
√

3a2
0/2 ≈

0.052 nm2 being the area of the unit cell in the honeycomb
lattice, and n̄c is the spatially averaged carrier density, which
can be positive or negative and controlled by gate voltages.
The dimensionless parameter η � 1 controls the fraction of
π -band electrons that are described by the massless Dirac
fermion model.1 In the numerical calculations below η ≈ 0.1.

Since V1(r) and A(r) change smoothly over many lattice
constants, the induced density δn(r) can be calculated11,18

by solving a single-valley (and single-spin) Kohn-Sham-
Dirac (KSD) equation for a two-component spinor �λ(r) =
[ϕ(A)

λ (r),ϕ(B)
λ (r)]T:

{σ · [v p + A(r)] + 1σVKS(r)} �λ(r) = ελ�λ(r). (5)

Here σ is a 2D vector constructed with the 2 × 2 Pauli
matrices σ1 and σ2 acting in sublattice-pseudospin space,
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FIG. 2. (Color online) Left: Color/grayscale plot of the scalar potential V1(r) (in units of meV) calculated using Eq. (4) with g1 = 3 eV.
Center: The x̂-component Ax(r) of the vector potential (in units of meV) calculated using Eq. (4). Right: Same as in the central panel but for
the ŷ-component Ay(r) of the vector potential.

v = 3γ0a0/(2h̄) ≈ 106 m/s is the bare Fermi velocity, p =
−ih̄∇r , 1σ is the 2 × 2 identity matrix in pseudospin space,
and the Kohn-Sham potential,

VKS(r) = V1(r) + VH(r) + Vxc(r), (6)

is the sum of the external scalar potential V1(r), the Hartree
potential, and the scalar exchange-correlation (xc) potential.

The (classical electrostatic) Hartree potential is given by

VH(r) =
∫

d2r ′ e2

ε|r − r ′| δn(r ′), (7)

where ε = (εvac + εsub)/2 is an average dielectric constant,
εvac (εsub) being the dielectric constant of the medium above
(below) the graphene flake. For example, ε ≈ 2.5 for graphene
placed on SiO2 (the other side being exposed to air), while
ε ≈ 1 for suspended graphene.

The third term in VKS(r), Vxc(r), is the xc potential, a
functional of the ground-state density, which is known only
approximately. Following Refs. 11 and 18 we employ the
local-density approximation (LDA),

Vxc(r)
LDA= d[nδεxc(n)]

dn

∣∣∣∣
n→n̄c+δn(r)

, (8)

where δεxc(n) is the excess xc energy of a homogeneous 2D
liquid of massless Dirac fermions with carrier density n.11,29

The ground-state density n(r) is obtained as a sum over the
KSD spinors �λ(r):

n(r) = Nf

∑
λ

[∣∣ϕ(A)
λ (r)

∣∣2 + ∣∣ϕ(B)
λ (r)

∣∣2]
nF(ελ), (9)

where the factor Nf = 4 is due to valley and spin degeneracies
and nF(E) is the usual Fermi-Dirac thermal factor. Equation
(9) is a self-consistent closure relationship for the KSD
equation (5), since the Kohn-Sham potential VKS(r) is a
functional of the ground-state density n(r). Technical details
on how to solve Eqs. (5)–(9) are discussed at great length in
Refs. 11 and 18.

Numerical results and discussion. The color/grayscale
coding in Fig. 1 represents the spatial map of the calculated
induced carrier density δn(r) for a value of the graphene’s
fine-structure constant αee ≡ e2/(h̄vε) = 0.9 (a commonly
used value for a graphene sheet on a SiO2 substrate). We
remind the reader that αee has the physical meaning of a
dimensionless coupling constant that determines the strength

of electron-electron interactions.1 A 2D color/grayscale plot
of δn(r) is also reported in Fig. 3 for the sake of clarity. In
this figure we have presented predictions for g1 = 3 eV (as in
Fig. 1) but also for g1 = 20 eV. We clearly see that the carrier
density profile δn(r) breaks into electron-hole puddles with
extensions ranging from a few nanometers to the sample size.
Changing the value of g1 from 3 to 20 eV leads merely to a
change in the amplitude of carrier-density fluctuations but not
in the spatial pattern of electron-hole puddles. Since the KSD
theory includes screening due to π electrons, we tend to think
that one should use the unscreened value g1 ≈ 20 eV to avoid
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FIG. 3. (Color online) Top: Fully self-consistent induced carrier-
density profile δn(r) (in units of 1012 cm−2) in the corrugated
graphene sheet shown in Fig. 1. The data reported in this figure have
been obtained by setting g1 = 3 eV, αee = 0.9, and an average carrier
density n̄c ≈ 2.5 × 1011 cm−2. The thin solid lines are contour lines
of the height map h(r). Note that there is no simple correspondence
between topographic out-of-plane corrugations and carrier-density
inhomogeneity. Bottom: Same as in the top panel but for g1 = 20 eV.
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a double counting of screening.27 Note also the well-defined
regions of zero induced density, an effect that can be traced
back to the anomalous behavior of the xc potential in systems
of massless Dirac fermions.11,18

A more quantitative analysis than that reported in Fig. 1
of the degree of correlation between topographic out-of-plane
corrugations and carrier-density inhomogeneities is shown in
Fig. 3. Here we plot together with δn(r) contour lines of
the height map h(r). From this figure one infers marginal
correlations between topography and electron-hole puddles, as
already noticed in Refs. 18 and 19 for simulated ripples. More
mathematically, the real-space scalar and vector potentials that
one derives from Eq. (4) are complicated functionals24 of the
tensor field fij (r), i.e., of the height-fluctuation map h(r). For
example, the scalar potential is given (modulo a constant) by
the following highly nonlocal expression:

V1(r) = g1

2π

μ

λ + 2μ

∫
d2r ′ log (|r − r ′|)F(r ′), (10)

where F(r) = ∑
i,j (δij∇2

r − ∂i∂j )fij (r) is the Fourier trans-
form of F(q). As a consequence, carrier-density inhomo-
geneities are not correlated in a trivial fashion with the height
map h(r). This is most transparent within linear-response
theory in the random phase approximation.11 In this limit it
is possible to show that the induced density in response to
V1(r) for a neutral-on-average graphene sheet is given by

δn(r) =
∫

d2r ′ q2
eff

|r − r ′|F(r ′), (11)

where the coupling constant q2
eff (with physical dimensions of

inverse length) is given by

q2
eff = Nf

32πh̄v

μ

λ + 2μ

g1

1 + π
8 Nfαee

. (12)

In deriving Eq. (11) we have used that the static density-
density response function of 2D noninteracting Dirac fermions
is χ0(q) = −Nfq/(16h̄v). Equations (11) and (12) capture

qualitatively the main features of the numerical solution
of the self-consistent KSD equation even though they miss
some important nonlinear effects. Note (i) the intriguing
formal analogy between Eq. (11) and the expression for the
classical electrostatic potential in Eq. (7) and (ii) that the
coupling constant q2

eff depends on the screened value of g1,
g̃1 = g1/(1 + πNfαee/8). Moreover, according to Eq. (11),
a reduction of the typical height fluctuations h by an order
of magnitude implies a suppression of the amplitude δn

of density inhomogeneities by two orders of magnitude,
in agreement with recent observations for graphene on
h-BN.30,31

In summary, we have shown that in a real sample
corrugation-induced scalar and vector potentials alone can in
principle lead to carrier-density inhomogeneities with length
scales that are larger than the spatial resolution of current
scanning tunneling microscopes.32 A serious comparison
between experimentally reconstructed carrier-density profiles
and our theoretical predictions may lead in a near future
to achieve a better understanding of the main mechanism
leading to electron-hole puddles and limiting the mobility
of unsuspended samples. While this Rapid Communication
focuses on graphene sheets on quartz, we believe that it
would be very interesting to carry out extensive comparisons
between our theory and experimental data for graphene flakes
on h-BN.30,31
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