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Origin of second-harmonic generation enhancement in optical split-ring resonators
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We present a study of the second-order nonlinear optical properties of metal-based metamaterials. A
hydrodynamic model for electronic response is used, in which nonlinear surface contributions are expressed in
terms of the bulk polarization. The model is in good agreement with published experimental results, and clarifies
the mechanisms contributing to the nonlinear response. In particular, we show that the reported enhancement
of the second harmonic in split-ring resonator based media is driven by the electric rather than the magnetic
properties of the structure.
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Metamaterials (MMs) are artificially structured media
whose collective electromagnetic properties derive from the
geometry of subwavelength inclusions. To date, the most
common MM designs have made use of inclusions formed by
conducting materials that function as subwavelength electrical
circuits. These conductor based MMs have been proven to be
adept at mimicking a wide variety of linear electromagnetic
responses, providing a unique venue to explore otherwise
inaccessible concepts.1 In the context of nonlinear response,
however, artificial materials may offer even greater oppor-
tunities, due to the inherently inhomogeneous local field
distribution that exists within and around MM inclusions. By
carefully structuring the inclusion geometry, extremely large
field enhancement regions can be produced that can dominate
and enhance the effective nonlinear response of the composite.

The enhancement of nonlinear processes by MMs has
been demonstrated at radio and microwave frequencies, using
packaged components, such as varactor diodes, to introduce
nonlinearity into the gaps of metal MM inclusions.2 However,
to achieve nonlinear optical materials at higher wavelengths,
a simple scaling of these prototype structures to higher
frequencies (e.g., beyond a few terahertz) will not suffice.
First, the response of most metals changes from conductorlike
to dielectriclike at frequencies above a few terahertz, with
absorption increasing significantly as the fields are able to pen-
etrate further into the metal. Second, packaged semiconductor
components are not readily available at frequencies above
100 GHz.

While metals and conductors may possess undesirable
properties at optical wavelengths, such as increased absorp-
tion, they also possess unique and potentially advantageous
properties. In addition to large field enhancements, metal
nanostructures also support intrinsic nonlinearities that relate
to the dynamics of free and bound charge carriers. As a result,
metals possess some of the largest nonlinear susceptibilities
known. Examples include the large χ (3) values of gold or silver,
for example, suggesting that metals can serve both to form the
linear MM response by tailoring the structure, while serving
as the source of nonlinearity for nonlinear optical MMs.

The second-order nonlinearity in metals arises from both
volume and surface contributions. Nonlinear surface contri-
butions are strictly related to the response of the electrons

within the Thomas-Fermi screening length (λTF ∼ 0.1 nm
for gold) from the metal boundaries. In this subnanometer
realm, electron-electron interactions become appreciable and
nonlocal effects must be taken into account. Moreover, since
metals are centrosymmetric, they do not possess an inherent
χ (2) nonlinearity. However, the surface of a metal can break
spatial symmetry and provide a mechanism for an effective
χ (2) nonlinearity. This homogenized χ (2) nonlinear response
becomes highly dependent on the metal geometry, making it
inherently a MM construct.

A steady stream of works concerning harmonic gen-
eration from metallic nanostructures has been published
recently.3–7 Second-harmonic generation (SHG) has also been
observed experimentally from a variety of metal nanoparticle
systems,8–18 and specifically from optical split-ring resonators
(SRRs), which at first appeared to exhibit an anomalously
high conversion efficiency.12,19,20 The magnetic resonances
associate with SRRs have raised speculation that the enhanced
SHG results from a strong nonlinear magnetic response
associated with the Lorenz force.19 Yet, to the best of our
knowledge, a convincing explanation of the nature of this
conversion enhancement remains lacking in the literature.

In this Rapid Communication, we show that the basic
characteristics of nonlinear optical SRRs may be explained
solely by the electric properties of the structure rather than
its magnetic response, in contrast to the conclusions drawn
from previous works.12,19 The nonlinear optical response
of the charge carriers in the metal here is described by a
hydrodynamic model, which includes the effects of pressure
associated with the electron gas. To facilitate the numerical
models and remove ambiguities associated with additional
boundary conditions, we develop an expression for the
effective second-harmonic surface currents in terms of the
polarization vector in the bulk regions. This expression allows
us to easily study the SHG process from metal particles of
arbitrary shape.

In the context of the hydrodynamic model, the electron
fluid density n(r,t) and the electron velocity field v(r,t) satisfy
Euler’s equation,

∂v
∂t

+ (v · ∇) v + γ v = e

m∗
e

(E + v × B) − β2

n
∇n, (1)
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along with the continuity equation, ∇ · J = −eṅ, with J =
env. In Eq. (1), m∗

e is the effective electron mass, and γ

is the electron collision rate. The last term in the equation
is due to the electron gas pressure, here described within
the Thomas-Fermi model, with β proportional to the Fermi
velocity vF . Combining the continuity equation with Eq. (1),
and expanding all fields in a perturbative manner, one finds
that the free electron polarization Ṗ = J satisfies the following
set of inhomogeneous equations:7

β2∇ (∇ · P1) + (ω2 + iωγ )P1 = −n0e
2

m∗
e

E1, (2a)

β2∇ (∇ · P2) + (4ω2 + 2iωγ )P2 = −n0e
2

m∗
e

E2 + SNL, (2b)

where the nonlinear source SNL is given by

SNL = e

m∗
e

E1 (∇ · P1) + iωe

m∗
e

P1 × B1

− ω2

n0e
[(∇ · P1) P1 + (P1 · ∇) P1] . (3)

The subscripts refer to fundamental and second-harmonic
fields, respectively. In deriving Eqs. (1) a harmonic time de-
pendence (e−iωt ) has been assumed. Together with Maxwell’s
equations, these equations describe the fundamental and
second-harmonic polarization vectors, respectively, and hold
under the assumption that the fundamental field remains
undepleted. The nonlinear source given by Eq. (3) groups
surface and bulk second-harmonic contributions. Specifically
we have the nonlinear Coulomb term (referred to as a
quadrupolelike term by virtue of its form) proportional to
E1 (∇ · P1), the magnetic Lorentz force contribution P1 × B1,
and convective terms (∇ · P1)P1 and (P1 · ∇)P1.

The effect of the electron gas pressure on the polarization
vectors P1 and P2 in Eqs. (2) is a linear, nonlocal contribution
of the form β2∇ (∇ · P). This term has been predicted to be
responsible for unusual, resonantlike phenomena above the
plasma frequency.21,22 In general, this term becomes important
in a region of order of λTF in the vicinity of the metal surface,
where electron-electron interactions dominate the nonlinear
surface sources given by Eq. (3). However, the linear nonlocal
term may be safely neglected in Eq. (2b), since it does not
affect the amount of generated harmonic.23

The presence of spatial derivatives (nonlocality) in the
description of the fundamental polarization vector of Eq. (2a)
requires the specifications of additional boundary conditions to
solve the electromagnetic boundary value problem.24,25 From
the continuity equation and Gauss’ theorem one obtains that
n̂ · P = 0 at the boundary.22,26 A consequence of the linear
pressure term is the nonzero extension of the induced surface
charge inside the metal. That is, the induced electron charge
density 1

e
∇ · P1 is zero in the bulk region, and rapidly changes

near the metal surface, where it reaches its maximum value.
This behavior reflects the variation experienced by the normal
component of P1, which continuously goes to zero at the metal
boundary.

The hydrodynamic model is a simplistic model of electrons
that nevertheless gives a fairly accurate description of linear
and nonlinear processes occurring at the surface of metal-

lic structures. However, the simultaneous manifestation of
microscopic and macroscopic scales in the problem makes
the resolution of the system of (nonlocal and nonlinear) equa-
tions quite complex, and ordinarily necessitates considerable
computational resources even for particles whose dimensions
are a few tens of nanometers. Deep inside the metal, in
the bulk region, the electron pressure may be neglected,
since it leads to corrections of order (λTF/λ)2 � 1.23 On the
other hand, second-harmonic conversion efficiency strongly
depends on the behavior of P1 at the metal surface where
the impact of the pressure term may be critical. Moreover,
if the electron pressure in Eq. (2a) is neglected at the surface,
the theory becomes inherently ambiguous, as pointed out by
Sipe et al.23

To understand where the ambiguity arises consider the
nonlinear Coulomb term in Eq. (3), which is proportional
to (∇ · P1)E1. In the free electron limit (β = 0) the normal
component of the electric field En = n̂ · E1 changes discon-
tinuously across the metal boundaries. This discontinuity is
attributed to charge accumulation occurring at the surface,
which assumes the form of a Dirac delta function, namely,
∇ · P1 = Pnδ0(n̂ · r), where Pn is the bulk polarization com-
ponent normal to the surface. It follows that the quantity
(∇ · P1)En = Pnδ0En is not well defined and cannot be
integrated. The same analysis applies to the convective terms.
In early works this problem was circumvented by introducing
phenomenological coefficients of order unity,27 or through an
effective plasma frequency,23 that incorporates the details of
the charge distribution near the surface, an effect that was
neglected in Ref. 6. However, an analysis of the effect of
pressure on the amount of converted energy shows that the
total SHG converges to an asymptotic value as β tends toward
zero. We verified that for typical values of β (of order of
106 m/s), the actual converted energy differs by not more than
3% from its asymptotic value. Exploring the limit for β → 0
seems then a very good way to get an approximate solution
without having to solve the complex nonlocal equations, as
discussed below.

In this limit the surface layer is so small compared to the
size of the nanoparticle that only the derivative along the
direction ξ = r · n̂ normal to the metal boundary matters. Let
us choose the metal boundary such that for ξ � 0 the electron
pressure may be neglected (β = 0); the region 0 < ξ � l,
where l ∼ λTF, represents the surface layer where the pressure
is important. In this region, the parallel component of the
vector P1 is nearly constant, P ‖

1 (ξ ) � P
‖
1 (0−), while its normal

component P ⊥
1 may be written as

P ⊥
1 (ξ ) = P ⊥

1 (0−)σ (ξ ), (4)

where σ (ξ ) is an unknown, rapidly varying function that
goes from σ (0) = 1 to σ (l) = 0 (as imposed by boundary
conditions). It is straightforward to show that, starting with
Eq. (2b), the nonlinear surface polarization is given by

PS
2 = − 1

2n0e

[
(∇ · P1) P1 + ω

2ω + iγ
(P1 · ∇) P1

]
, (5)

where the second-harmonic pressure term β2∇(∇ · P2) has
been neglected, as already pointed out. In writing Eq. (5) we
have used Eq. (2a) to express the electric field E1 as a function
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of P1. The crucial quantity here is the effective nonlinear
surface current density, defined as KNL ≡ 2iω

∫ ξ=l

ξ=0 PS
2 (r)dr,

where the integral is performed across the surface layer. Using
Eq. (5) we obtain

KNL = iω

n0e

[
t̂(P ⊥

1 P
‖
1 ) + n̂

1

2

3ω + iγ

2ω + iγ
(P ⊥

1 )2

]
, (6)

where
∫ l

0 σ ′dξ = −1 and
∫ l

0 σσ ′dξ = −1/2 have been used,
with the prime representing the derivative with respect to
ξ , and the unit vector t̂ pointing in the direction n̂ × PS

2 .
Equation (6) states that surface contributions to the second-
harmonic polarization may be approximated by an effective
nonlinear current sheet at the surface of the nanoparticle.
These currents are related to the polarization values in the bulk
region and do not require the resolution of nonlocal equations.
That is, the volume sources are calculated by assuming β = 0
while the surface nonlinear currents are given by our Eq. (6).
In the limit of validity, this approach provides a description
of the SHG process that may be easily implemented in full
three-dimensional (3D) simulations. We tested this approach
in the case of SHG from a silver slab and compared our results
with experimental data.28 The results obtained using Eq. (6)
agreed very well with both the solution given by the complete
Eqs. (1) and the experimental data.

Three-dimensional metal nanoparticle systems are of con-
siderable interest for nonlinear media, because both the field
enhancement regions and the surface morphology strongly
impact SHG. In an experiment, planar arrays of varying MM
inclusions were shown to produce second-harmonic light,
with efficiencies that varied according to the shape of the
nanostructured inclusions.12 To investigate the mechanism of
SHG from metal nanoparticles, we choose the same types of
nanoparticles studied in Ref. 12. Our results are summarized
in Fig. 1 for the different kinds of nanoparticles. To ease the
computational burden and to simplify the system studied, we
assumed the nanoparticles to be surrounded by air rather than
including the substrate material used in the experiments. We
do not expect significant changes in the observed mechanism
of SHG due to the exclusion of the substrate material. The
structure studied extends periodically in the x and y directions,
so that only a single unit cell is needed in the computational
space. To avoid possible numerical artifacts due to the
field localization near metal corners, we considered rounded
corner geometries with a radius of curvature of 5 nm. The
geometrical parameters were chosen so that the nanoparticles
would display a resonance around λFF = 1.5 μm, to which
the fundamental field is tuned. The conversion efficiencies η

assume an average pump intensity of ∼55 MW/cm2 with the
electric pumping field polarized along the x direction.

We find qualitatively good agreement with the experimental
data of Ref. 12, where second- and third-harmonic generation
were experimentally investigated for rectangular, T- and U-
shaped gold nanoparticles, respectively. We find the relative
efficiencies for normal incidence normalized with respect
to the U-shaped nanoparticle efficiency to be about 1.7%
for T-shaped nanoparticles (compared with 2.1% for the
experimental data), while the rectangular nanoparticle showed
a ∼0 conversion efficiency, as one might expect due to the
absence of symmetry breaking.
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FIG. 1. (Color online) Second-harmonic conversion efficiency
for different 3D gold nanoparticles. All the particles are 20 nm
thick. The linear transmittance (solid line) and reflectance (dashed
line) at normal incidence are shown in the second column for the
variety of nanoparticles. The vertical lines indicate the fundamental
(dotted red line), and the second-harmonic (blue dashed-dotted
line) wavelength, respectively. In the third column, the arrows
denote the polarization state. The fundamental field is represented
in red (light gray), and the second-harmonic field is blue (gray).
The relative conversion efficiencies normalized with respect to the
U-shaped nanoparticle efficiency are also reported (the corresponding
experiment of Ref. 12 are shown inside brackets). The following
values for the parameters have been used: m∗

e = me, n0 = 5.7 × 1022

cm−3, and γ = 1.07 × 1014 s−1.

As in Ref. 12 we find that an array of U-shaped gold
nanoparticles can enhance the SHG efficiency by about two
orders of magnitude with respect to other noncentrosymmetric
nanoparticles, such as T-shaped particles, for example. More-
over, the polarization state of the generated field is rotated by
90◦ for a pumping electric field polarized along the x direction.
This polarization flip is not surprising, because symmetry
breaking occurs along the y direction. However, the nature
of the conversion enhancement remains an unsettled point
in the literature. In Ref. 19 the authors speculated that this
effect arose as a result of a strong nonlinear magnetic response
associated with the Lorenz force. However, the Lorentz force,
proportional to P1 × B1, is but one of several influential
contributions, Eq. (3). Within the context of our model, by
simply switching off the Lorentz force contribution to the
generated field we find that the conversion efficiency is only
marginally affected. The effect is shown in Fig. 2(a), where
the second-harmonic conversion efficiency is calculated as a
function of the pumping wavelength λFF, with and without
the Lorentz force term. Therefore, the magnetic response of

201403-3



RAPID COMMUNICATIONS
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FIG. 2. (Color online) (a) Comparison of the second-harmonic
conversion efficiency with and without Lorentz force contributions
for the U-shaped nanoparticle of Fig. 1. (b) Sketch of the fundamental
and second-harmonic currents flowing in the rectangular and U-
shaped nanoparticles, respectively. For the symmetric nanoparticle
the nonlinear currents cancel out and no second-harmonic field is
produced. Instead, for the U-shaped nanoparticle the currents oscillate
in phase and radiate to the far field.

the U-shaped nanoparticle does not seem to play an important
role in the description of the SHG process, at least assuming
the hydrodynamic model.

The origin of the conversion enhancement may be ex-
plained by studying the nonlinear electrical properties of the

nanoparticle. If the Lorentz contribution is neglected, all the
electric nonlinear contributions are basically proportional to
the product of the electric field E and the induced charge
distribution ρ = −en = ∇ · P, as may easily be deduced from
Eq. (2b). In Fig. 2(b) two parallel situations are depicted:
(i) the rectangular nanoparticle and (ii) the U-shaped nanopar-
ticle. The arrows indicate the electric field at the surface,
while the color map represents the charge distribution. At
the fundamental frequency both structures behave similarly.
The external electric field of the electromagnetic radiation
produces a gradient in the electrical potential that causes
charges to migrate from one pole to the other. To a first
approximation, the resulting second-harmonic polarization is
proportional to the product between the charge distribution
and the electric field, that is, P(2ω) ∝ ρ(ω)E(ω). As shown
in the sketch of Fig. 2(b), the nonlinear polarization will
result in a second-harmonic electric field that cancels out
for the centrosymmetric nanoparticle, resulting in a near-zero
second-harmonic efficiency. On the other hand, for the U-
shaped nanoparticle the resulting harmonic fields oscillate in
phase and the produced field can radiate to the far field. These
findings lead us to suggest that the characteristic emission of
nonlinear optical SRRs is driven by the electric properties of
the structure rather than its magnetic response, as originally
conjectured.

In conclusion, we have discussed the influence of the
electron gas pressure on SHG and find a way to express
nonlinear surface contributions in terms of the polarization
vector in bulk regions. Using this approach we have analyzed
the SHG in several types of 3D gold nanoparticles and
demonstrated that the origin of the previously experimentally
reported enhanced SHG from SRR-based nanostructures is
mostly electrically driven. This development should help
simplify the investigation of the SHG process in full 3D
metal structures, and enable the investigation of arbitrary
nanostructured plasmonic media, offering a viable design
approach to integrated, efficient, nonlinear optical media.

The authors would like to thank Yaroslav Urzhumov for
valuable discussions. This work was supported by the Air
Force Office of Scientific Research (AFOSR, Grant No.
FA9550-09-1-0562).

*cristian.ciraci@duke.edu
1J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780
(2006).

2S. Larouche, A. Rose, E. Poutrina, D. Huang, and D. R. Smith,
Appl. Phys. Lett. 97, 011109 (2010).

3J. van Nieuwstadt, M. Sandtke, R. Harmsen, F. Segerink,
J. Prangsma, S. Enoch, and L. Kuipers, Phys. Rev. Lett. 97, 146102
(2006).

4M. A. Vincenti, D. de Ceglia, V. Roppo, and M. Scalora, Opt.
Express 19, 2067 (2011).

5K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. Fang,
and K. C. Toussaint, Nano Lett. 11, 61 (2011).

6Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, Phys.
Rev. B 79, 235109 (2009).

7M. Scalora, M. Vincenti, D. de Ceglia, V. Roppo, M. Centini,
N. Akozbek, and M. Bloemer, Phys. Rev. A 82, 043828 (2010).

8C. Neacsu, G. Reider, and M. Raschke, Phys. Rev. B 71, 201402(R)
(2005).

9J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, Phys.
Rev. A 73, 023819 (2006).

10J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine,
E. Benichou, C. Jonin, and P.-F. Brevet, Nano Lett. 10, 1717 (2010).

11B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen,
Opt. Express 12, 5418 (2004).

201403-4

http://dx.doi.org/10.1126/science.1125907
http://dx.doi.org/10.1126/science.1125907
http://dx.doi.org/10.1063/1.3460919
http://dx.doi.org/10.1103/PhysRevLett.97.146102
http://dx.doi.org/10.1103/PhysRevLett.97.146102
http://dx.doi.org/10.1364/OE.19.002064
http://dx.doi.org/10.1364/OE.19.002064
http://dx.doi.org/10.1021/nl102751m
http://dx.doi.org/10.1103/PhysRevB.79.235109
http://dx.doi.org/10.1103/PhysRevB.79.235109
http://dx.doi.org/10.1103/PhysRevA.82.043828
http://dx.doi.org/10.1103/PhysRevB.71.201402
http://dx.doi.org/10.1103/PhysRevB.71.201402
http://dx.doi.org/10.1103/PhysRevA.73.023819
http://dx.doi.org/10.1103/PhysRevA.73.023819
http://dx.doi.org/10.1021/nl1000949
http://dx.doi.org/10.1364/OPEX.12.005418


RAPID COMMUNICATIONS

ORIGIN OF SECOND-HARMONIC GENERATION . . . PHYSICAL REVIEW B 85, 201403(R) (2012)

12M. W. Klein, M. Wegener, N. Feth, and S. Linden, Opt. Express 15,
5238 (2006).

13M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, Phys.
Rev. B 73, 041401(R) (2006).

14B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen,
J. Turunen, and M. Kauranen, Nano Lett. 7, 1251 (2007).

15N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler,
Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and
M. Wagener, Opt. Lett. 33, 1975 (2008).

16E. Kim, F. Wang, W. Wu, Z. Yu, and Y. Shen, Phys. Rev. B 78,
113102 (2008).

17V. K. Valev, A. V. Silhanek, N. Verellen, W. Gillijns, P. van Dorpe,
O. Aktsipetrov, G. A. E. Vandenbosch, V. V. Moshchalkov, and
T. Verbiest, Phys. Rev. Lett. 104, 127401 (2010).

18T. Utikal, T. Zentgraf, T. Paul, C. Rockstuhl, F. Lederer, M. Lippitz,
and H. Giessen, Phys. Rev. Lett. 106, 133901 (2011).

19M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, Science 313,
502 (2006).

20F. B. P. Niesler, N. Feth, S. Linden, and M. Wegener, Opt. Lett. 36,
1533 (2011).

21R. Ruppin, Opt. Commun. 190, 205 (2001).
22S. Raza, G. Toscano, A.-P. Jauho, M. Wubs, and N. A. Mortensen,

Phys. Rev. B 84, 121412 (2011).
23J. E. Sipe, V. So, M. Fukui, and G. Stegeman, Phys. Rev. B 21, 4389

(1980).
24P. Halevi and R. Fuchs, J. Phys. C: Solid State Phys. 17, 3889

(1984).
25D. Maystre, M. Neviere, and R. Reinisch, Appl. Phys. A 39, 115

(1986).
26P. Jewsbury, J. Phys. F: Met. Phys. 11, 195 (1981).
27J. Rudnick and E. Stern, Phys. Rev. B 4, 4274 (1971).
28K. O’Donnell and R. Torre, New J. Phys. 7, 154 (2005).

201403-5

http://dx.doi.org/10.1364/OE.15.005238
http://dx.doi.org/10.1364/OE.15.005238
http://dx.doi.org/10.1103/PhysRevB.73.041401
http://dx.doi.org/10.1103/PhysRevB.73.041401
http://dx.doi.org/10.1021/nl0701253
http://dx.doi.org/10.1364/OL.33.001975
http://dx.doi.org/10.1103/PhysRevB.78.113102
http://dx.doi.org/10.1103/PhysRevB.78.113102
http://dx.doi.org/10.1103/PhysRevLett.104.127401
http://dx.doi.org/10.1103/PhysRevLett.106.133901
http://dx.doi.org/10.1126/science.1129198
http://dx.doi.org/10.1126/science.1129198
http://dx.doi.org/10.1364/OL.36.001533
http://dx.doi.org/10.1364/OL.36.001533
http://dx.doi.org/10.1016/S0030-4018(01)01063-X
http://dx.doi.org/10.1103/PhysRevB.84.121412
http://dx.doi.org/10.1103/PhysRevB.21.4389
http://dx.doi.org/10.1103/PhysRevB.21.4389
http://dx.doi.org/10.1088/0022-3719/17/21/018
http://dx.doi.org/10.1088/0022-3719/17/21/018
http://dx.doi.org/10.1007/BF00616828
http://dx.doi.org/10.1007/BF00616828
http://dx.doi.org/10.1088/0305-4608/11/1/021
http://dx.doi.org/10.1103/PhysRevB.4.4274
http://dx.doi.org/10.1088/1367-2630/7/1/154

