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Model-based extraction of material properties in multifrequency atomic force microscopy
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We present a method to reconstruct the nonlinear tip-surface force and extract material properties from a
multifrequency atomic force microscopy (AFM) measurement with a high-quality-factor cantilever resonance.
In a measurement time of ∼2 ms, we are able to accurately reconstruct the tip-surface force-displacement curve,
allowing simultaneous high-resolution imaging of both topography and material properties at typical AFM scan
rates. We verify the method using numerical simulations, apply it to experimental data, and use it to image
mechanical properties of a polymer blend. We further discuss the limitations of the method and identify suitable
operating conditions for AFM experiments.
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I. INTRODUCTION

Since its invention in the 1980s, the atomic force micro-
scope has become an invaluable tool to image surfaces at
the microscale and nanoscale levels. The need to image ever
more complex structures has pushed development beyond the
measurement of only topography, toward mapping quantitative
material properties while scanning. Such imaging modes
provide new means of investigating heterogeneous samples
such as polymer blends or biological materials.

Previous studies have demonstrated quantitative atomic
force microscopy (AFM) based on methods where the can-
tilever is driven at a single frequency while the motion response
is measured at many harmonics.1–4 In these experiments, the
tip-surface force can be directly reconstructed from the tip
motion and knowledge of the cantilever transfer function.1 To
obtain a rapidly changing tip-surface force, this direct method
requires measuring the motion over a very broad frequency
band to capture many harmonics of the drive frequency. These
harmonic methods do not exploit the enhanced force sensitivity
of a high-quality-factor cantilever resonance. Other methods
excite the cantilever at multiple frequencies,5 such as the
resonance frequencies of several eigenmodes,6–8 or multiple
tones around one eigenmode.9,10 While these methods work
close to resonance and can thus expect a high sensitivity, the
measurements typically contain too little information to be
able to reconstruct a realistic tip-surface interaction.

We have previously demonstrated intermodulation AFM
(ImAFM),11–14 a multifrequency drive scheme which makes
use of frequency mixing to transpose the information contained
in the higher harmonics of a single drive tone to a narrow
frequency band near resonance where the signal-to-noise
ratio is high. The cantilever is driven with two tones at
frequencies close to resonance, while the responding motion
is measured at many mixing, or intermodulation, frequencies.
Here we present a method of analysis to accurately reconstruct
tip-surface forces from intermodulation spectra. In comparison
to the direct force-reconstruction method from the broad
band response, force reconstruction from this narrow band
requires one additional assumption: a parametrized tip-surface
force model. Our analysis shows that the intermodulation
spectrum near resonance contains the information necessary
to reconstruct a realistic tip-surface force and extract physical

model parameters. Through the reconstruction, we recover
high-frequency components of the force which were buried
below the measurement noise floor. The method is extremely
general in that it allows for an arbitrary force model. We
believe that the method can be applicable to many other
multifrequency AFM modes and could find applications in
the analysis of resonant nonlinear systems beyond AFM.

II. EXTRACTING FORCE PARAMETERS FROM
MOTION SPECTRA

Force reconstruction aims at finding the nonlinear force
acting between the surface and a small tip located at the end
of an AFM cantilever, from a measurement of the tip motion,
z(t). As is common in the literature,15 we model the cantilever
as a point mass acted on by a linear cantilever restoring force,
an external time-dependent drive force, and a nonlinear tip-
surface force,

1

ω2
0

z̈(t) + 1

Qω0
ż(t) + z(t) = 1

kc

f (drive)(t) + 1

kc

f(ts)(z,ż),

(1)

where ω0 is the resonance frequency of the first bending mode
of the cantilever, kc is its corresponding stiffness, and Q is
its quality factor. Each of these constants and the constant
converting output voltage of the optical detector to cantilever
deflection can be calibrated by measuring the thermal noise
force.16

By Fourier transforming Eq. (1), we arrive at an expression
for the frequency dependence of the nonlinear tip-surface
force,

f̂(ts)(ω) = kcĜ
−1[ẑ(ω) − ẑ(free)(ω)], (2)

where Ĝ = [( iω
ω0

)2 + iω
Qω0

+ 1]−1 is the linear transfer function

of the harmonic oscillator, and ẑ(free) is the motion of the driven
cantilever in the absence of the tip-surface force.

In ImAFM the cantilever is driven simultaneously with two
tones at frequencies centered around the resonance and sepa-
rated by �ω. If the drive frequencies are integer multiples of
�ω, then the tip motion has a discrete spectrum with response
only at frequencies that are also integer multiples of �ω. The
signal can then be optimally sampled in the measurement time,
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T = 2π/�ω.11,17 At frequencies far from a high-quality
resonance, relatively large tip-surface forces give rise to very
small tip motion, which typically cannot be detected above
the noise floor. The measurable motion of the cantilever will
therefore be limited to a narrow band, �, close to resonance,
where |G| � 1. In this frequency band, the cantilever is well
described by a single eigenmode and the model given by Eq. (1)
is a good approximation to the actual cantilever dynamics. We
define a partial motion spectrum containing intermodulation
response in the frequency band �,

Ẑ(ω) =
{

ẑ(ω) for ω ∈ �,

0 elsewhere.
(3)

Taking the inverse Fourier transform of this partial spec-
trum, we arrive at a very good approximation to the real motion,

Z(t) = F−1
ω [Ẑ(ω)] � z(t) (4)

and the tip velocity

Ż(t) = F−1
ω [iωẐ(ω)] � ż(t). (5)

It should be stressed that while tip motion is limited to
the band �, the tip-surface force is not. The force spectrum
contains strong components at frequencies many times the
resonance frequency of the cantilever. The cantilever is,
however, unable to sense these force components, and the
challenge is to reconstruct the full force using only the partial
motion spectrum.

Assuming that the force is described by a model function
of the motion z(t), the velocity ż(t), and a set of parameters p,
our challenge is reduced to finding the parameter values which
minimize the difference between the measured force and the
force calculated from the model function at the frequencies
in �,

kcĜ
−1(Ẑ − Ẑ(free)) − Ft [f

(model)(Z,Ż; p)] = ε̂(ω; p). (6)

We can define an error function by summing the deviations
ε̂(ω) and minimize with respect to p,

Emin = min
p

∑
ω∈�

Re[ε̂(ω; p)]2 + Im[ε̂(ω; p)]2. (7)

By minimizing E, we extract the optimal parameter values
popt and thereby reconstruct the model force f(model)(z,ż; popt)
which best explains the measured motion. By summing the
error only over intermodulation frequencies in the band �

where there is good signal-to-noise ratio, the spectrum of the
reconstructed force outside the band � is allowed to deviate
substantially from that obtained directly from the measured
data. Thus we see the tremendous advantage of performing the
minimization in the frequency domain. In the time domain, it
would be most difficult to separate the signal from the noise.

A numerical solver can be used for the minimization.
Numerical algorithms require a reasonable initial estimate
of the parameter values in order to converge to the global
minimum. For the special case when the model is linear in all
parameters, a unique solution can be found by matrix inversion,
which is guaranteed to be the global minimum.13,14

III. FORCE MODELS

The strength of the parameter extraction algorithm is that it
can be applied to an arbitrary force model. We are especially
interested in models motivated from contact mechanics such
that the parameters have direct physical interpretation. The
most common model used in AFM is the Derjaguin-Muller-
Toropov (DMT) model for a spherical tip and a flat surface,

f(ts)(z) =
{

−FvdW
a2

0
(a0+z+h)2 for z > −h,

−FvdW + 4
3RDMT (−z − h)3/2 for z � −h,

(8)

where h is the height of the equilibrium position of the tip
above the surface.

We use a slightly different parametrization of the DMT
model from that which is common in the literature15 to aid
the numerical solver. The parameter FvdW = HR/6a2

0 is the
maximum adhesion force due to van der Waals attraction,
where H is the Hamaker constant, R is the tip radius, and
a0 is the interatomic distance. For the contact regime, we
introduce the DMT repulsion factor RDMT = E∗√R, where
E∗ is the reduced Young’s modulus. It is clear from the
equations that it is not possible to unambiguously separate
the material properties E∗ and H from the tip radius R by
measurement of the DMT force curve only. To do so would
require a separate calibration of at least one of these three
quantities, e.g., by blind tip reconstruction18 or by measuring
force on a reference surface.

Because the height h is a parameter of the force model,
we can use the fitting procedure described above to determine
h from the intermodulation spectrum. No independent mea-
surement of h is required to generate the force-distance curve.
During the time needed to measure one force curve (2 ms),
h is assumed to be constant, and we can directly measure the
minimum and maximum deflection of the cantilever, zmin and
zmax. We can then define the peak penetration depth into the
surface,

zpen = zmin − h, (9)

as an alternative to the parameter h.
The DMT model is a conservative force model, but in

real experiments there are also tip-surface interactions which
dissipate energy. Investigation of such dissipative interactions
is an ongoing field of research in AFM.19–21 One class of
dissipative force models are viscoelastic interactions in which
the force not only depends on tip position but also linearly on
tip velocity. The Voigt model is one such model, describing a
distance-dependent viscous damping force when penetrating
into the surface.22 This dissipative force can be added to the
conservative force,

f(ts)(z,ż) =
{

f(cons) for z > −h,

f(cons) − żDV

√−(z + h) for z � −h.
(10)

The damping parameter DV = η
√

R, where η is the viscosity
of the material. The minimization procedure is used to extract
DV simultaneously with the conservative parameters. The
validity of the Voigt model is not as well established in
the AFM literature as the DMT model. Here we choose to
use it to demonstrate the possibility to extract parameters
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of nonconservative force models. We have observed that the
extraction of parameters of the conservative DMT model is
completely independent of the parameter of the dissipative
Voigt model. In principle, not only viscoelastic parameters but
parameters of essentially any force model, including complex
dissipative forces which depend on the history of the tip
motion, e.g., capillary force,23 can be extracted using the
described method.

IV. RESULTS AND DISCUSSION

We performed an ImAFM measurement on a poly(methyl
methacrylate) (PMMA) thin film. The tip motion was sampled
and a full motion spectrum was calculated and converted to a
force spectrum using Eq. (2). A force spectrum at one probe
height h is plotted with the blue curves in Fig. 1. The figure
compares the intermodulation products around resonance f0

and around 2f0. Only a few signals are measurable above
the noise near 2f0, where the noise-equivalent-force is greatly
increased due to the reduced force sensitivity of the cantilever.
Many more intermodulation products can be resolved near f0

in the frequency band � with signal-to-noise ratio > 1. Using
the measured partial spectrum in this band, we apply the force
parameter extraction algorithm with the Voigt-DMT model
(green dots in Fig. 1) to the measured force spectrum (blue
curves in Fig. 1) in the band �. The algorithm also reconstructs

(a)

(b)

FIG. 1. (Color online) Spectrum of the tip-surface force in
intermodulation AFM. The force can be reconstructed from the
partial spectrum of intermodulation products contained in the band
� near resonance. (a) Experimental data acquired on poly(methyl
methacrylate) with two drives, f1 = 270.4 and f2 = 270.9 kHz,
producing a maximum free oscillation amplitude of 60 nm peak
to peak. The amplitude at f1 in the measurement was 85% of
its free amplitude. The cantilever had f0 = 270.8 kHz and Q =
416, and noise calibration gave kc = 21 N/m. Many peaks of the
intermodulation spectrum near f0 are resolved above the noise.
Intermodulation peaks near 2f0 are buried in the detector noise. (b)
Simulated force spectrum using the DMT-Voigt model and parameters
extracted from the experimental data. The partial spectrum in the band
� contains enough information to reconstruct the full force spectrum.

TABLE I. Parameter values used in the simulation and corre-
sponding parameters extracted from the partial motion spectrum in
Fig. 1(b). The simulated parameters are equal to those extracted in
Fig. 1(a) if the tip radius is assumed to be 10 nm.

h(nm) a0(nm) FvdW(nN) E∗(GPa) η(Pa s)

Simulated 23.00 1.60 1.56 1.00 71.00
Fitted 22.98 1.58 1.57 0.98 71.02

the force spectrum outside this band, where a lack of detector
sensitivity prohibits force measurement.

A comparison around 2f0 shows that the measured force
amplitude is larger than the reconstructed force amplitude at
the few frequencies where there is a measurable signal. This

(a)

(b)

(c)

FIG. 2. (Color online) Two-dimensional cuts of the multidimen-
sional error space. The magnitude of the error function E for the
DMT-Voigt model is plotted in color against a few different pairs of
parameters in the vicinity of the minimum. The white cross indicates
the solution found by the numerical solver. The white area in (b)
indicates that the error is larger than the range covered in the color bar.
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is not surprising since the reconstruction does not take into
account the higher eigenmodes of the cantilever and it therefore
underestimates Ĝ(ω) at high frequencies. A better estimate of
the cantilevers true transfer function would require calibration
of several higher eigenmodes, a task which is not trivial and
still the subject of research.24,25 Luckily, this calibration is not
needed if the tip motion is concentrated in the band �.

FIG. 3. (Color online) Dependence of the extracted parameter
values on approach distance. Extraction of the DMT-Voigt parameters
is performed for a slow approach to a PMMA surface with maximum
free oscillation amplitude of 60 nm peak to peak. Further away than
30 nm the tip is not interacting with the surface and no parameters can
be extracted. In a shaded region between roughly 25 and 10 nm away
from the surface, the DMT repulsion RDMT and adhesion FvdW are
constant, indicating a suitable working distance for extraction based
on the DMT model. The observed change of the surface damping
parameter DV suggests that the Voigt damping has limited validity.

To further confirm the algorithm, we simulated the tip
motion by numerical integration of Eq. (1) using the DMT-
Voigt tip-surface force model with the parameters obtained
from force reconstruction on the experimental data [see
Fig. 1(b)]. The extraction algorithm was found to converge
to correct model parameters (see Table I). The fact that we are
able to recover the input parameters of the simulated motion
from analysis of only the partial spectrum in the frequency
band � confirms that this spectrum does indeed contain enough
information to fully determine the force. Furthermore, we see a
remarkable similarity between the simulated and experimental
force, and between the simulated and reconstructed force,
both near f0 and near 2f0. Taken together, these observations
demonstrate the ability of the intermodulation spectral method
to predict signals that are buried below the noise floor in a
measurement.

When performing nonlinear numerical optimization to find
the model parameters, it is of importance to understand how
the error E depends on the different parameters. The shape of
the error in the parameter space communicates the sensitivity
of the fit to changes in the parameters. For instance, it could be
problematic for the solver if the error function has several local

FIG. 4. (Color online) Dependence of the extracted parameter
values on the drive amplitude. The drive amplitude is reflected in
the measured maximum free oscillation amplitude. Parameters were
extracted upon approach as in Fig. 3, and the mean value is plotted
vs the free amplitude, where the error bars correspond to the standard
deviation of the parameter values obtained in an interval where the
amplitude at f1 was between 85% and 50% of its free value.
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minima. The DMT-Voigt model has five free parameters so it is
not possible to visualize the error in the entire parameter space
with a two-dimensional (2D) plot. However, we can make 2D
cuts by first finding the optimal values of all parameters and
then plotting the error as a function of any two parameters,
keeping the others constant. Figure 2 shows a few typical cuts
generated from the experimental data of Fig. 1(a). The white
crosses indicate the solution found by the solver and agree
well with the global minimum in each cut.

From Fig. 2(a), we see that FvdW vs RDMT has an elliptical
error space with one clear minimum. Thus we can expect it
to be easy for the solver to converge for these parameters.
In contrast, the error space of zpen with respect to, for
example, RDMT contains regions of very high slope as well
as very flat regions. We have noticed that the numerical
optimization is sensitive to the initial value of zpen, which
must be within a few nm of the minimum for the solver
to find a small error solution. An accurate initial guess
of this parameter could be achieved using the polynomial
reconstruction method previously described.13,14 Empirically
we find that the penetration depth zpen varies less than the
height h when scanning over the surface using the amplitude at
the lower drive frequency as the feedback signal. It is therefore
preferable to use zpen rather than h in the parametrization of
the force, as this makes it easier to guess an initial value. This
observed variation in the extracted value of h demonstrates

that the feedback signal (so-called height signal in AFM) does
not represent the true surface topography.

The parameter with the weakest influence on the error is a0,
which is plotted against FvdW in Fig. 2(c). From the physical
interpretation of the model, a0 is the interatomic distance
and it is expected to be around 0.3 nm. However, in our
measurements, we get a low error for values of a0 up to several
tens of nm. We interpret this discrepancy as the presence of
additional forces, in which case a0 represents the characteristic
range of an effective, conservative attractive force.

Thus far we have discussed force reconstruction at a fixed
height h. If the model used in reconstruction accurately
describes the real tip-surface force, then one would expect the
material parameters to be constant as h is varied. To test this,
we measured the intermodulation spectrum while performing
a slow and uniform approach of the cantilever base toward the
PMMA film. This measurement allowed us to extracted model
parameters as a function of approach distance (see Fig. 3). We
can identify a region where the adhesion force FvdW, the DMT
repulsion RDMT, and a0 are essentially constant. This region is
the suitable working distance to perform quantitative ImAFM
measurements. While imaging, a feedback loop is adjusting the
height of the cantilever above the surface to keep the response
amplitude at the frequency f1 at a set value, somewhat lower
than the free-response amplitude. A feedback amplitude set
point in the range of 85% to 50% of the free amplitude is

FIG. 5. (Color online) Surface parameter maps and representative force curves obtained from one ImAFM scan. Soft droplets of LDPE are
revealed in a much stiffer PS matrix. A 3D rendering of the surface topography is color coded to give the DMT repulsion factor RDMT = E∗√R,
which is a tip-radius-dependent measure of the surface stiffness. 2D maps of the other parameters are shown together with a map of the fit
error. Representative DMT force curves and Voigt damping curves are extracted and plotted for one point on the LPDE (blue curves) and one
point on the PS (red curves).
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found to give a suitable working distance above the surface
(gray highlight in Fig. 3).

Figure 3 shows that the probe height h, which is extracted
from the reconstruction algorithm, follows a line of slope
−1 when plotted versus the approach distance. This behavior
demonstrates that the extracted h is in agreement with that
measured by the calibrated scanner. We also see that the tip
penetration into the material, zpen, is independent of approach
distance. The parameter a0 shows significant scatter, which can
be understood as being a result of the weak error dependence
discussed above. The dissipative parameter DV , obtained from
the Voigt model, is found to vary significantly with approach
distance, indicating that the Voigt model is not very good.

We also investigated the dependence of the fitted parameters
on the drive amplitude. Several approach studies as in Fig. 3
were made with different drive amplitudes and the mean and
standard deviation of each parameter were determined within
the region of suitable working distance. These are plotted
versus the amplitude of free oscillation in Fig. 4. The observed
increase of zpen with increasing free oscillation amplitude
demonstrates how deeper penetration into the material is
achieved by increasing the drive to attain more stored energy in
the oscillating cantilever, rather than lowering the amplitude
set point. The extracted value of the DMT repulsion factor
RDMT seems to stabilize at higher drive amplitude, indicating
that a free amplitude above 80 nm is a suitable operation
condition for probing DMT contact mechanics.

Parameter extraction can also be performed on whole
images to generate nanomechanical surface-property maps of
heterogeneous materials. To demonstrate this, we scanned a
polymer blend of polystyrene (PS) and low-density polyolefin
(LDPE), recording and storing the intermodulation spectrum
in the band � at each of the 256 × 256 pixels in the image.
The scan file of size 25 MB contains all of the information
needed to extract the parameters of a chosen interaction model
at each pixel. Figure 5 shows a color map of the DMT repulsion
parameter RDMT, projected onto a 3D rendering of the surface
topography.

We can see a sharp contrast between the softer LDPE
(RDMT = 0.006 GPa nm1/2) and the stiffer PS (RDMT =
4.5 GPa nm1/2). The scan was performed at 1 line per sec-
ond, which is a typical scanning speed for single-frequency
dynamic AFM, where this sample shows a high-quality phase
image with sharp contrast. At this scan speed, ImAFM acquires
some 20 amplitude and phase images with good contrast,
which together enable a detailed study of the changes in
material properties that are responsible for the observed
contrast. Figure 5 also shows two representative force curves
extracted at one point on the LDPE and PS, respectively,
as well as smaller maps of the DMT-Voigt parameters
extracted from the scan. The image of the square root of
the error allows us to identify areas where the minimiza-
tion was less successful at the interface between the two
polymers.

V. CONCLUSION

Intermodulation AFM has the ability to rapidly generate
detailed quantitative maps of surface mechanical properties.
The method exploits frequency mixing to greatly increase

the information available in the narrow band near resonance,
where sensitivity of measurement is highest and where
accurate calibration can be performed. Comparing experi-
mental data and numerical simulation, we showed that this
information is sufficient to fully reconstruct the tip-surface
force. We verified the consistency of the method by showing
that extracted parameters were constant in a suitable range
of working distance. The method, which works with standard
cantilevers and is easy to implement on any AFM, should
find widespread use in many areas of material science where
detailed quantitative images of surface mechanical properties
are desired.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Sample preparations

The sample used in Figs. 1–4 was made by spin casting
poly(methyl methacrylate) 4% in anisol on an oxidized silicon
wafer for 1 min at 3000 rpm, resulting in a 250 nm thin film.
The sample in Fig. 5 was a blend of polystyrene and low-
density polyolefin elastomer (PS-LDPE) spin cast on a silicon
(Bruker).

2. Atomic force microscopy measurements

All AFM measurements were done using a Dimension
3100 (Veeco) equipped with an intermodulation lock-in
analyzer (ImLA)17 and the ImAFM software suite, including the
quantitative analysis package from Intermodulation Products
AB (Stockholm, Sweden). The ImLA creates the drive signal
to excite the AFM cantilever, analyzes the deflection signal,
and creates the error signal used for feedback while scanning.
The ImLA can be run in a streaming mode where it works
as a synchronous digital waveform generator and digital
acquisition card that optimally samples data and sends it to a
computer for Fourier transform, or in lock-in mode where the
ImLA calculates in parallel the spectral data at 32 predefined
frequencies and sends the result to the computer for storage.
The streaming mode was used in Figs. 1–4. In these figures,
the AFM was set to perform approach curves, in which
the base of the cantilever was moved at a constant speed
of 100 nm/s towards the surface. Figure 5 was performed
in imaging mode with the AFM feedback loop adjusting
the z-piezo to keep the amplitude at f1 at 80% of its free
amplitude; data was obtained from the ImLA using the lock-in
mode.

The cantilevers used had a nominal resonance frequency of
f0 = 300 kHz and stiffness of kc = 40 N/m (BudgetSensors,
Bulgaria), although each cantilever was calibrated using the
thermal noise calibration method before use. In Figs. 1–4,
the calibration gave f0 = 270.76 kHz, kc = 21 N/m, and
a quality factor of Q = 416. The two drive frequencies
were set at f1 = 270.40 and f2 = 270.90 kHz, giving a
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beat frequency of �f = 500 Hz. Figure 5 was obtained
in a separate experiment with f0 = 315.47 kHz, kc = 32
N/m, Q = 574, f1 = 315.21 kHz, and f2 = 315.71 kHz.
The measurement time for force reconstruction was exactly
one beat, 1/�f = 2 ms, except in Fig. 1 where twice that
time was used in order to show the discreteness of the
intermodulation spectrum. The drive amplitudes were adjusted
until the response amplitude at both drive frequencies was
equal and the desired maximum peak-to-peak amplitude was
reached.

3. Numerics

Simulations were done using CVODE V2.6.0 (Ref. 26)
to numerically integrate the equation of motion (1) with a
DMT-Voigt model as the nonlinear tip-surface force. This
nonlinear ordinary differential equation (ODE) solver has
discrete event detection, which allowed us to properly treat the
discontinuity in the force gradient at z = h. The minimization
for parameter extraction, given by Eq. (6), was performed with
the “optimize.leastsq” module in SCIPY V0.9.0, implementing
the Levenberg-Marquardt algorithm.27
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