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Steady-state thermal transport in anharmonic systems: Application to molecular junctions
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We develop a general theory for thermal transport in anharmonic systems under the weak system-bath coupling
approximation similar to the quantum master equation formalism. A current operator is derived, which is valid
not only in the steady state, but in the transient regime as well. Here, we focus on the effects of anharmonicity
on the steady-state thermal conductance of a mono and diatomic molecular junctions. We also study
molecules being confined in a double-well potential. We find that when the molecules have a nonlinear on-site
potential, the low-temperature thermal conductance is dramatically affected by the strength of nonlinearity,
whereas for the diatomic molecule connected by an anharmonic spring the strength of anharmonicity plays
almost no role in the low-temperature regime. In case of the molecules confined in a double-well potential, we
find that the height of the barrier greatly affects the thermal conductance; once the molecules can feel the effect
of the barrier, we observe negative differential thermal conductance at both high and low temperatures.
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I. INTRODUCTION

The theory of thermal transport dates back to the works
of Debye and Peierls1,2 who studied the heat transfer within
solids. In recent years, the study of heat transfer in nanosystems
is very active due to the need in device applications. One
approach is to look at the classical properties of heat transport
using molecular dynamics.3 This technique gives good insight
in the high-temperature regime but cannot be applied to low
temperatures. The low-temperature regime can be probed
using nonequilibrium Green’s function (NEGF) techniques,
which are inherently quantum mechanical, but they suffer from
the drawback of being suitable only to harmonic systems.4–6

Anharmonic systems on the other hand provide a tool to
control heat transfer in nanosystems with potential techno-
logical applications, e.g., a thermal diode7–9 and a thermal
transistor.10,11 Some systems are purely anharmonic like
the spin boson model,12 a paradigm in condensed matter
and quantum computation. Thus it is important to study
the effect of anharmonic interactions in thermal transport
from a fundamental point of view. Untill now, most of the
works dealing with anharmonic interactions concentrate on the
classical properties like the derivation of Fourier’s law13–15 or
its validity16 as a function of system size17–19 and dimension.20

Although these results are essential to our understanding of
thermal transport, they are only valid for mesoscopic systems
at relatively high temperatures.

At low temperatures and small system sizes where quantum
effects could play a crucial role, Wang has developed quantum
molecular dynamics that can probe into the moderate tempera-
ture regime but cannot be extended to very low temperatures.21

Segal et al. have developed a master equation approach that
is valid for all temperatures but their technique employs the
Pauli master equation,12,22,23 which neglects possible coherent
effects. Techniques based on the Green-Kubo formula and the
quantum master equation have also been developed,24,25 which
should be valid only for large system sizes. Velizhanin et al.
have combined the Green’s function technique with the master
equation approach but face the problem of nonconservation
of energy.26 Mingo27 and Wang et al.28 have also developed

techniques purely based on Green’s function that treat the
anharmonicity perturbatively.

Despite these various advances, the master equation ap-
proach seems the most suited tool to study thermal transport
in anharmonic systems for arbitrary strength of anharmonicity
under weak coupling to the baths. In this approach, the
heat current is calculated using the reduced density matrix
along with an appropriate heat current operator. The reduced
density matrix is typically calculated using a variety of master
equations29–32 out of which the Redfield quantum master
equation (RQME) is the most general equation with only the
weak coupling approximation. The Pauli and the Lindblad
master equations can be derived from it by introducing further
approximations.33

In this paper, we will derive an explicit form of the heat
current operator using standard perturbative techniques (for
weak coupling) that along with the zero-order reduced density
matrix from the Redfield equation will allow us to calculate
heat currents for anharmonic systems. One of the advantages
of our formalism is that it can be used to study transients and
it conserves energy in the steady state (without the need to
symmetrize the heat current). In this work, we will not address
the problem of transients; we will focus on the calculation of
the steady-state heat current for mono and diatomic molecules
either confined in a double-well potential or connected by an
anharmonic spring and having a nonlinear on-site potential.

For molecules confined in a double-well potential, we
find that by varying the height of the barrier, we observe
negative differential thermal conductance (NDTC) not only
in the classical regime (high T ) but also in the quantum
regime (low T ). However, in the problem with nonlinear
on-site potential and the anharmonic spring, we find different
behaviors of thermal conductance in all temperature ranges.
Specifically, at low temperatures, thermal conductance is
drastically affected by the nonlinear on-site potential whereas
in the same temperature regime anharmonicity plays almost
no role.

The rest of the paper is organized as follows. In Sec. II,
we describe our basic model and the Redfield equation. In
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Sec. III, we derive the heat current operator using only the weak
coupling approximation with standard quantum-mechanical
perturbation theory. In Sec. IV, we discuss the bath and system
models studied in this work. In Sec. V, we show our numerical
results and comparisons with NEGF for the harmonic systems.
Finally, in Sec. VI, we summarize our main conclusions.

II. BASIC MODEL AND THE REDFIELD QUANTUM
MASTER EQUATION

Our basic model is similar to that used by many researchers
for discussing thermal transport. It consists of a general
system Hamiltonian connected to harmonic baths. The model
Hamiltonian is thus of the Caldeira-Leggett type:34

Htot = HS +
∑

α

1

2

[∑
k

P α2

k + ωα2

k

(
Qα

k − εuα
k Sα

ωα2

k

)2
]

,

(1)

where HS is the system Hamiltonian, α is a bath label allowing
us to introduce multiple baths, P α

k and Qα
k are the mass

normalized normal variables of the α bath, ωα
k is the kth mode

frequency of the αth bath and uα
k is the coupling constant of the

kth mode of the α bath to the system. The system-bath coupling
strength parameter is ε, and Sα is the system operator coupled
to the αth bath. In general, it can be any function of the system
operators. The above Hamiltonian can be rewritten as

Htot = Ho +
∑

α

(
Hα

SB + Hα
RN

)
,

where

Ho = HS +
∑

α

Hα
B , Hα

B = 1

2

∑
k

(
P α2

k + ωα2

k Qα2

k

)
,

(2)

Hα
RN = 1

2

∑
k

ε2uα2

k

ωα2

k

Sα2
, Hα

SB = Sα ⊗ Bα.

Here, Bα = −ε
∑

k uα
k Qα

k is the collective bath operator that
couples to the system. Throughout this paper, we will set
h̄ = 1 and kB = 1.

Assuming decoupled initial conditions for the total density
matrix, we can write the master equation for the reduced
density matrix33,35,36 as

dρnm

dt
= −i �nmρnm +

∑
ij

Rij
nmρij ,

Rij
nm =

∑
α

[
Sα

niS
α
jm

(
Wα

ni + Wα∗
mj

) − δj,m

∑
l

Sα
nlS

α
liW

α
li

− δn,i

∑
l

Sα
jlS

α
lmWα∗

lj

]
. (3)

The relaxation coefficients are

Wα
ij = W̃ ′α

ij + i
(
γ α(0) + W̃ ′′α

ij

)
, (4)

W̃ α
ij = W̃ ′α

ij + i W̃ ′′α
ij , W̃ α

ij =
∫ t−to

0
dτ e−i �ij τ Cα(τ ), (5)

where

�ij = Ei − Ej ,

Cα(τ ) =
∫ ∞

0

dω

π
Jα(ω)[coth

(
βαω

2

)
cos(ωτ ) − i sin(ωτ )].

(6)

Ei is the ith energy of the system Hamiltonian HS and
Cα(τ ) = 〈B̃α(τ )Bα〉 is the bath-bath correlator, where B̃α(τ )
is the free evolution operator according to exp(−i Hα

B τ ).
Jα(ω) = πε2 ∑

k uα2

k (2ωα
k )−1δ(ω − ωα

k ) is the spectral density
of the bath and γ α(0) = π−1

∫ ∞
0 dωJα(ω)ω−1 is the damping

kernel at time zero coming from the renormalization part of
the Hamiltonian (HRN).

The above master equation is also known in the literature
as the Bloch-Redfield master equation.29,33,37 With respect
to the standard form38 we have neglected

∑
α Hα

RN in the
uncoupled propagation [see Eq. (5)], on the basis of bare
counting powers of ε. While deriving it, we have made only the
weak coupling assumption. Other approximations such as
the secular or rotating wave approximation,39,40 or neglecting
the Lamb shifts41,42 are commonly applied to Eq. (3). However,
these are uncontrolled approximations, and we will not resort
to them.

We are primarily interested in studying the steady state heat
current and hence to obtain the corresponding reduced density
matrix we will set t − to = ∞, and dρnm/dt = 0 in Eq. (3).
On the other hand, the reduced density matrix in Eq. (3) can
be formally written as a series in the system-bath coupling
parameter ε, truncated at second order, as

ρ = ρ(0) + ε2ρ(2). (7)

Recently, Fleming et al.43 discussed that the density matrix
obtained by setting dρnm/dt = 0 in Eq. (3) gives inaccurate
results for the second-order diagonal elements. However, we
will see in Sec. III that the evaluation of heat current requires
only ρ(0) to which Fleming’s argument does not apply.

Now, in order to obtain ρ(0), we simply substitute the series
Eq. (7) in Eq. (3) and equate to zero the coefficients of all
the powers of ε. Thus by solving order by order, we get the
following equation for the steady state ρ(0),

∑
i,α

(
Sα

niS
α
inW̃

′α
ni − δn,i

∑
l

Sα
nlS

α
liW̃

′α
li

)
ρ

(0)
ii = 0, (8)

and for i �= j we get,

ρ
(0)
ij = 0. (9)

Therefore using Eqs. (8) and (9) along with the normaliza-
tion condition Tr(ρ(0)) = 1, we can obtain the zeroth order
contribution ρ(0) to the reduced density matrix.

III. HEAT CURRENT

Our system is connected with a semi-infinite left and a
right heat bath44 whose Hamiltonians H L

B and H R
B are defined

in Eq. (2). In this section, we will derive a formula for the heat
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current starting from the basic definition,

IL(t) = −
〈
dH L

B (t)

dt

〉
, (10)

which is inspired by the change in energy of the (infinite) bath.
The averaged operator is to be interpreted in the Heisenberg
way, i dA/dt = [A,Htot]. The time evolution will be handled
perturbatively, much as one derives the RQME. Earlier works
employing the master equation to calculate heat current have
made additional approximations like symmetrization of the
heat current12,26 or use of the Pauli master equation to
calculate the reduced density matrix.12,22 Although this gives a
simple form for the heat current operator, those approximations
are not really needed, as will be shown here.

Using the Heisenberg equation of motion in Eq. (10), we
obtain

IL(t) = −ε〈AL(t)〉, (11)

where

AL(t) = (F L ⊗ EL)(t), F L = SL, EL = i
[
BL,H L

B

]
. (12)

We recall that SL is the system operator connected to the bath
operator BL of the left bath. The time evolution of the operator
AL(t) is defined in terms of the evolution operator as

AL(t) = U(t,to)
†AL(to)U(t,to), (13)

Now, we expand the evolution operator U(t,to) using the Kubo
type identity45 (eτ (A+B) 	 eτA[I + ∫ τ

0 dλ e−λA B eλA]) up to
first order in ε as46

U(t,to) = U0(t,to)UI(t,to),

U0(t,to) = e−i Ho(t−to) , (14)

UI(t,to) = I − i
∑

α

∫ t−to

0
dsH̃ α

SB(s).

Here, H̃ α
SB(s) is the free evolution operator according to U0(t,to).

Using the above expression of the evolution operator in
Eq. (13), we get

AL(t) = ÃL(t) − i

∫ t−to

0
du

[
ÃL(t),H̃ L

SB(u)
]
, (15)

where ÃL(s) is again a free evolution. In order to obtain
Eq. (15), we have exploited the fact that the two heat baths
are not directly coupled. We expanded only to first order since
IL(t) in Eq. (11) is already first order in ε.

From now on, to simplify notation, we will drop the bath
label α. It is worth noting that even though Eq. (15) has only
the left bath label, the right bath comes in due to the free
evolution of the operators (∵ Ho = HS + ∑

α Hα
B ). Now since

in Eq. (15) we require only the free evolution Ã(t) = F̃ (t) ⊗
Ẽ(t), we express the operators F̃ (t) and Ẽ(t) in terms of the
free evolving Hubbard operator at time t as

F̃ (t) =
∑
n,m

FnmX̃nm(t), (16)

with X̃nm(t) = U0(t,to)†|m〉〈n|U0(t,to), where |n〉,|m〉 are
eigenvectors of the system Hamiltonian in the energy

eigenbasis. Similarly,

S̃(u) =
∑
kl

∑
nm

Sklg
kl
nm(u; t)X̃nm(t), (17)

where

gkl
nm(u; t) = Tr[(X̃mn)†U†

0 (u,t)X̃klU0(u,t)] (18)

is a sort of freely evolving Green’s function of the system.
Now the operator A(t) can be expressed in terms of X̃(t)

using Eqs. (16) and (17) in Eq. (15) as

εA(t) = ε
∑
n,m

X̃nm(t) ⊗ FnmẼ(t)

− i ε2
∫ t−to

0
du

⎡
⎢⎢⎢⎣

∑
i,j

n,k,l

X̃nj (t) ⊗ FniSklg
kl
ij Ẽ(t)B̃(u)

−
∑
i,j

m,k,l

X̃im(t) ⊗ FjmSklg
kl
ij B̃(u)Ẽ(t)

⎤
⎥⎥⎥⎦ . (19)

Using the factorized initial condition [ρtot(to) = ρL
B(to) ⊗

ρS(to) ⊗ ρR
B (to)] and tracing, we obtain

ε〈A〉 =
∑
n,m

〈X̃nm(t)〉Fnm〈E(t)〉

−i
∑
n,m

〈X̃nm(t)〉
∑

j

(FnjS
>
jm − S<

njFjm), (20)

where,

S>
ij = Sij

∫ t−to

0
du e−i �klu χ (u), S< = (S>)†,

(21)
χ (u) = ε2TrB[Ẽ(t)B̃(t − u)ρB],

and we have used gkl
nm(u; t) = ei (u−t)�kl δk,nδl,m for time-

independent HS. Finally, noting that 〈B〉 = 0, gives 〈E(t)〉 =
0, the heat current in Eq. (11) (without the left bath label “L”)
can be expressed as

I = Tr[ρ(0)(t)I], I = i (SS> − S<S), (22)

where S< and S> are defined in Eq. (21) and ρ(0)(t) is the
lowest-order contribution to the reduced density matrix.47 This
is one of the main results of this paper. In order to evaluate
the transients in heat current, we require ρ(0) and I at time t .
I can be evaluated as long as we know the operators S>,<

at time t . ρ(0)(t) can be calculated using the RQME [see
Eq. (3)] by taking ε very small while evaluating the bath-bath
correlators C(τ ).

Clearly from Eq. (22), I = I† and hence
the heat current is real. The correlator χ (τ ) =
π−1

∫ ∞
0 dωωJ(ω)[coth( βω

2 )sin(ωτ ) + i cos(ωτ )] entering in
the current operator I can be expressed in terms of the
bath-bath correlator C(τ ) [see Eq. (6)] used in the RQME
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since χ (τ ) is the derivative of C(τ ). Therefore the operator
S> can be computed as

S>
ij = Sij [C(0) − e−i �ij (t−to)C(t − to) − i �ij W̃ij ]. (23)

Note that nothing particular to the harmonic baths has been
invoked. Any other bath, e.g., spin baths, can be used as long as
we can compute its bath correlators C(τ ) and χ (τ ). Thus only
the relaxation rates W̃ and the operators S<, S> are affected.

Now using Eqs. (22) and (23), the heat current can be
calculated in the steady state as well as in the transient
where the S< operator has an explicit time dependence (some
researchers refer to this as non-Markovian). In this work, we
are interested in the steady-state heat current and as mentioned
in Sec. II we will set t − to = ∞. Since the bath correlator
decays with time, C(∞) will be zero for the steady-state
problem and thus only the transition rates W̃ will contribute
to the the current operator I [see Eq. (23)]. Therefore using
Eqs. (8), (9), (22), and (23), we can calculate the heat current
flowing through the system.

IV. MODELS FOR SYSTEM AND BATHS

A. Bath model

In order to describe the bath completely, we need to specify
a spectral density J(ω) that contains the information about
the frequency distributions of the bath. Several forms of the
spectral density are used in the literature based mainly on
phenomenological modeling. Although the theory outlined in
this work is not restricted to any particular form of the spectral
density, we will concentrate on the Ohmic spectral density
with a Lorentz-Drude cutoff of the form

J(ω) = ηω

1 + (ω/ωD)2
, (24)

where η is the system bath coupling strength squared (ε2). One
of the main advantages of using this spectral density is that
we can calculate the bath correlators C(τ ) and the relaxation
rates W analytically. Numerical decomposition of the spectral
density is also used to analytically obtain the bath correlators,
which reduces the computational costs.48,49

Decomposing the hyperbolic cotangent in Eq. (6) into its
Matsubara frequencies (νl = 2πlT , where T is the temper-
ature) and noting that the resultant equation has poles at
ω = ±i ωD and ω = ±i νl , we can calculate the bath correlator
using the theorem of residues as

C(τ ) = η

2
ω2

Dcot

(
βωD

2

)
e−ωDτ −2η

β

∞∑
l=1

νl e−νlτ

1 − (νl/ωD)2

− i
η

2
ω2

D
e−ωDτ sgn(τ ). (25)

Once the bath correlator is obtained, we can easily obtain the
relaxation rates (W ) using Eqs. (4) and (5) as

W̃ ′
ij = ηω2

D

2
(
ω2

D + �2
ij

) [
ωDcot

(
βωD

2

)
− �ij

]

− 2η

β

∞∑
l=1

ν2
l

(1 − (νl/ωD)2)
(
ν2

l + �2
ij

) , (26)

W̃ ′′
ij = ηω2

D�ji

2
(
ω2

D + �2
ij

) [
cot

(
βωD

2

)
+ ωD

�ij

]

+ 2η�ij

β

∞∑
l=1

νl

(1 − (νl/ωD)2)
(
ν2

l + �2
ij

) , (27)

γ (0) = ηωD

2
. (28)

B. System

Throughout our derivation of the formula for the heat
current we have not specified the Hamiltonian of the system.
In this work, we will study the following systems: model 1a: a
monatomic molecule confined in a double-well potential [see
Fig. 1(a)], model 1b: a monatomic molecule with a linear +
quartic nonlinear on-site potential [see Fig. 1(b)], model 2a: a
diatomic molecule confined in a double-well potential where
the atoms interact via a harmonic + quartic anharmonic spring
[see Fig. 1(c)], and model 2b: a diatomic molecule connected
by a harmonic + quartic anharmonic spring having a quartic
nonlinear on-site potential [see Fig. 1(d)].

In our models, both on-site and coupling spring can be
nonlinear. However, we will restrict the use of nonlinear to
the on-site potential and use anharmonic for the couplings.
The Hamiltonian of the monatomic molecule (models 1a and
1b) connected linearly via the position operator (Sα = x; α =
L,R) to two heat baths as shown in Figs. 1(a) and 1(b) is given
by

HS = p2

2
+ δ

ω2
0 x

2

2
+ λ0x

4, (29)

where ω0 = √
k0 and we have set the mass of the atom to

unity. When δ = −1, the potential has a double well structure
(Duffing oscillator). When δ = +1 (φ4 model), the system has
a linear on-site potential with spring constant k0 plus a quartic
nonlinear term whose strength is governed by a parameter λ0.

The Hamiltonian in case of the diatomic molecule (models
2a and 2b) connected linearly via the position operator (SL =
x1,S

R = x2) to two heat baths [see Figs. 1(c) and 1(d)] is given

FIG. 1. (Color online) An illustration of the different systems
connected to two heat baths at different temperatures TL (red wave)
and TR (blue wave). (a) A monatomic molecule confined in a
double-well potential (model 1a). (b) A monatomic molecule having
a nonlinear on-site potential (model 1b). (c) A diatomic molecule
confined in a double-well potential and the atoms are connected by
an anharmonic spring (model 2a). (d) A similar diatomic molecule
having a nonlinear on-site potential (model 2b).
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by

HS =
∑
i=1,2

(
p2

i

2
+ δ

ω2
0 x

2
i

2
+ λ0x

4
i

)

+ �2(x1 − x2)2

2
+ λ(x1 − x2)4, (30)

where ω0 = √
k0, � = √

k and we have set the mass of the
atom to unity. When δ = −1 similar to the monatomic case,
the diatomic molecule is confined in a double-well potential
and the atoms interact via a harmonic + anharmonic spring.
In case of δ = +1, the model is generally referred to as the
FPU-β model and the atoms in the system are connected to
each other via a harmonic spring k and a quartic anharmonic
spring governed by a parameter λ. Each atom is also subjected
to a linear on-site potential whose spring constant is k0 and a
quartic nonlinear on-site potential whose strength is given by
a parameter λ0.

Models 1b and 2b are of particular interest since they
represent phonon-phonon interactions and to our knowledge
these models have not been studied till date from the quantum
(low temperature) to the classical regime (high temperature)
for strong nonlinearity or anharmonicity. On the other hand,
models 1a and 2a are completely nonlinear and, as we will see
later, exhibit interesting properties like negative differential
thermal conductance (NDTC) in quantum as well as classical50

regimes, which is a basic ingredient to build phononic devices
like a thermal diode.51

C. Numerical details

In the numerical implementation, we can only use a
finite number of base vectors. We will therefore choose a
system Hilbert space large enough so that even at the highest
temperatures the probability of finding the particles in the
highest energy levels is approximately zero. We do this by
iteratively increasing the size of the system Hilbert space until
at least five energy levels have a population less than 10−15.
In case of the monatomic molecule, a system Hilbert space of
around 40 levels is large enough to reach around five times the
Debye temperature [TD = (h̄ω0)/kB], i.e., sufficiently into the
classical regime, whereas in case of the diatomic molecule a
size of around 1600 (40 × 40) levels is sufficient to cover the
same temperature range.

In junction systems, since the cross-sectional area of the
system interacting with the bath is not well defined, we can
not define the thermal conductivity of the system. Hence in
such cases, we define thermal conductance as

σ = lim
TL→T ,TR→T

IL

TL − TR

. (31)

In order to numerically evaluate the thermal conductance, we
choose a small temperature difference between the two baths
such that the limit in Eq. (31) becomes valid. For all the systems
considered in this work, we find that a temperature difference
of 10% is optimal and even if we decrease the temperature
difference further, the conductance of the system does not
change.
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FIG. 2. (Color online) Graph of conductance (σ ) vs temperature
[T = (TL + TR)/2] for various strengths of nonlinearity (λ0) in a
monatomic molecule confined in a double-well potential connected
with Lorentz-Drude heat baths (model 1a). A 10% temperature
difference [TR = 0.9TL] is maintained between the two heat baths.
Inset shows the heat current as a function of temperature difference
at TL = 140 K and λ0/k0 = 0.05(Å

2
amu)−1. Parameters used for the

calculation are δ = −1, k0 = 60.321, ε = 6.0321 [meV/(Å2 amu)]
and ωD = 10 eV.

V. RESULTS FOR THE HEAT CURRENT

A. Heat current for the monatomic molecule

1. Duffing oscillator model

We will first look at the Duffing oscillator δ = −1 (model
1a). Since it is a double well, under no limiting case can
this model be compared to exact solutions. Recently, Ai
et al.50 have pointed out this model exhibits NDTC in the
high-temperature (classical) regime, but to the best of our
knowledge, this model has not been studied in the low-
temperature (quantum) regime from the point of view of
thermal transport.

Figure 2 shows the behavior of thermal conductance [see
Eq. (31)] as a function of temperature [T = (TL + TR)/2]
for varying strengths of the quartic term in the potential λ0.
First, let us look at the two extreme cases when λ0/k0 =
0.01 and λ0/k0 = 10 (Å2 amu)−1. The barrier height of the
double-well potential is inversely proportional to λ0 and thus
when λ0/k0 = 0.01 (Å2 amu)−1 the particle remains confined
to either one side of the barrier (indicated by the nearly
degenerate eigenvalues in Table I), whereas in case of λ0/k0 =
10.0 (Å2 amu)−1, the barrier is so low that the molecule simply
experiences a quartic potential. Both these cases may be
considered as the molecule experiencing only a quartic on-site
potential. In these cases, no NDTC behavior is observed in the
quantum or classical regime.

For intermediate values of the quartic term, we observe
negative differential thermal conductance (NDTC) behavior
in both the quantum and classical regimes [see Fig. 2 inset].
The main reason for this behavior is because for these values of
the quartic strength the double-well barrier is neither too strong
nor too weak and hence the molecule can tunnel through the
barrier. At low temperatures and for certain intermediate values
of quartic strength [λ0/k0 = 0.05 and 0.10 (Å2 amu)−1], we
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TABLE I. Table of first three eigenvalues and corresponding
populations for the mono (λ′ = λ0/k0) and diatomic [λ′ = λ0/(k0 −
k)] molecule confined in a double-well potential (model 1a and model
2a).

Eigenvalues Populations in %

λ′ Monatomic Diatomic Monatomic Diatomic
(Å2 amu)−1 (10−3 eV) (T = 210 K) (T = 105 K)

−449.54 −1815.01 49.78 49.99
0.01 −449.53 −1815.01 49.77 49.00

−356.11 −1702.86 0.22 0.00

−130.41 −424.28 67.33 50.25
0.05 −117.94 −424.19 32.60 49.74

−6.26 −287.59 0.05 0.00

−74.89 −214.66 86.13 59.21
0.10 −43.44 −211.45 13.84 40.77

75.73 −85.70 0.01 0.01

10.60 18.01 99.53 99.96
0.50 103.44 88.18 0.46 0.03

242.11 135.98 0.00 0.00

39.79 78.57 99.92 99.99
1.00 163.29 186.79 0.07 0.00

320.20 217.78 0.00 0.00

133.16 266.28 99.99 99.99
10.0 390.44 518.69 0.00 0.00

688.89 528.42 0.00 0.00

see NDTC. In order to explain this possibly quantum behavior,
we analyze the lowest three eigenvalues and their populations
given by ρ(0) as tabulated in Table I. Since the maxima of
the double-well potential barrier is at 0.0 eV, we can clearly
see from Table I that for λ0/k0 = 0.05 and 0.10 (Å2 amu)−1,
the lowest three eigenvalues are just below the maximum of
the barrier indicating that the molecule can tunnel through the
barrier and is not confined well within the double well as in the
case of λ0/k0 = 0.01(Å2 amu)−1. The populations are also con-
centrated in the lowest two eigenstates, supporting our claim.

Now looking at the specific case of λ0/k0 =
0.05 (Å2 amu)−1, we find that the lowest two energy levels are
quite close, ∼12.5 meV (130 K). This is the exact temperature
range at which the thermal conductance increases sharply
indicating that the bath modes corresponding to that energy
difference start conducting heat. In between 100 to 300 K,
since the third energy level is quite far apart, only the modes
having energy corresponding to the energy difference of the
first two energy levels transfer heat and thus due to system-bath
coupling effects the heat current decreases with increase in
temperature difference showing NDTC. This claim is also
supported by looking at the populations at 210 K, which
indicate that the third level has now started gaining some finite
population. Then other energy modes will be allowed through
the system causing the thermal conductance to again increase
with temperature above 300 K.

2. φ4 model

Now, we will look at another model of the monatomic
molecule known as the φ4 model or the quartic on-site potential
model (model 1b; δ = +1). This model can be physically
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FIG. 3. (Color online) Graph of current (IL) vs temperature of
the left lead (TL) using Landauer formula (black) and our heat
current formulation (red) for the Lorentz-Drude model. The insets
show current as a function of the strength of the dimensionless
system-bath coupling squared. (a) shows the current comparison for
a harmonic monatomic molecule (model 1b: δ = +1, λ0 = 0) and
(b) shows the comparison for a harmonic diatomic molecule (model
2b: δ = +1, λ0 = 0, λ = 0). The parameters used for the monatomic
molecule are k0 = 60.321 meV/(Å2 amu). The parameters used for
the diatomic molecule are k0 = 30.1605 meV/(Å2 amu) and k =
30.1605 meV/(Å2 amu). The common bath parameters are ε =
6.0321 meV/(Å2 amu), ωD = 10 eV, and TR = 0.9TL. For both the
insets the same system parameters and bath parameters are used
except TL = 350 K and ε2 is varied.

realized as a monatomic molecule interacting via nonlinear
interaction with a substrate. For this, quartic on-site potential
model in the limiting case of λ0 = 0, the system becomes
purely harmonic and we can employ NEGF techniques using
the Landauer formula to evaluate the heat current as shown
in Appendix. The Landauer formula is applicable only in the
steady state for harmonic systems but its advantage is that it
is applicable for all coupling strengths. Figure 3(a) shows the
heat current IL calculated via Landauer formula (black curve)
and our heat current formulation of Sec. III (red curve). The
inset shows the heat current as a function of the dimensionless
system-bath coupling strength squared (ε2/k2

0 ). We see that
both curves exactly overlap in the weak system-bath coupling
regime, i.e., up to ε = 0.1k0 for the entire range of temperature
showing excellent agreement between the two approaches
in this limit. For this specific harmonic case, we have also
compared our work to that of Segal22 who obtains an analytic
formula for heat current and we find good agreement between
her approach and ours.

Next, we study the behavior of thermal conductance as
a function of temperature [T = (TL + TR)/2] for varying
strengths of nonlinearity as shown in Fig. 4. We see that
even with the slightest amount of nonlinearity the system
behaves quite differently as compared to the harmonic case.
The nonlinearity not only changes the behavior at the high
temperature (classical regime), but also changes the behavior
of low-temperature thermal conductance (quantum regime).
To the best of our knowledge, the effect of strong nonlinearity
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FIG. 4. (Color online) Graph of conductance (σ ) vs temper-
ature [T = (TL + TR)/2] for various strengths of nonlinearity in
a monatomic molecule connected with Lorentz-Drude heat baths
(model 1b). Parameters used for the calculation are δ = 1, k0 =
60.321, ε = 6.0321 [meV/(Å2 amu)], ωD = 10 eV, and TR = 0.9TL.
λ0/k0 has dimensions of (Å2 amu)−1.

in the quantum regime has not been studied and this simple
system demonstrates that even in the low-temperature regime
the nonlinear forces can not be neglected.

B. Conductance for the diatomic molecule

Similar to the monatomic case, we will first look at the case
of the diatomic molecule trapped in a double-well potential
(δ = −1) where the atoms of the molecule interact only via
a harmonic interaction (λ = 0). We vary the height of the
barrier by varying λ0 and plot the conductance as a function
of temperature in Fig. 5. Similar to the monatomic molecule
case, we observe NDTC in the quantum as well as classical
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FIG. 5. (Color online) Graph of conductance (σ ) vs
temperature[T = (TL + TR)/2] for a diatomic molecule confined
in a double well potential using the Lorentz Drude bath model
(model 2a). The parameters used for the calculation are: δ =
−1, k0 = 90.4815, k = 30.1605, ε = 6.0321 [meV/(Å2 amu)], λ =
0 meV/(Å4 amu2), ωD = 10 eV, and TR = 0.9TL. λ0/(k0 − k) has
dimensions of (Å2 amu)−1.

regime for intermediate values of the strength of the nonlinear
potential.

An analysis similar to the monatomic molecule case can
be made with the eigenvalues and the populations shown in
Table I. For λ0/(k0 − k) = 0.01,0.05(Å2 amu)−1 the barrier is
very high and hence the molecule remains confined to either
one side of the well indicated by the nearly degenerate eigen-
values and corresponding 50-50% probabilities (see Table I).
For λ0/(k0 − k) = 0.1 (Å2 amu)−1 we can observe NDTC in
the quantum regime because only for this value the barrier
is neither too high nor too low and hence the molecule can
tunnel through the barrier since the eigenvalues are just below
0.0 eV (barrier maxima) as seen from Table I.

The diatomic molecule brings another interesting aspect,
i.e., the role of anharmonic interactions between the two
connecting atoms. The anharmonic spring (λ �= 0) plays a
small role in determining whether the system shows NDTC
or not and it simply shifts the thermal conductance in the
high-temperature regime to a lower value as compared to
the harmonic spring. This behavior is somehow expected
since anharmonic interaction between the atoms leads to
more scattering causing the thermal conductance to decrease
as compared to a harmonic interaction. Thus by looking at
the monatomic and diatomic case, it seems that the NDTC
behavior in such double well potentials can be tuned by solely
varying the substrate barrier height (λ0) and the number of
atoms or anharmonicity in the system seem to play a small role.

Now, we will look at the FPU-β model with δ = +1
where we will first compare the heat current in a purely
harmonic system (λ = 0 and λ0 = 0) by our heat current
formulation to the Landauer formula [see Fig. 3(b)]. The
inset shows the current as a function of the dimensionless
system-bath coupling strength squared [ε2/(k0 + k)2]. Again,
for weak system-bath coupling, i.e., up to ε = 0.1(k0 + k),
there is an excellent agreement between our heat current
formulation (red) and the Landauer formula (black) on the
entire temperature range.

Now, we first switch on the anharmonicity, i.e., vary the
parameter λ and set the nonlinear on-site potential to zero,
i.e, λ0 = 0. Figure 6 shows the effect of anharmonicity on the
thermal conductance. Comparing Figs. 4 and 6, we see that the
behavior of thermal conductance as a function of temperature
for a nonlinear on-site model and an anharmonic model is
very different. For example, in the low-temperature regime, the
behavior of thermal conductance for an anharmonic diatomic
molecule is same as that of a harmonic diatomic molecule.
In Fig. 7, we plot the low-temperature thermal conductance
for some combinations of nonlinear on-site potential and
anharmonicity for the diatomic molecule. Clearly, only when
we have nonlinearity present, the behavior of low-temperature
thermal conductance differs from the harmonic case proving
that the low-temperature behavior of thermal conductance is
strongly affected by nonlinearity, whereas anharmonicity plays
almost no role at low temperatures.

We would like to end this section with a few words on
the specific heat of the systems considered in this work.
Since specific heat of a solid is closely related to its thermal
conductivity (κ = 1/(3V )

∑
k
ckvklk, where ck is the specific

heat, vk is the phonon group velocity, and lk is the mean-free
path associated with mode k and V is the volume of the
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FIG. 6. (Color online) Graph of conductance (σ ) vs temperature
[T = (TL + TR)/2] for an anharmonic diatomic molecule using the
Lorentz Drude bath model (model 2b). Parameters used for the calcu-
lation are: k0 = 30.1605, k = 30.1605, ε = 6.0321 [meV/(Å2 amu)],
λ0 = 0 meV/(Å4 amu2), ωD = 10 eV, and TR = 0.9TL. λ/(k0 + k) has
dimensions of (Å2 amu)−1.

solid) one expects a similar relation should hold even for the
thermal conductance (σ ). The quantum correction method52–54

is typically employed to relate the thermal conductance and the
specific heat of the system. Although this approximation might
not be valid for all temperatures,55 in the low-temperature
regime, since the group velocity (vk) can be approximated
as a constant, we get σ ∝ Cv. In case of the φ4 model, the
low-temperature specific heat56 shows similar behavior to the
thermal conductance but at high temperatures the specific heat
of φ4 model shows a negative slope, which is not observed in
the thermal conductance indicating the role of the phonon
group velocity. In case of mono and diatomic particle in
a double-well potential, the physics behind the double-peak
structure in the thermal conductance is similar to the Schottky
anomaly of specific heat, which has been mainly studied for
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FIG. 7. (Color online) Graph of conductance (σ ) vs tempera-
ture [T = (TL + TR)/2] for an anharmonic + nonlinear diatomic
molecule using the Lorentz Drude bath model (model 2b). Parameters
used for the calculation are same as Fig. 6. λ/(k0 + k) and λ0/(k0 + k)
have dimensions of (Å2 amu)−1.

magnetic systems.57,58 Thus, in case of anharmonic systems,
by observing the specific heat of materials, it might be possible
to predict features in the thermal conductance making it easy
to choose materials for phononic devices.

VI. CONCLUSION

We have presented a fully quantum-mechanical “non-
Markovian” theory based on standard perturbation theory to
evaluate heat current in general anharmonic systems. Our
theory is valid for any strength of anharmonicity and can
be easily applied to any potential as long as the system-bath
coupling is weak, i.e., up to 10% of the spring constant of
the harmonic oscillator. Using this method, we investigated
thermal transport in mono and diatomic molecules confined in
a double-well potential and found that in this purely nonlinear
model, we can tune the NDTC by simply varying the height
of the barrier that is essential to make phononic devices to
control the heat current. We also investigated the monatomic
molecule having a nonlinear on-site potential and found that
nonlinearity affects the thermal conductance not only at high
temperatures but also at low temperatures. This behavior has
to do with broken translational invariance for the nonlinear on-
site potential. In case of the diatomic molecule, we found that in
the low-temperature regime anharmonicity plays no vital role
and the behavior of the thermal conductance is similar to the
harmonic case. In order to quantify this statement, we added
a nonlinear on-site potential to our diatomic molecule and
found that the low-temperature thermal conductance deviated
from the harmonic case proving that at low-temperatures
nonlinearity can drastically affect the thermal conductance of
the system.

The technique presented here allows us to deal with any
form of the system potential enabling us to study not only the
phonon-phonon interactions from a fundamental point of view
but also to explore systems of potential technological interest
from the point of view of phononics. The theory is best suited
for small junction systems; as large systems with large system
Hilbert spaces will render the problem numerically intractable.
Although we have laid stress on the steady-state thermal
conductance in this work, one important aspect in the field of
phononics would be to extend our approach to time-dependent
Hamiltonians and study the effects of external fields on tran-
sient behaviors of purely nonlinear systems that would enable
us to control heat current and build better phononic devices.
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APPENDIX: LANDAUER FORMULA AND MEAN-FIELD
LIKE APPROXIMATION

In case of harmonic systems, the heat current can be
obtained exactly for any arbitrary strength of the coupling
using the Landauer formula5,6 given by

IL =
∫ ∞

0

dω

2π
ωT (ω)(fL − fR), (A1)
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where fL,R = [exp(ω/TL,R) − 1)]−1 is the Bose-Einstein distri-
bution for phonons and T (ω) is known as the transmission
coefficient. The transmission coefficient for a microscopic
model is typically obtained by using the formula proposed
by Meir et al.59 given by

T (ω) = Tr(Gr�LG
a�R), (A2)

where Gr = (Ga)† is the retarded Green’s function and �L,R

describes interaction between the baths and the system. For
a harmonic spring model described by the Caldeira-Leggett
Hamiltonian [see Eq. (1)], the retarded Green’s function and
�L,R are given by

Gr (ω) = {ω2 − KS − 2[γL(0) + γR(0)] − �r (ω)}−1,

�L,R = −2Im
[
�r

L,R(ω)
]
, (A3)

�r (ω) = �r
L (ω) + �r

R (ω), (A4)

where KS is a spring constant matrix of the system having
dimensions N × N , where N is the degrees of freedom of the
system, γα(0) is the damping kernel at time zero, and �r

L,R(ω) is
the retarded self-energy of the left and right baths.60 In case of
a 1D problem, only one element of �r

L,R(ω) matrix is nonzero
and is given by

�̄r
L,R(ω) = 1

π
P

∫ ∞

−∞

JL,R(ω′)
ω − ω′ dω′ − i JL,R(ω), (A5)

where JL,R(ω) is the spectral density of the bath. Using Eq. (A1),
the thermal conductance defined in Eq. (31) is given by

σ =
∫ ∞

0

dω

2π
ωT (ω)

∂f

∂T
. (A6)

If the system Hamiltonian consists of a single harmonic
oscillator [see Eq. (29)] and both the baths couple to the system
with the same spectral density, i.e., JL(ω) = JR(ω) = J(ω) the
transmission coefficient is given by

T [ω] = 4J2(ω)

{ω2 − kren − Re[�r (ω)]}2 + 4J2(ω)
, (A7)

where kren = k0 + 4γ (0) is the renormalized spring constant.
Since we are interested in the weak-coupling limit, we make
use of the following identity,

lim
ε→0

ε

(x2 − a2) + ε2
= π

2a
[δ(x − a) + δ(x + a)], (A8)

to obtain the transmission coefficient as

T (ω) = πJ(ω)

ωren

[δ(ω − ωren) + δ(ω + ωren)], (A9)

where ωren = √
kren. Therefore the thermal conductance in the

weak-coupling limit for a single harmonic particle in the
system is given by

σwc = ωren e
ωren
T

2T 2(e
ωren
T −1)2

J
(
ωren

)
. (A10)

One of the simplest approximations to treat nonlinear on-
site potential is a mean-field-like approximation in which we
transform the quartic problem into a quadratic one by replacing
the quartic on-site potential in Eq. (29) by

λ0x
4 = λ0〈x2〉x2, (A11)

where

〈x2〉 = 1

2ωren

[
coth

(
ωren

2TL

)
+ coth

(
ωren

2TR

)]
, (A12)

in the weak-coupling limit. Here, the particle in the quartic
potential experiences a mean field from its own quadratic part
of the Hamiltonian making the system quadratic but the spring
constant temperature dependent:

kmf = kren + 2λ0

ωren

coth

(
ωren

2T

)
. (A13)

Although this is one of the crudest approximations, it allows
us to obtain the thermal conductance as

σwc,mf = ωmf e
ωmf
T

2T 2(e
ωmf
T −1)2

J(ωmf). (A14)

where ωmf = √
kmf. In case of the harmonic system and the non-

linear on-site model under the mean-field-like approximation,
we can obtain the low-temperature dependence of the thermal
conductance from Eqs. (A10) and (A14) as

σwc ∝ e−
√

kren
T

T 2
, (A15)

σwc,mf ∝ e−
√

kren+(2λ0/
√

kren)
T

T 2
, (A16)

which clearly shows that even for the mean-field-like approxi-
mation the low-temperature thermal conductance for a quartic
on-site model is quite different from the harmonic system.
In comparison with our heat current formulation, this mean-
field like approximation gives the correct qualitative features
for the thermal conductance although the exact behavior is
different.
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