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Importance of subleading corrections for the Mott critical point
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The interaction-induced metal-insulator transition should be in the Ising universality class. Experiments on
layered organic superconductors suggest instead that the observed critical endpoint of the first-order Mott
transition in d = 2 does not belong to any of the known universality classes for thermal phase transitions. In
particular, it is found that δ = 2. Given the quantum nature of the two phases involved in the transition, we use
dynamical mean-field theory and a cluster generalization to investigate whether the unusual exponents could
arise as transient quantum behavior preceding the asymptotic critical behavior. In the cluster calculation, a
canonical transformation that minimizes the sign problem in continuous-time quantum Monte Carlo calculations
allows large improvements in accuracy. Our results show that there are important subleading corrections in the
mean-field regime that can lead to an apparent exponent δ = 2. Experiments on optical lattices could verify our
predictions for double occupancy.
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Half-filled band materials should be metallic, but they are
sometimes insulators.1 This paradox was discussed by Boer
and Verwey and by Peierls as early as 1937, but the first
theoretical advancement came from Mott in 1949. He found
that, as a function of some external parameter, it is possible
to control the ratio of interaction energy to kinetic energy
and drive the system through a metal-insulator transition. This
Mott transition has by now been clearly identified in a few
materials1 and in optical lattices of cold atoms.2,3 The order
parameter for the interaction-induced transition should be in
the Ising universality class,4–6 with no breaking of translational
or rotational invariance. This has been verified explicitly in the
three-dimensional compound V2O3.7

It thus came as a surprise when it was discovered that in two-
dimensional layered κ-bisethylenedithio-tetrathiafulvalene
(κ-(BEDT-TTF)2 X, or ET) organic superconductors,8 critical
exponents for the Mott critical point, measured in both charge
(conductivity)9 and spin (NMR) channels,10 did not belong
either to the Ising universality classes or to any other plausible
universality class for thermal phase transitions. Several pro-
posals have appeared to explain this result. Imada et al.11,12

suggested that while the high-temperature regime is described
by classical Ising exponents, there is also a continuous
transition at T = 0 and, in between, a marginal quantum
critical point that controls the observed behavior. Papanikolaou
et al.13 instead started from the two-dimensional (2D) Ising
universality class and argued that, away from criticality, the
subleading energy exponent dominates for the conductivity
over the leading order parameter exponent. The latter becomes
relevant only very close to Tc. A recent experiment on
thermal expansion coefficient finally, argues that the 2D Ising
universality class is the correct one.14 That finding disagrees
with the latest theoretical calculation15 performed with cluster
dynamical mean-field theory (CDMFT)16,17 that measured
an exponent δ = 2, in agreement with the above-mentioned
conductivity9 and NMR experiments.10

Here we revisit the critical behavior at the Mott critical end-
point by studying the one-band Hubbard model, the simplest
model of interacting electrons that contains the physics of the

Mott transition. Given the quantum nature of the two phases
involved in the transition, we investigate whether unique
exponents could arise as transient quantum behavior preceding
the asymptotic critical behavior. Such a quantum critical point
controlling the behavior over a wide range of finite temperature
has already been observed for the conductivity.18 Since the
sizes of the crossover regions are not universal quantities, we
need a quantitative method that accurately takes into account
the quantum mechanics of this problem. To date, dynamical
mean-field theory (DMFT)19–21 and cluster generalizations
are the only available methods that satisfy this requirement.
Single-site DMFT is exact in infinite dimension and can be
applied to lower-dimensional lattices22,23 CDMFT takes into
account some momentum dependence of the self-energy, a
physical ingredient that is known to be important in two
dimensions.24–35 Hence, CDMFT should provide an accurate
description of the Mott transition, except in the asymptotic
regime where spatial critical fluctuations become important.
To interpret our results, we also found it necessary to perform
single-site DMFT calculations, for which analytical results are
available.5,36

Improvements in computer performance and in algorithms
allow us to obtain much more accurate data than earlier
calculations. In the case of CDMFT, for the frustrated lattice
considered here, the sign problem in the continuous time
quantum Monte Carlo solution of the hybridization expansion
(CT-HYB)37–40 is minimized by a canonical transformation.
This allows us to approach the critical point ten times closer
in reduced pressure than previously possible.

Method. The simplest model that contains both the strong
on-site Coulomb repulsion and the kinetic energy of the
frustrated κ-ET’s lattice is the half-filled Hubbard model on a
2D anisotropic triangular lattice,

H =
∑
ijσ

(tij − δijμ)c†iσ cjσ + U
∑

i

ni↑ni↓, (1)

where c
†
iσ creates a spin σ electron at site i, niσ = c

†
iσ ciσ is the

spin σ density at site i, tij = t∗ji are the hopping amplitudes as
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FIG. 1. (Color online) Periodic partitioning of the anisotropic
triangular lattice into 2 × 2 plaquettes for CDMFT.

shown in Fig. 1 while μ and U are, respectively, the chemical
potential and the screened Coulomb repulsion.

We use single-site DMFT22 and its cluster extension
CDMFT16,17 to solve the Hamiltonian Eq. (1). These methods
start with a periodic partitioning of the infinite lattice model
into independent sites (DMFT) or clusters (CDMFT). The
missing environment of the cluster is replaced by a bath of
noninteracting electrons. The action of the cluster in a bath
model may be written as

S = Scl(c†,c) +
∫ β

0
dτdτ ′c†(τ ′)�(τ ′ − τ )c(τ ), (2)

where Scl is the cluster action as obtained by the partitioning,
c the column vector of the corresponding ciσ ’s, and the
bath has been integrated out in favor of a hybridization
function � = (�iσ,jσ ′ ). This defines an effective impurity
model. Approximating the unknown lattice self-energy locally
by the impurity self-energy, the requirement that the projection
of the lattice Green’s function on the cluster coincides with the
impurity Green’s function computed from the action Eq. (2)
then self-consistently determines �. For CDMFT we take the
2 × 2 plaquette illustrated in Fig. 1. This accounts for the
geometrical frustration in the κ-ET.

To obtain the impurity Green’s function (and other ob-
servables), we use a continuous time quantum Monte Carlo
(CTQMC) solver based on the expansion of the impurity action
in the hybridization function.37–40 In the case of CDMFT,
symmetries of the problem can be used to speed up the
simulation by choosing a single-particle basis in Eq. (2) that
transforms according to the irreducible representations.40 In
our case, separate charge conservation of σ =↑ , ↓ particles
and the C2v point group symmetry of the anisotropic plaquette
lead to the single-particle basis (see Fig. 1 for indices),

cA1σ = 1√
2
(c1σ + c3σ ), c′

A1σ
= 1√

2
(c2σ + c4σ ),

cB1σ = 1√
2
(c1σ − c3σ ), (3)

cB2σ = 1√
2
(c2σ − c4σ ),

with A1, B1, and B2 irreducible representations of C2v (A2

is empty). Due to the degeneracy in the A1 subspace, there
is a degree of freedom in the choice of basis which may be
parametrized by an angle θ as follows:

cos θc′
A1σ

− sin θcA1σ , sin θc′
A1σ

+ cos θcA1σ . (4)
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FIG. 2. (Color online) Average sign in CTQMC simulations of the
anisotropic plaquette impurity problem at CDMFT self-consistency
with t/t ′ = 0.8 (t ≡ 1) and β = 20 as a function of the angle θ in
Eq. (4) for different values of U . The inset zooms on the region where
the sign takes its maximum, as indicated. The dots associated with
each curve indicate the angle where the off-diagonal elements of the
corresponding hybridization functions are minimal with respect to
the L1 norm (solid) and the L2 norm (empty).

In this basis the hybridization function � takes a block-
diagonal form with one 2 × 2 block (A1) and two 1 × 1
blocks (B1 and B2) for each spin (in the normal phase). The
sign problem in the Monte Carlo simulation shows a strong
dependence in θ , as shown in Fig. 2 for t/t ′ = 0.8, β = 20,
and different values of U . One can check that the maximum
of the average sign is related to the angle θ that minimizes
the off-diagonal elements of the hybridization function (A1

block) with respect to some norm. The dots in the inset of
Fig. 2 indicate the maximum with respect to L1 and L2 on
[0,β]. The usual basis, θ = 0, has a bad sign problem.

Results. Figure 3(a) displays double occupancy D ≡
〈n↑n↓〉 as a function of interaction strength calculated for both
single-site DMFT (blue squares) and CDMFT (red circles) at
our best estimate of the corresponding critical T . Both the
metallic (solid symbols) and insulating (open symbols) sides
are shown. The critical temperature is found as follows. Below
the critical temperature, there is hysteresis and a jump in double
occupancy. Above the critical temperature, double occupancy
is continuous. First we searched for the highest (lowest)
temperature where hysteresis (continuity) can be checked in a
reasonable time. The mean of these two temperatures is then
taken as an approximation for the critical temperature.

To check for quantum transient behavior we first fit
the results with D − Dc = c sgn(U − Uc)|U − Uc|1/δ and
different c’s on both sides. This yields δ ∼ 2 for DMFT
and δ � 2 for CDMFT. If we restrict the fit to an interval
closer to the transition, the exponent increases toward δ = 3,
as expected in mean-field theory. From this point of view, it
is tempting to associate δ = 2 to transient quantum behavior.
There is an alternate possibility. In single-site DMFT we know
analytically5,36 that δ takes its mean-field value δ = 3 and that
there are subleading corrections to mean field. To investigate
this possibility, we first derive the subleading corrections.
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The singular part of the mean-field equation for the order
parameter η takes the form5,36

pη + cη3 = h, (5)

with c a constant, while p and h are defined
by p ≡ p1 (U − Uc) + p2 (T − Tc) and h ≡ h1 (U − Uc) +
h2 (T − Tc) . As in the liquid-gas transition, interaction
strength and temperature are not in general eigendirections,
which explains the way they appear in p and h. When p = 0,
the solution is η = (h/c)1/δ , which defines δ = 3. Approaching
the critical line along δU ≡ (U − Uc) for example, the mean-
field Eq. (5) takes the form

p1δUη + cη3 = h1δU. (6)

One can show that the general solution of that equation is of
the form

η =
∞∑
i=1

δUi/3ηi, (7)

with expansion coefficients ηi . The first term, δU 1/3, and the
subleading correction, δU 2/3, are the only terms that lead to
an infinite first derivative at the critical point. In the case of
DMFT, η is the singular part of the hybridization function.
Double occupancy in general should be a smooth function of
η that can be expanded as a power series, a result that can be
proven in DMFT.5 Hence, even when η is dominated by the
leading term δU 1/δ , the η2 term of the power series leads to
subleading δU 2/δ corrections.

The above results suggest that the data for double occu-
pancy should be fitted with the functional form

D − Dc = c1 sgn(δU )|δU |1/δ + c2|δU |2/δ + c3δU, (8)

where δ and the coefficients are adjustable parameters. The
linear term proportional to c3 is nonsingular and is present on
general grounds. When a linear term is added to the δ = 2
fits above, the number of fit parameters is identical to here,
and the results are unchanged. Here we find that with the
subleading corrections and the linear term, it is possible to
obtain an excellent fit to all the points in Fig. 3. In addition,
the fit parameters, including the exponent, are insensitive to
the range of the fit. This robustness of the fit and the better
quality of the fits demonstrate that the alternative quantum
transient hypothesis must be rejected. The solid lines are
fits to the functional form suggested by Eq. (8) and by the
smoothness hypothesis for D. The fits include both the metallic
and the insulating sides. We find δ = 2.93 ± 0.15 for DMFT,
where we know that the analytical result5 asymptotically is
δ = 3. For CDMFT we find δ = 3.04 ± 0.25. The error in the
fitting parameter δ, estimated as described in Ref. 41, is small
compared to the one caused by the uncertainty in the critical
temperature. We therefore estimate the errors from the values
of δ at the two temperatures just below and above the critical
one. The log-log plot in Fig. 3(b) shows that the data does not
lie on a perfect straight line over the wide range of reduced
units considered here. The straight dashed lines are guides to
the eye that show that the exponent that we would obtain by
fitting over a limited range of δU would decrease from δ = 3
toward δ = 3/2 as we move away from the critical point. On
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FIG. 3. (Color online) Double occupancy as a function of U near
the Mott critical point for the Hubbard model on an anisotropic tri-
angular lattice with t ′/t = 0.8 (t ≡ 1) at half filling and fixed critical
inverse temperature β = 11.15 (squares) for DMFT and β = 9.9
(circles, shiftet by ×101.5) for CDMFT on a 2 × 2 plaquette. The solid
lines show a fit to f (U ) = c1sgn(δU )|δU |1/δ + c2|δU |2/δ + c3δU +
Dc (δU ≡ U − Uc) with the same parameters c1,c2,c3,Dc,Uc, and δ

for the metallic (filled symbols) and the insulating region (open sym-
bols). The best fitting values (Uc,Dc,δ) are (10.445,0.0325,2.93) for
DMFT and (7.932,0.0679,3.04) for CDMFT. (a) Linear plot centered
at (Uc,Dc). The insets zoom on the regions close to the critical point.
(b) Logarithmic plot in reduced units relative to the critical point
with CDMFT data shifted by a factor of 101.5 along the y axis. The
dashed lines show the function ∝|U − Uc|1/δ with δ as indicated. In
the critical regime, up to 500 iterations are necessary for convergence
in the iterative solution of the (C)DMFT equation. Once conver-
gence is reached, we take the average over hundreds of iterations.
Monte Carlo sweeps per iteration: 6 × 109 for DMFT and 109 for
CDMFT.

the metallic side, the crossover extends over a rather wide
region where δ is close to δ = 2.

As shown in Table I, different critical quantities lead
to coherent estimates of δ, whereas the importance of the
subleading corrections varies strongly from case to case. For
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TABLE I. Estimates of the exponent δ from a fit of Eq. (8) to
the critical behavior of the double occupancy D, the local Green’s
function Gloc at τ = β/2, and the real and imaginary parts of the local
hybridization �loc function at the lowest Matsubara frequency, as
obtained by DMFT and CDMFT for the same model and parameters
as in Fig. 3. The ratio |c2/c1| indicates the weight of the subleading
correction, as seen from Eq. (8). The error for δ is ±0.25 for CDMFT
and ±0.15 for DMFT.

DFMT CDMFT

δ |c2/c1| δ |c2/c1|
D 2.93 1.15 3.04 0.51
Gloc(τ = β/2) 2.99 0.32 3.05 0.33
Im�loc(ωn = π/β) 3.02 0.28 3.08 0.086
Re�loc(ωn = π/β) 2.87 0.79 3.02 0.75

the single-band Hubbard model, the singular behavior of D

implies singular behavior in both spin and charge channels,5

as follows from the following two sum rules on spin, χsp,

and charge, χch, susceptibilities, T
∑

n

∫
d2q

(2π)2 χsp (q,ωn) =
n − 2D and T

∑
n

∫
d2q

(2π)2 χch (q,ωn) = n + 2D − n2, where
ωn are Matsubara frequencies and q wave vectors in the
Brillouin zone.

Below the critical temperature, there is a first-order tran-
sition with a jump in double occupancy that scales as pβ

with β = 1/2. It is very difficult to obtain this exponent
numerically because of hysteresis. Similarly, the exponent
for the susceptibility (∂η/∂h)p ∼ p−γ with γ = 1 requires
numerical differentiation and cannot be obtained accurately.

Discussion. Fitting with a single exponent over a broad
region away from the critical point leads to δ ≈ 2,15 as ob-
served experimentally.9,10 Hence it is tempting to interpret this
result as a quantum mechanical transient behavior. However,
the fact that δ ≈ 2 is obtained also for single-site DMFT, where
analytical results exist,5 leads us instead to look at the alternate
hypothesis that subleading corrections to mean-field theory
explain the results. With the same number of parameters in
both kinds of fits, we find with subleading corrections that
δ = 3 gives a much better agreement with all the data for both

DMFT and CDMFT. Subleading corrections are particularly
important when the accessible data is asymmetric about the
critical point.

Extracting the pressure dependence of model parameters
from band-structure calculations,42 we estimate that our
numerical results are as close to the critical point in reduced
units as are the experiments. The value γ = 1 in these
experiments is the same as the mean-field one, while β = 1
would imply that a nonsingular term dominates the physics in
the accessible range.

Our results could be relevant for experiment if the failure of
mean-field theory due to long-wavelength fluctuations occurs
only very close to the critical point. Here, the size of the
critical region, as determined from the Ginzburg criterion, is
not known. A sizeable mean-field regime has been obtained
experimentally for the 3D Mott transition.7 Mean-field behav-
ior could also be observed because of coupling to the lattice.43

This case would also lead to subleading corrections with the
same exponents but different sizes of the crossover regions.
It would thus be interesting to reanalyze the experimental
results by including the subleading correction to the mean-field
behavior.

To definitely settle this issue experimentally, it would be
interesting to study the two-dimensional Mott transition in
frustrated optical lattices, where double occupancy is directly
accessible.2
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