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Optical excitation of zigzag carbon nanotubes with photons guided in nanofibers
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We consider the excitation of electrons in semiconducting carbon nanotubes by photons from the evanescent
field created by a subwavelength-diameter optical fiber. The strongly changing evanescent field of such
nanofibers requires dropping the dipole approximation. We show that this leads to novel effects, especially
a high dependence of the photon absorption on the relative orientation and geometry of the nanotube-nanofiber
setup in the optical and near-infrared domain. In particular, we calculate photon absorption probabilities for a
straight nanotube and nanofiber depending on their relative angle. Nanotubes orthogonal to the fiber are found to
perform much better than parallel nanotubes when they are short. As the nanotube gets longer the absorption of
parallel nanotubes is found to exceed the orthogonal nanotubes and approach 100% for extremely long nanotubes.
In addition, we show that if the nanotube is wrapped around the fiber in an appropriate way the absorption is
enhanced. We find that optical and near-infrared photons could be converted to excitations with efficiencies that
may exceed 90%. This may provide opportunities for future photodetectors and we discuss possible setups.
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I. INTRODUCTION

The unique physical properties of carbon nanotubes and
the flexibility they provide in selecting their characteristics
offers great potential for nanotechnology.1–3 Carbon nanotubes
can be either semiconducting or metallic, depending on
their diameter and helical configuration. They typically have
nanometer-sized diameters and a length of a few microns,
although centimeter long nanotubes have been produced
recently.4 This makes them ideal 1D systems that possess a
ballistic conducting channel,5 no backward scattering, and
energy levels that can be adjusted with external fields.6–8

Superconductivity has also been observed in multiwalled
carbon nanotubes and single carbon nanotubes have exhibited
a superconducting proximity effect.9–12 Their applications
range from extremely strong fibers and organic electronics13

to electrochemical sensors14,15 and photon detectors.16

Carbon nanotubes are a form of carbon formed by rolling
up a sheet of graphene into a cylindrical tube. An illustration of
this is given in Fig. 1. Here we focus on the optical properties
of carbon nanotubes. For a straight nanotube, inside a weak
uniform classical plane wave field, these properties have
been extensively studied.17–27 Their quasi-one-dimensionality
means that their density of states exhibits Van Hove sin-
gularities and these contribute to strong optical absorption
peaks. However, these results apply the dipole approximation,
where it is assumed that the field does not vary along the
nanotube’s length. We extend this treatment by allowing for
the spatial dependence of the field. This situation is particularly
relevant when the electrons are delocalized in a tightly confined
field, such that the field varies greatly over a few hundred
nanometers. The degree to which the electrons are delocalized
is a topic of ongoing research and various studies have been
done on the coherence length in nanotubes. Their results range
from 10 nm to several microns suggesting that the spatial
field dependence is certainly important for confined fields and
may also be relevant for plane waves.28–32 The systems we
are primarily interested in are subwavelength-diameter optical
fibers coupled to carbon nanotubes. The electrical field of a

nanofiber is tightly confined and primarily exists outside of
the fiber, in a large evanescent field.33 Due to the presence of
a strong field in a relativity small volume, these nanofibers are
ideal candidates to achieve a high optical absorption in atomic
systems. For example, their interaction with atom arrays has
been studied.34–36 However, in contrast to such atom-fiber
systems, the dipole approximation cannot be applied in the
case of nanotubes since the optical field typically changes
rapidly along a nanotube’s length. In this paper we calculate
the (internal) quantum efficiency, i.e., the probability that a
nanotube, placed inside the evanescent field of a nanofiber,
absorbs a photon. Calculations for the external quantum
efficiency, i.e., the efficiency for detecting the excitation with
the photocurrent, are beyond the scope of this paper. However,
it should be noted that important effects that could aid in this
procedure, such as the avalanche effect, have been observed
in carbon nanotubes.37 We focus specifically on the example
of zigzag nanotubes (see Fig. 1) because they can be direct
semiconductors. However, our results are still representative of
other semiconducting nanotube types such as chiral nanotubes.
We find that the absorption is extremely dependent on the
nanotube’s orientation. These results are highly relevant for the
interface between any future nanoscale photonics and carbon
nanotubes. If the absorption process is coherent the system may
also be suitable as a quantum memory, which maps a photonic
quantum state onto a coherent excitation of the nanotube.

We will be using the band-to-band tight-binding transition
model for the carbon nanotube. This has proven itself to be
very effective in determining the basic optical properties of
nanotubes but does not include effects due to excitons38 and
electron-electron interactions.39 Such effects give measurable
corrections and there have been a few studies considering the
exciton absorption strength.17,23,40,41 Nevertheless, the band-
to-band model is suitable to determine the main contributions
to optical absorption.

This paper is organized as follows. We begin by giving an
overview of nanotube properties and the calculation of their
band structure in Sec. II. Based on this we then evaluate the

195455-11098-0121/2012/85(19)/195455(13) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.195455


S. BROADFOOT, U. DORNER, AND D. JAKSCH PHYSICAL REVIEW B 85, 195455 (2012)

a1
a2

T

C = n

T

ac

a

a1

(a) (b)

FIG. 1. (Color online) (a) Graphene lattice with the unit cells
vectors labeled a1 and a2. These vectors have the length a. Here the
atoms in the A sublattice are red (dark gray) and the B sublattice is
cyan (light gray). ac is the distance between neighboring atoms. The
unwrapped unit cell for a zigzag (3,0) nanotube is shown shaded and
the C vector defines the nanotube’s circumference. (b) A section from
a zigzag (7,0) nanotube is shown with its unit cell shaded. T is the
tangential unit vector of the nanotube’s unit cell.

photon absorption by zigzag carbon nanotubes in Sec. III. In
the setups considered in this paper the nanotubes experience
fields that change strongly along their length; i.e., to calculate
photon absorption we cannot rely on the dipole approximation.
We obtain general expressions for the absorption probability
which are then applied to cylindrical vacuum-clad silica
nanofibers in Sec. IV, and discuss different geometrical setups
of nanofibers and nanotubes. Possible photodetectors that use
these setups are then presented in Sec. V. Finally, in Sec. VI,
we summarize our results.

II. THE TIGHT-BINDING MODEL FOR THE
CARBON NANOTUBE

Here we will review the basic properties of carbon nan-
otubes for completeness and layout the notation that we use
in later sections. A single-walled carbon nanotube (SWCNT)
can be thought of as a sheet of graphene wrapped into a
tube, so we will start by describing the tight-binding model
of graphene.42 Graphene is a regular 2D hexagonal Bravais
lattice of carbon atoms and its structure is shown in Fig. 1.
We label the unit vectors of the graphene lattice a1 and a2.
The length of these vectors is the lattice constant a which is
related to the distance between neighboring carbon atoms, ac,
by a = √

3ac � 0.246 nm. Within each unit cell there are two
carbon atoms, which we label to form the A and B sublattices.
We can then define the unit vectors of the reciprocal lattice as
b1 and b2, with ai · bj = 2πδij . The first Brillouin zone given
by these is also hexagonal. It has a selection of points with high
symmetry: one at the center, the midpoints of the hexagonal
edges, and two inequivalent types of corners.

The well-established tight-binding model assumes that the
electrons are tightly bound to the individual carbon atoms and
the localized atomic orbitals are used as a basis for expanding
the wave function. We consider orbitals that contribute to states

that lie within an optical range of energies around the Fermi
level. These are the states that give the main contributions to the
optical properties of the nanotube. Every carbon atom has four
valence orbitals (2s, 2px , 2py , and 2pz) that could lie in this
energy range. For 2D graphene the (s, px , py) orbitals combine
to form hybridized sp2 orbitals. These give the strong covalent
bonds, primarily responsible for the binding energy and elastic
properties of the nanotubes. In the tight-binding model they
result in σ and σ ∗ bands. However, their energy levels are far
away from the Fermi level and hence they do not play a key
role in the optical properties that we are interested in. That
role is played by delocalized π and π∗ bands that are formed
from the pz orbitals.1 Hence, we can ignore the σ electrons
and restrict the tight-binding model to the π electrons. The
Hamiltonian for this system is

Ĥ0 = −γ0

∑
ij

(α̂†
i β̂j + H.c.), (1)

where −γ0 is the hopping amplitude and ij refers to nearest
neighbors. Here, α̂

†
i and β̂

†
j are the creation operators for

electrons in sublattice A and B, respectively. In this Hamil-
tonian we have removed the constant energy contribution that
corresponds to the Fermi level. We expand the wave function in
terms of pz orbitals at every atom site and split this expression
into two parts, one for each sublattice. The wave function for
each state is then

�(k,r) =
∑
rA

CA(rA,k)pz(r − rA) (2)

+
∑
rB

CB(rB,k)pz(r − rB) (3)

with rA,rB labeling the atom locations in sublattice A and
B, respectively. The individual pz orbitals are given by
the normalized wave functions pz(r) and each one has a
coefficient, represented with CA and CB . By using translational
symmetry we can represent this as

�(k,r) = cA(k)p̃A
z (k,r) + cB(k)p̃B

z (k,r), (4)

where the Bloch functions, p̃A
z and p̃B

z , are

p̃A
z (k,r) = 1√

Ncells

∑
rA

eik·rApz(r − rA), (5)

p̃B
z (k,r) = 1√

Ncells

∑
rB

eik·rB pz(r − rB). (6)

Here Ncells is the number of unit cells in the graphene sheet.
These Bloch functions have the coefficients cA and cB . The
states are labeled by their crystal momentum vector k. We
now solve the time-independent single-particle Schrödinger
equation

Ĥ0�(k,r) = E(k)�(k,r). (7)

We define the quantity

φk =
∑

q

eik·q, (8)

where q are vectors from an atom in the A sublattice to its
neighboring atoms in the B lattice. This gives us the following
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FIG. 2. (Color online) Graphene band structure and the locations
of subbands for a (7,0) nanotube (black solid lines). The transitions
between bands allowed with the electric field perpendicular to the
nanotube can occur between neighboring subbands. The dashed lines
are contours for E+/γ0 equal to 0.5, 1, 1.5, 2, and 2.5.

quantities:

HAA = HBB = 〈
p̃A

z

∣∣Ĥ0

∣∣p̃A
z

〉 = 〈
p̃B

z

∣∣Ĥ0

∣∣p̃B
z

〉 = 0,

HAB = H ∗
BA = 〈

p̃A
z

∣∣Ĥ0

∣∣p̃B
z

〉 = −γ0φk, (9)

SAB = S∗
BA = 〈

p̃A
z

∣∣p̃B
z

〉 = uφk.

Now the variational Schrödinger equation in matrix form is(
HAA HAB

HBA HBB

)(
cA

cB

)
= E(k)

(
1 SAB

SBA 1

)(
cA

cB

)
. (10)

The above matrix equation can be solved to give the energy of
each state as

E±(k) = ±γ0|φk|
1 ∓ u|φk| , (11)

where

|φk|

=
[

1 + 4 cos

(
kxa

√
3

2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)]1/2

.

(12)

A typical value for γ0 is 2.89 eV such that the tight-binding
model corresponds with experiments.3,43,44 We will keep u in
the equations but for all plots and numerical calculations we
assume that u = 0; i.e., there is no orbital overlap. In Fig. 2
this 2D dispersion relation is plotted as a contour. In Eq. (11)
the signs refer to the two relevant bands, the conduction band
and the valence band. The coefficients are found to be

cv
A(k) =

√
φk

2|φk|(1 + u|φk|) , (13)

cv
B(k) =

√
φ∗

k

2|φk|(1 + u|φk|) , (14)

cc
A(k) = −

√
φk

2|φk|(1 − u|φk|) , (15)

cc
B(k) =

√
φ∗

k

2|φk|(1 − u|φk|) . (16)

Now we know the relevant band structure of graphene and
its wave functions; we need to obtain the energy states of the
nanotubes. To do this we use the zone-folding approximation.
This assumes the nanotube bands are the same as graphene
but with limited k, due to the 1D nature of a carbon nanotube.
There are a variety of ways available to wrap the sheet up into
a nanotube, each of which results in very different properties.
The nanotubes are characterized by a vector in the graphene
plane that corresponds to the circumference of the nanotube
and is called the chiral vector C = n1a1 + n2a2 (0 � |n2| �
n1) (see Fig. 1). It gives the relative position of two graphene
atoms that become “identical” when the graphene is rolled
into a nanotube. We will use these parameters in the standard
form (n1,n2) to label each type of nanotube. This immediately
defines some basic geometric properties such as the tube’s
circumference and radius Rt = a

√
n2

1 + n1n2 + n2
2/2π . We

also define the translational vector, perpendicular to C, that
corresponds to the direction along the tube, T = t1a1 + t2a2.
Using the greatest common divisor (gcd), we define t1 =
(2n2 + n1)/NR , t2 = −(2n1 + n2)/NR , and NR = gcd(2n1 +
n2,2n2 + n1). The two vectors, C and T, define the unit
cell of the nanotube. Within each nanotube unit cell there
are NG = 2(n2

1 + n1n2 + n2
2)/NR graphene unit cells and,

hence, NC = 2NG carbon atoms. In a nanotube of length
L there are NL = L/|T| nanotube unit cells. For the nan-
otube’s reciprocal lattice we define K1 = (t1b2 − t2b1)/NG

and K2 = (n2b1 − n1b2)/NG such that K1 · T = K2 · C = 0
and K1 · C = K2 · T = 2π . These give the allowed vectors in
the SWCNT’s Brillouin zone to be a set of NG 1D “cutting
lines” with values

k = μK1 + k||
K2

|K2| , (17)

with μ = −NG/2 + 1, . . . ,0, . . . ,NG/2 and −π/|T| � k|| <

π/|T|. It is the periodic boundary condition along the circum-
ferential direction of the tube that causes the wave vector to
become quantized and each discrete cutting line is labeled
by the azimuthal quantum number μ. For short nanotubes
the wave vectors are also quantized along the nanotube’s
length causing discrete energy levels to be formed.45 These
discrete values have k|| = 2πj/L − π/|T|, for an integer
j = 1, . . . ,NL. Local effects also occur in short nanotubes,
such as a sharp spike in the density of states (DOS), caused by
defects at the caps. Such effects will be ignored here. Typically,
the nanotube is assumed to be of infinite length, allowing
continuous values of the wave vector along the nanotube axis.
This causes possible wave vectors to lie in “subbands.” The
subbands can cut through the Fermi points of graphene causing
the tube to become metallic. This can be shown to be the case
for nanotubes of the type (n,m), where n − m is a multiple of
three. If this is not the case there is a nonzero band gap and
the nanotube is semiconducting. Here we consider “zigzag”
semiconducting nanotubes of the form (n,0), with n not a
multiple of three. The discrete wave vectors are then

|k⊥| = 2πμ

|C| (18)
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FIG. 3. (Color online) The dispersion relation for a (7,0) nan-
otube. The possible transitions caused by light linearly polarized
parallel to the nanotube are shown by arrows. These arrows only
represent the transition between subbands and their horizontal
positions have no meaning. Here the band gap is 1.43 eV, when
γ0 is taken as 2.89 eV.

with μ = −(n − 1), . . . ,0,1,2, . . . ,n and

|k||| <
π

|T| . (19)

The momentum vectors associated with these subbands are
highlighted in Fig. 2 for a (7,0) nanotube. For zigzag nanotubes
k⊥ corresponds to ky and k|| corresponds to kx . It should be
noted that subbands μ and −μ both have the same energy
and this degeneracy is referred to as the “valley” degeneracy.
Combined with the two electron spins this gives a degeneracy
of four for each energy value, except for μ = 0 and μ = n that
only have spin degeneracy. The energy of the subbands is

E±
NT (k||,μ) = E±

(
k||

K2

|K2| + μK1

)
. (20)

These are plotted for a (7,0) nanotube in Fig. 3, which has a
band gap of 1.43 eV.

III. THE OPTICAL ABSORPTION OF CARBON
NANOTUBES

The Hamiltonian of a nanotube interacting with an electro-
magnetic field is Ĥ = Ĥ0 + ĤF + ĤI , with

ĤI = e

me

Â · p̂ (21)

being the interaction term and ĤF representing the field
Hamiltonian. Here, we define e as the magnitude of the electron
charge and are using SI units. Each field mode is characterized
by its angular frequency ω and further parameters, which
define the mode’s polarization and propagation direction. The
field vector potential operator is

Â =
∫ ∞

0
dω(Â+

ω e−iωt + Â−
ω eiωt ). (22)

We will consider the initial and final state of field to be a
coherent monochromatic state |αω0〉, with an angular frequency
of ω0 and a mean photon flux of F photons per unit time.
This state satisfies the equation âω|αω0〉 = α|αω0〉, with α =√

2πFδ(ω − ω0) and âω being the field mode’s destruction

operator.46 This allows us to give

A = 〈
αω0

∣∣Â∣∣αω0

〉
(23)

= A+e−iω0t + A−eiω0t . (24)

Using time-dependent perturbation theory we find that after
time t , the initial state of the nanotube and field, |�v〉|αω0〉, is
in the state |� ′c〉|αω0〉 with probability

P = t
2π

h̄

∣∣∣∣〈� ′c|
(

e

me

A+ · p̂
)

|�v〉
∣∣∣∣
2

δ(E′ − E − h̄ω0),

(25)
which is Fermi’s golden rule. The transition rate for each
electron in the state with energy E to each state with energy
E′ can be expressed as

w = 2π

h̄

∣∣∣∣ e

me

ih̄G

∣∣∣∣
2

δ(E′ − E − h̄ω0). (26)

To calculate the optical absorption of a carbon nanotube of
length L, the interaction term, ih̄G = ih̄〈� ′c|A+ · ∇|�v〉,
needs to be found with spatially changing field. Here we are
assuming that the state is coherent over the entire length of the
nanotube. To calculate G we define

vA(k) =
∑

q

eik·qq, (27)

vB(k) = −
∑

q

e−ik·qq, (28)

with q summing over the three vectors pointing from an atom in
the A sublattice to its neighboring three B lattice atoms. We will
furthermore use the matrix element, M = 〈pz(r)|∇z|pz(r −
qz)〉, with qz being the vector between two neighboring atoms
such that the z axis is aligned along qz. The value we will later
use for this is given by25

M = 2aγ0me/h̄
2
√

3. (29)

Each of the unit cells in the nanotube extends over a distance
of |T| ≈ 0.43 nm along the nanotube and approximately
a nanometer across. This is much smaller than the light’s
wavelength and spatial variations. Therefore, we can assume
that the electromagnetic field is constant across each of the
nanotube’s unit cells. There are NL of these unit cells along
the nanotube’s length and in each one, labeled by an integer l,
the field is given by A+

l = A+(l|T| − L/2).
An expression for G can then be calculated and simplified

into the form (see Appendix A)

G = 1

NL

D(k′,k) ·
[

NL∑
l=1

ei(al
√

3−L/2)(k||−k′
||)A+

l

]
(30)

≈ 1

L
D(k′,k) ·

[∫ L/2

l=−L/2
dleil(k||−k′

||)A+(l)

]
, (31)

where

Dz = M
√

3

2an

n∑
j=1

[
cc∗
A (k′)cv

B(k)e−ija(k′
⊥−k⊥)

× (1 + e−ia(k′−k)·(√3/2,1/2))vA
z (k)

− cc∗
B (k′)cv

A(k)e−ija(k′
⊥−k⊥)e−ia(k′

||−k||)/
√

3

× (1 + e−ia(k′−k)·(√3/2,1/2))vA
z (k)∗

]
, (32)

and Dx,y are given in Appendix A.
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FIG. 4. (Color online) A density plot of Dz(k,k) for graphene
is shown together with the nanotube’s subband lines (black solid
lines) and contours (dashed lines) for values of Dz/M equal to −1,

− 0.5,0,0.5,1, and 1.5. It is given in terms of the constant M from
Eq. (29).

This result coincides with that of Ref. 18 when A+
l is

the same for all l. In Eq. (31) the D gives the selection
rules for possible transitions between bands μ′ and μ. In
particular Dz(k′,k) is negligible if μ′ �= μ and for the other
components of D(k′,k) to contribute we require μ′ = μ ± 1.
For a uniform field across the nanotube these give the possible
transitions for a field polarized parallel and perpendicular to
the nanotube, respectively. In Fig. 4 we have plotted Dz(k,k),
and in Fig. 5 Dx,z is plotted. These expressions correspond to
direct transitions, i.e., with k′

|| = k||, which is an approximation
of momentum conservation and will be discussed later in this
section.

Although the values of Dx and Dy show a transition, the
induced local field creates a depolarization effect47–49 that
reduces Dx and Dy to give a negligible contribution to the
absorption. This allows us to focus on the Dz term and simplify
G to

G ≈ 1

L
Dz(k′,k)

[∮
A+ · dreis(k||−k′

||)
]

, (33)

with s denoting the length along the nanotube. This also
restricts the transitions to those with μ′ = μ.

(a) (b)

−1.5 −1.0 −0.5 0.5 1.0 1.5
k||a

0.5

1.0

1.5

2.0
|Dz| / M

−1.5 −1.0 −0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

|Dx| / M

FIG. 5. (Color online) (a) Dx values for the different transitions
that can occur when the electric field is perpendicular to the nanotube.
M is given by Eq. (29). (b) Dz for transitions allowed with an
electric field parallel to the nanotube. The thickness and color for
each transition has been made to match the arrows used in Fig. 3.

It is the line integral in Eq. (33) that is responsible
for momentum conservation in the system. The photon
momentum is much smaller than the crystal momentum and
typically only direct transitions are considered; i.e., k′

|| ≈ k||.
Here we will make this assumption; however, the change
in momentum cannot be completely neglected since any
change can make a major difference to the line integral in
Eq. (33). This is especially true when the field oscillates along
the nanotube. The energy of a direct transition is given by
Eg(k) = E+(k) − E−(k). Since Dz(k′,k) ≈ Dz(k,k), when
k′
|| ≈ k||, we will make this substitution and further simplify

Dz(k,k) = Dz(k) to give

Dz(k) = −M
√

3

a
Re

(
vA

z (k)
φ∗

k

|φk|
√

1 − u2 |φk|2

)
. (34)

We define A+
|| (s)ds = A+ · dr to be the field potential along

the nanotube and use the discrete momentum values, k|| =
2πj/L and k′

|| = 2πj ′/L, with integers j and j ′. The line
integral can then be expressed as

S(k|| − k′
||) = (1/L)

∮
A+ · dreis(k||−k′

||) (35)

= (1/L)
∫ L/2

−L/2
dsA+

|| (s)eis(k||−k′
||) (36)

= (1/L)
∫ L/2

−L/2
dsA+

|| (s)ei2πs(j−j ′)/L. (37)

This expression is simply the coefficient in the Fourier
series for A+

|| (s). Since the photon momentum is very small
in comparison to the crystal momentum the only relevant
coefficients will have very small values of j ′ − j relative to
NL. Every electron transition in the nanotube then needs to be
considered to calculate the overall absorption rate. This leads
to a length dependence on the absorption. We initially consider
discrete states and corresponding k|| values. The transition rate
given by Eq. (26) is summed over all possible initial and final
states to give

wL ≈
∑
di

n∑
μ=−n+1

∑
k||

∑
k′
||

2πh̄e2

m2
e

|Dz(k)|2

× |S(k|| − k′
||)|2δ(Eg(k) − h̄ω0). (38)

In this equation di refer to the degeneracy of the initial state.
For any value of k|| the sum over k′

|| causes k|| − k′
|| to take all of

the low values that are relevant. This sum is also independent
of k|| and allows us to define S = ∑

j |S(2πj/L)|2, which can
be rewritten using Parseval’s theorem to be

S = (1/L)
∫ L/2

−L/2
ds|A+

|| (s)|2. (39)

The total absorption rate is then

wL ≈
∑
di

n∑
μ=−n+1

∑
k||

2πh̄e2

m2
e

|Dz(k)|2 Sδ(Eg(k)−h̄ω0) (40)

≈ U (ω0)
∫ L/2

−L/2
ds|A+

|| (s)|2, (41)
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where we define

U (ω0) =
∑
di

n∑
μ=−n+1

∫
dk||

h̄e2

m2
e

|Dz(k)|2δ(Eg(k) − h̄ω0).

(42)

The field was defined to be a coherent state with a photon flux
given by F photons per unit time. We divide the transition
rate, given in Eq. (41), by this flux to obtain an estimate for
the probability of one photon exciting a single electron. This
expression gives a probability that increases linearly with
nanotube length. This is certainly suitable up to the coherence
length Lc, however not for long nanotubes. So far we have
considered the length of the nanotube to be smaller than the co-
herence length. For long nanotubes we can consider the whole
nanotube to be composed of coherent segments. This
leads to an exponential increase in the absorption with the
nanotube length. Here, to calculate this quantity we find
the probability of not exciting any electrons, which is the
product of (1 − wLc

/F ) ≈ e−wLc /F for each segment. Hence,
the probability of exciting a single electron, in a nanotube of
length L, with each photon can be estimated by the expression

η = 1 − exp

(−U (ω0)

F

∫ L/2

−L/2
ds|A+

|| (s)|2
)

. (43)

Note that this expression is actually independent of the
coherence length.

Broadening effects can be included in this by substituting
the Dirac delta function from Eq. (42) with a Lorentzian
function,

δ(Eg − h̄ω) → �

π ((Eg − h̄ω)2 + �2)
, (44)

which has a broadening parameter, �. This parameter can
include the broadening due to multiple effects, including the
electronic state’s decay. In carbon nanotubes the state decay
occurs on a picosecond time scale.50 If we take a range of 0.1 ps
to 2 ps the required broadening ranges from � = 0.01 eV to
� = 0.001 eV. In order to compare our results with previous
work25,51 we will choose in the following to use a parameter
of � = 0.01 eV.

So far we have assumed the light to be in a pure state
consisting of one specific wavelength. We expect to have a
range of wavelengths present and to deal with this we assume
the light is in a probabilistic mixture of coherent beams,
each with a photon flux F . These are weighted by a line
shape g(ω), satisfying

∫
dωg(ω) = 1. The light’s state is then∫

dωg(ω)|αω〉〈αω| and the expected absorption probability is

η =
∫

dωg(ω)η. (45)

In the following we take g to be a uniform line shape between
two energy values. This is equivalent to taking η to be the
average transition probability over a range of energies.

IV. OPTICAL NANOFIBER PHOTON ABSORPTION
INTO A CARBON NANOTUBE

We now extend the calculation for the absorption around
optical fibers and particularly nanofibers.52,53 A review of

these subwavelength-diameter waveguides can be found in
Refs. 54–56. They are made of a silica core and have diameters
as small as 50 nm. For fibers of this size a high proportion of
the light field exists outside of the fiber’s core. This means
the field is easily accessible and we consider positioning the
carbon nanotube near the nanofiber. The use of fibers allows the
interaction to be enhanced due to the transverse confinement
of the field. Altering the nanofiber’s properties also allows
us to tailor the field. Fibers with a smaller diameter have a
larger evanescent field but also suffer from higher losses. We
will consider a cylindrical nanofiber core with a radius of R

and cladding provided by the vacuum, with refractive index
n2 = 1. The refractive index of the silica core is n1 = 1.45
and the material absorption of the silica is negligible over
the short distances being considered. Silica core fibers with
subwavelength diameter are single-mode fibers; i.e., the only
mode present is the HE fundamental mode (see Ref. 56 for
a general single-mode condition). We make the assumption
that the field can be described by the bare fiber mode. In
order to validate this assumption we have shown that the
nanotube’s influence on the field is small. To do this we
treated the nanotube as a dielectric cylinder, acting as a
separate waveguide, and analyzed the combined mode of
the system, using methods based on those found in Ref. 57.
In the following we will adopt a scheme used in Refs. 34
and 46 to quantize the field. The field potential operator for
the nanofiber’s fundamental mode is then

Â+
ω =

∑
fp

√
h̄β ′

4πωε0A
âmem(r,ϕ)ei(fβz+pϕ). (46)

This is given in terms of cylindrical coordinates, with z being
the coordinate along the fiber and ϕ the azimuthal angle. The
light’s angular frequency is ω. Its propagation direction is
labeled with f = ±1 and β refers to the longitudinal propa-
gation constant. We find the value of β by numerically solving
the fiber eigenvalue equation [see Eq. (B1) in Appendix B].
The derivative in Eq. (46), β ′, is taken with respect to ω, and
âm are the photon annihilation operators, with m = (ω,f,p)
characterizing the separate modes. Furthermore, em are the
electric field profiles of the guided mode that can be found by
solving Maxwell’s equations34,58 and A gives a normalization
factor. The expressions for the mode profiles and A are given
in Appendix B. The polarization can be right or left circular
labeled by p = ±1. For a single mode of monochromatic
coherent light with m = (ω0,f,p) we have

A+ =
√

Fh̄β ′

2ω0ε0A
em(r,ϕ)ei(fβz+pϕ). (47)

Figure 6 provides a slice of the classical field at one instant
in time. This field can be seen to extend far away from the
nanofiber and vary dramatically with position.

This contrasts with the simpler case that has previously
been studied of a plane linearly polarized light beam that is
given by

Â+
ω =

√
h̄

4πωε0cA′ âωez (48)
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FIG. 6. (Color online) The electric field E of the circularly
polarized HE mode taken for a constant z, to give a cross-section
of the fiber. The color gives Ez and the arrows represent the x and
y components. The longer the arrow the stronger the field. The field
has been divided by the constant E0 = √

Fω0h̄β ′/(2ε0A). Contours
(dashed line) for values of Ez/E0 equal to ±4, ±3, ±2, and ±1 have
been included. In this particular case we took the fiber diameter to be
250 nm and the light’s wavelength as 868 nm.

across the whole nanotube, where the beam has a finite cross-
sectional area of A′. This gives

A+ =
√

Fh̄

2ω0ε0cA′ ez. (49)

For fibers larger than 100 nm in diameter the photon losses
are small and can be ignored over short distances. In our
calculations we will use nanofibers of diameter 250 nm.
Furthermore, we will focus on the forward propagation and
right-polarized guided modes; i.e., f = p = +1. All other
modes are related to our results by symmetry. The value of G

is then highly dependent on the way the nanotube is orientated
relative to the nanofiber and can be calculated to be

G =
√

Fh̄β ′

2ω0ε0A
〈�c(k′)|em expi(fβz+pϕ) ·∇|�v(k)〉. (50)

Since the field strength drops off exponentially the highest
value for the coupling will be achieved by having the
nanotube as close as possible to the fiber. In our examples,
the distance between the nanotube’s center and the surface
of the nanofiber is chosen to be 1.25 nm. The nanotubes
we consider always have a radius less than 1 nm so this
distance avoids any contact. This is so that we do not need to
consider surface interactions. These interactions can influence
the band structure, particularly by distorting the structure of the
nanotube, and may change the nanotube’s transport properties.
The band structure would still experience a shift due to the van
der Waals interactions. However, even in the case of a nanotube
placed directly on top of a substrate, with distortion, the bands
are shifted by less than 100 meV.59

There are two orientations we will consider. The first
is that of a straight nanotube, of length L, oriented at an
angle φ relative to the nanofiber which includes parallel

ф

R

z

FIG. 7. (Color online) Possible orientations of a straight nanotube
relative to a fiber of radius R and positioned parallel to the z axis.
φ labels the angle between the nanofiber and nanotube.

and perpendicular orientations as illustrated in Fig. 7. For
2 μm nanotubes perpendicular to the fiber, the absorption
probabilities as defined by Eq. (43) for different wavelengths
of light and different zigzag nanotubes are shown in Fig. 8. We
do not consider the absorption of photons with energies greater
than 6 eV since these are not visible and require the addition
of the higher energy σ orbitals for accurate results. Distinct
absorption peaks are clearly visible and the largest absorption
occurs for a (11,0) nanotube. The absorption for a nanotube
in a linearly polarized coherent plane wave [see Eq. (48)] is
also shown in Fig. 8. This beam has a cross-sectional area of
4 μm2 and exhibits the same absorption peaks as the fiber, but
varies less with the light’s frequency. It can be seen that the
(11,0) nanotube has its smallest energy transition dramatically
reduced. This extra effect is caused due to larger evanescent
fields, for an increasing wavelength relative to the fiber radius.
This reduces the field intensity and absorption. The quantum
efficiencies are a similar order of magnitude as those observed
experimentally for plane waves.16,49,60 The different nanotubes
show shifted absorption peaks. These can be further adjusted
with external fields or choosing other nanotubes.6–8 The
resonant energy values are unchanged with the orientation
and this allows us to choose a range to average over as a
general measure of absorption. We chose to calculate the
mean absorption η̄ over the (7,0) nanotube’s lowest absorption
energy; particularly we chose a range of 1 eV from 1.3 eV
(953 nm) to 2.3 eV (539 nm). The resulting η̄ is approximately
independent of � in a range of � = 0.01 eV to � = 0.001 eV
deviating only by a few percent.

The corresponding mean absorption against nanotube
length, for the lowest energy transition, is shown in Fig. 9 for
various angles between the straight nanotube and nanofiber.
The results show that the absorption converges to a maximum
value as the length is increased, unless the nanotube is parallel
to the fiber. The nanotube perpendicular to the fiber has a
very strong absorption for short lengths. In this situation we
see the absorption increasing strongly with nanotube length
which is due to the linear increase in electron number. As
the length increases further this effect is counterbalanced by
the fact that the field strength decreases exponentially away
from the nanofiber. The absorption hardly increases at all
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FIG. 8. Photon absorption probabilities η for a 2 μm long
nanotube, perpendicular to the fiber, at different photon energies. The
nanotubes considered are (a) (7,0), (b) (8,0), and (c) (11,0). In each
case the solid lines refer to the absorption of circularly polarized light
guided by the nanofiber and the dashed lines represent the absorption
for a plane coherent light beam (without a fiber) that is linearly
polarized along the nanotube. The two lowest energy transitions, E11

and E22, are indicated. We have used a broadening parameter of
� = 0.01 eV.

after the nanotube exceeds approximately 2 μm. However,
over these short distances the absorption of the perpendicular
nanotube can be improved upon by shifting the nanotube
slightly away from a perfectly perpendicular arrangement. The
parallel orientation increases slowly but does not peak. This
effect will be discussed later in this section and we will find
that the probability can be enhanced by spiraling the nanotube
to combine both effects. This can be qualitatively understood
by noting that the evanescent field is elliptically polarized;
however the plane containing the ellipse is not perpendicular
to the fiber. Instead, it is inclined so the absorption is enhanced
by aligning the nanotube such that it lies within the plane. If
linear-polarized light was used instead of circular-polarized
light the absorption could be twice as high depending on
the nanotube’s position in the nanofiber plane. We also see
a difference between angles of ±π/32, with the higher

1000 2000 3000 4000

0.005

0.010

0.015

0.020

0.025

0.030

L [nm]

||η [%]

-3π/8

-π/32

π/32

π/8

FIG. 9. Average photon absorption probability η for a straight
(7,0) nanotube of length L. At L = 4 μm the angles be-
tween nanotube and fiber are φ = 0 (parallel), −π/32, −3π/8, π/2
(perpendicular), π/32, π/8. The mean absorption has been taken over
a 1 eV region, from 1.3 eV to 2.3 eV.

absorption being dependent on the light’s polarization and
propagation.

The strong absorption for a perpendicular nanotube is
limited by the drop-off in field strength. However, this can
be prevented by maintaining a constant distance between the
nanotube and nanofiber center, Rn. The nanotube can locally
approximate a perpendicular nanotube by spiraling around the
nanofiber, as illustrated in Fig. 10. Although this bending
does alter the electronic and optical properties these effects are
small and can be safely ignored here.61 We define a “winding
number,” W , for the spiral as the number of loops per unit
length along the z axis. This winding number is equal to W =
1/dl where dl is the z distance for one loop. An angle is also
formed between the spiralling nanotube and the nanofiber’s
direction, which is given by �s = arctan(2πWRn). Since these
spiralling nanotubes can interact with the field over an arbitrary
length their absorptions approach 100% given sufficient length
and an allowed transition.

The average absorption probabilities in this case are plotted
in Fig. 11 and show a steady increase in the absorption
probability with nanotube length. The parallel nanotube is
also shown. This demonstrates that the spiralling nanotubes
can have higher absorption probabilities than the parallel con-
figuration. In Fig. 12 we have plotted the average absorption
probability against �s for nanotubes of different lengths.

dl

FIG. 10. (Color online) Nanotube spiraling around a nanofiber.
The length of one loop, along the z axis, is labeled as dl .
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FIG. 11. Average photon absorption probability η for a (7,0)
nanotube of length L coiled around the fiber. The average is taken
from 1.3 eV to 2.3 eV. The winding numbers are −0.0016 nm−1,
−0.0008 nm−1, 0 nm−1 (parallel), 0.0016 nm−1, and 0.0008 nm−1.

An optimal spiraling rate to enhance the absorption can be
seen. We found that the optimal value of this winding rate is
Wopt = em

ϕ /(2πRne
m
z ). This was obtained by maximizing the

alignment between the nanotube and em. Note that Wopt, and
hence the optimal �s , is independent of the nanotube used.
There is also another coil that lies perpendicular to the optimal
one and has near zero absorption. Such nanotubes could have
a variety of applications. For example, two semiconducting
nanotubes could be prepared to give near-zero absorption for
different polarizations of light and then used to distinguish
between these polarizations. They would also enable systems
of nanotubes to be used as electrical conductors, around the
nanofiber, without absorbing photons from the fiber and these
could be used as contacts.

V. APPLICATIONS

The nanotube-nanofiber setups discussed in the previous
sections open up possibilities for a range of applications,
particularly highly sensitive photodetectors. These systems
would detect light guided within a fiber. In this section we
discuss the possibilities. Note that we have only considered
the quantum efficiency of the absorption and that detection

2 4 4 2

0.05

0.10

0.15

0.20

ππ π π Φs

η [%]

FIG. 12. Average photon absorption probability η for (7,0)
nanotubes coiled around the fiber for different winding parameters.
From top to bottom the nanotubes have lengths 10 000 nm, 5000 nm,
and 1000 nm. The average is taken from 1.3 eV to 2.3 eV.

(a)

(b)

FIG. 13. (Color online) Illustrations of possible photodetectors.
Once the light field excites an electron the resistance between
the electrodes drops dramatically, which allows the photon to be
recorded. (a) A horizontal array of aligned nanotubes (thick dark
lines) are formed between two electrodes and the nanofiber is then
laid perpendicular to these nanotubes. (b) Here a “forest” of aligned
semiconducting nanotubes are grown between two electrodes. The
nanofiber is positioned between these electrodes.

of the charge excitations is beyond the scope of this paper.
However, certain nanotube properties such as ballistic electron
transport and low capacitance should be a great advantage for
this detection. The band gap of carbon nanotubes decreases
with the nanotube size, so for optical and near-infrared
wavelengths small-diameter nanotubes are required. This rules
out the possibility of encasing a nanofiber within a nanotube.
Instead, a practical setup is given by arranging N horizontal
nanotubes in a parallel array and placing the nanofiber
orthogonally on top of the array [see Fig. 13(a)]. Based on
current nanotube arrays, the density of nanotubes would be
1–100 nanotubes per μm.62–66 We will use η as a measure
of the absorption probability for one nanotube. The photon
absorption probability of each nanotube is then, in the case
of a (7,0) nanotube, given in Fig. 9 and the overall absorption
probability is

ηtot = 1 − (1 − η)N. (51)

Taking η = 0.000 15 (see Fig. 9) this leads to ηtot > 95%
for N > 20 000, a value greatly exceeding those of currently
available avalanche photodiodes (APDs).67 For N > 40 000
the efficiency exceeds 99% which can currently only be
achieved by highly complex superconducting detectors.67 The
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FIG. 14. Absorption probability for a circularly polarized photon
in a nanofiber laid inside a “forest” of nanotubes (see Fig. 13). This
is given for 2 μm long vertically aligned nanotubes. The nanotubes
are in a region that extends 500 nm away from the fiber and 15 μm
along its length. The density of the array is taken as 900 nanotubes
per μm2. The fiber’s diameter is taken to be either 250 nm (black
line) or 400 nm (gray line). A broadening parameter of � = 0.01 eV
was used.

advantage of our setup is that it can be operated at room
temperature. Each nanotube would require a length of 2 μm
and has to be connected at the ends by electrodes68 which
collect the excited electrons via an applied voltage. Although
this should be possible in the near future, current technology
cannot generate an array of unique nanotubes.

Aligned vertical nanotubes can also be grown on a con-
ducting substrate, which can then serve as one electrode. The
nanofiber can then be placed orthogonally to the nanotubes and
the remaining ends of the nanotubes connected to an additional
electrode [see Fig. 13(b)]. The diameter of the nanotubes in this
case can be in the range of 1 ± 0.5 nm.69,70 Recently, progress
has been made in the generation of such semiconducting nan-
otube “forests,” although a semiconducting nanotube purity of
100% has yet to be achieved reliably.71–73 These nanotube
systems typically have a density of 10–10 000 nanotubes
per μm2.74–77 The nanotubes are distributed uniformly over a
selected region and we assume that they are a uniform mix of
semiconducting zigzag nanotubes with a diameter in the range
1 ± 0.5 nm. We calculated the overall absorption probability
when we have a forest that extends a distance of 500 nm
from the nanofiber and 15 μm along its length, with a density
of 900 nanotubes per μm2. The results with nanofibers that
have diameters of 250 nm and 400 nm are shown in Fig. 14.
These absorb light of a wide range of wavelengths, which can
be selected by the nanotubes present and choice of nanofiber
diameter. A typical absorption probability of ηtot > 50% can
be seen, for 250 nm diameter fibers, and by extending the
system’s length from 15 μm to 50 μm this is increased to
ηtot > 95%. Nanotubes around a 400 nm fiber are also seen to
absorb light at wavelengths that are typically used for optical
communication. Due to the nanotube’s band gap dependence
on external fields there is also the possibility of adjusting the
absorption frequencies by using an external field.

An additional possible setup is given by arranging the
nanofiber and the nanotube parallel to each other. Taking
100 nanotubes of length L = 1 mm parallel to the fiber and

using η = 0.07 (see Fig. 11) we obtain an overall absorption
probability of ηtot > 99% which again greatly exceeds that of
standard APDs.

As a final setup we consider the coil geometry shown in
Fig. 10 which has a high absorption probability of up to
100% for long nanotubes. However, producing such a setup
in a laboratory is rather challenging with current technology.
This setup also allows for further specification of the absorbed
light’s polarization or propagation direction with the choice of
winding number. The winding also dramatically reduces the
length of the system. For a nanotube with a winding number
of W = −0.1 nm−1, the average absorption between 1.5 eV
and 2.5 eV exceeds 50% when the nanotube’s length is 5 mm.
For the 250 nm diameter fiber this only extends 64 μm along
the fiber.

VI. SUMMARY

In this paper we have calculated the probability of absorbing
a photon with zigzag carbon nanotubes. The light field is
allowed to vary along the nanotube; i.e., no dipole approxi-
mation is made, which has enabled us to treat the absorption
of light from optical nanofibers. We found that there is a
strong dependence on the system’s geometry and have devised
setups for high absorption. With a sufficiently long nanotube
parallel to the nanofiber, we find that an absorption of circularly
polarized light arbitrarily close to 100% can be achieved. This
can be further improved on if we spiral the nanotube around
the fiber so that the required nanotube length is dramatically
reduced. A coiled nanotube can also be engineered so that
it does not absorb any light from the nanofiber. For straight
nanotubes that are not parallel to the fiber, we find that the
absorption probability converges as the nanotube’s length
increases. However, if multiple perpendicular nanotubes are
arranged parallel to the fiber arbitrary absorption can still be
achieved. We have found a simple expression for the absorption
probability, which is independent of the coherence length.
Currently, the coherence lengths of carbon nanotubes is an
area of extensive research with results ranging from 10 nm,
at room temperature, to a few microns.28–32 They seem to be
highly dependent on the temperature, impurities, defects and
surrounding fields. Once excited, the radiative lifetimes of the
excitations have been observed to range from 3 to 100 ns.28,78

The nonradiative decay seems to be much faster, of the order
of a few picoseconds.50 Introducing excitons into the model
and analyzing the dynamics of quantized single-photon states
within a carbon nanotube is an interesting area of further
research. Yet, the results here are an important step towards
calculating the absorptions within nanostructures and are of
importance to future nanotube optoelectonics.
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APPENDIX A: CALCULATING THE OPTICAL MATRIX ELEMENT

The matrix element for the interaction between can be found by substituting in the wave functions to give

G = 〈�c(k′)|A+ · ∇|�v(k)〉
=

∑
s,t=A,B

cc∗
s (k′)cv

t (k)
〈
p̃s

z(k′)
∣∣A+ · ∇∣∣p̃t

z(k)
〉

= 1

Ncells

∑
s,t=A,B

cc∗
s (k′)cv

t (k)
∑

r1∈Rs ,r2∈Rt

eik·r2−ik′ ·r1〈pz(r − r1)|A+ · ∇|pz(r − r2)〉

= 1

NGNL

∑
r1∈RA,r2∈RB

cc∗
A (k′)cv

B(k)eik·r2−ik′ ·r1〈pz(r − r1)|A+ · ∇|pz(r − r2)〉

+ cc∗
B (k′)cv

A(k)eik·r1−ik′ ·r2〈pz(r − r2)|A+ · ∇|pz(r − r1)〉

= M
√

3

aNGNL

[
cc∗
A (k′)cv

B(k)
∑

r1∈RA

e−i(k′−k)·r1 A+(r1) · vA(k) + cc∗
B (k′)cv

A(k)
∑

r2∈RB

e−i(k′−k)·r2 A+(r2) · vB(k)

]
. (A1)

Here we have assumed that the orbitals are symmetric and that A+ is constant across each of the nanotube’s unit cells. The
expression for G can then be split into separate unit cells and directions:

G = Gx + Gy + Gz, (A2)

Gz = M
√

3

2anNL

[
NL∑
l=1

ei[al
√

3−(L/2)](k||−k′
||)A+

z (la
√

3 − (L/2))

]

×
n∑

j=1

[
cc∗
A (k′)cv

B(k)e−ija(k′
⊥−k⊥)(1 + e−ia(k′−k)·(√3/2,1/2))vA

z (k)

− cc∗
B (k′)cv

A(k)e−ija(k′
⊥−k⊥)eia(k||−k′

||)/
√

3(1 + e−ia(k′−k)·(√3/2,1/2))vA
z (k)∗

]
= 1

NL

Dz

[
NL∑
l=1

ei(k||−k′
||)[la

√
3−(L/2)]A+

z (la
√

3 − (L/2))

]
. (A3)

In order to calculate Gx and Gy we must take the curvature of the nanotube into consideration. To do this we use the method
from Ref. 18 and introduce the parameters

v
A0± = eiak·(−1/(2

√
3),−1/2)(e∓2πi/2n − 1) + eiak·(−1/(2

√
3),1/2)(e±2πi/2n − 1), (A4)

v
B0± = eiak·(1/(2

√
3),−1/2)(e∓2πi/2n − 1) + eiak·(1/(2

√
3),1/2)(e±2πi/2n − 1), (A5)

vA
x(θ)(k) = Rt

eiθv
A0+ + e−iθ v

A0−
2

, (A6)

vB
x(θ)(k) = Rt

eiθv
B0+ + e−iθ v

B0−
2

, (A7)

vA
y(θ)(k) = Rt

eiθv
A0+ + e−iθ v

A0−
2i

, (A8)

vB
y(θ)(k) = Rt

eiθv
B0+ + e−iθ v

B0−
2i

. (A9)

From these we calculate Gd=x,y to be

Gd = M
√

3

2anNL

[
NL∑
l=1

ei(k||−k′
||)[la

√
3−(L/2)]A+

d (la
√

3 − (L/2))

]
n∑

j=1

cc∗
A (k′)cv

B(k)
(
vA

d(2πj/n)(k)e−ija(k′
⊥−k⊥)

+ vA
d[2π(j+1/2)/n](k)e−ija(k′

⊥−k⊥)e−iak′ ·(1/(2
√

3),1/2)) − cc∗
B (k′)cv

A(k)
(
vB

d(2πj/n)(k)e−ija(k′
⊥−k⊥)e−iak′

||/
√

3

+ vB
d[2π(j+1/2)/n](k)e−ija(k′

⊥−k⊥)e−iak′ ·(5/(2
√

3),1/2))
= 1

NL

Dd

[
NL∑
l=1

ei(k||−k′
||)[la

√
3−(L/2)]A+

d (la
√

3 − (L/2))

]
. (A10)

195455-11



S. BROADFOOT, U. DORNER, AND D. JAKSCH PHYSICAL REVIEW B 85, 195455 (2012)

Hence, we obtain

G = 1

NL

D
NL∑
l=1

ei(k||−k′
||)[la

√
3−(L/2)]A+(la

√
3 − (L/2)). (A11)

"

APPENDIX B: CLASSICAL NANOFIBER FIELD MODES

For light of wavelength λ and k = 2π/λ, the field parameters must satisfy the fiber eigenvalue equation58

J0(hR)

hRJ1(hR)
= −n2

1 + n2
2

2n2
1

K ′
1(qR)

qRK1(qR)
+ 1

h2R2
−

[ (
n2

1 − n2
2

2n2
1

K ′
1(qR)

qRK1(qR)

)2

+ β2

n2
1k

2

(
1

q2R2
+ 1

h2R2

)2 ]1/2

, (B1)

with Jν referring to the Bessel function of the first kind and Kν being the modified Bessel function of the second kind.
By numerically solving Eq. (B1) the value of the propagation constant β is determined. We also define the parameters h =
(n2

1k
2 − β2)1/2, q = (β2 − n2

2k
2)1/2, and

g =
(

1

q2R2
+ 1

h2R2

) / (
J ′

1(hR)

hRJ1(hR)
+ K ′

1(qR)

qRK1(qR)

)
. (B2)

Inside the fiber (0 < r < R) the guided mode, m = (f,p), has the form

em
r = i

qK1(R)

hJ1(hR)
[(1 − g)J0(hr) − (1 + g)J2(hr)], (B3)

em
ϕ = −p

qK1(qR)

hJ1(hR)
[(1 − g)J0(hr) + (1 + g)J2(hr)], (B4)

em
z = f

2qK1(qR)

βJ1(hR)
J1(hr), (B5)

and outside r > R

em
r = i[(1 − g)K0(qr) + (1 + g)K2(qr)], (B6)

em
ϕ = −p[(1 − g)K0(qr) − (1 + g)K2(qr)], (B7)

em
z = f

2q

β
K1(qr). (B8)

These are normalized with a factor given by∫ 2π

0

∫ R

0
n2

1|e|2rdrdϕ +
∫ 2π

0

∫ ∞

R

n2
2|e|2rdrdϕ = A. (B9)
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