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Mechanical properties of polycrystalline graphene based on a realistic atomistic model
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Graphene can at present be grown at large quantities only by the chemical vapor deposition method, which
produces polycrystalline samples. Here, we describe a method for constructing realistic polycrystalline graphene
samples for atomistic simulations, and apply it for studying their mechanical properties. We show that cracks
initiate at points where grain boundaries meet and then propagate through grains predominantly in zigzag or
armchair directions, in agreement with recent experimental work. Contrary to earlier theoretical predictions, we
observe normally distributed intrinsic strength (∼50% of that of the monocrystalline graphene) and failure strain
which do not depend on the misorientation angles between the grains. Extrapolating for grain sizes above 15 nm
results in a failure strain of ∼0.09 and a Young’s modulus of ∼600 GPa. The decreased strength can be adequately
explained with a conventional continuum model when the grain boundary meeting points are identified as Griffith
cracks.
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I. INTRODUCTION

Grain boundaries define the electronic and mechanical
properties of polycrystalline materials. Since chemical vapor
deposition (CVD) is currently the only way for producing
industry-scale graphene membranes, and it leads to polycrys-
talline samples, study of grain boundaries in graphene has
become of fundamental importance during recent years. In a
two-dimensional material, such as graphene, the boundaries
also have a critical contribution to the chemical reactivity.
Because of this, although atomic scale imaging can in
principle reveal their exact structure, the boundaries tend to
be covered by adsorbates with only short segments available
for direct imaging. Nevertheless, experiments1–6 have revealed
meandering serpentlike boundaries which are typically formed
from pentagon-heptagon pairs in the parts not covered by the
adsorbates.

Mechanical properties of graphene sheets have been a
topic of intense research already for two decades in the
context of carbon nanotubes (see Ref. 7 for a topical review).
More recently, in 2007,8 Liu and co-workers utilized ab
initio calculations to study the elastic moduli and fracture
characteristic of graphene. Young’s modulus was found to
be 1.05 TPa, and failure strain, depending on the pulling
direction, 0.194–0.266. Intrinsic strength was estimated to be
110–121 GPa, similarly depending on the pulling direction.
The role of pre-existing defects on these properties was also
studied.9 It was noticed that their effect does not depend on the
exact atomic structure of the defects but rather on their size.
The authors also showed that the intrinsic strength of graphene
with cracklike defects can be described with a continuum
model using the Griffith formula for defect sizes down to
10 Å. Soon after this, Frank et al. used a tip of an atomic
force microscope to obtain a Young’s modulus of 0.5 TPa
for suspended stacks of graphene sheets.10 A year later, Lee
and co-workers reported on several mechanical properties of
graphene using a similar technique,11 establishing graphene
as the strongest material ever measured. They reported an
intrinsic strength of 42 N/m (corresponding to 130 GPa
assuming graphene thickness to be the inter-layer distance

in graphite, i.e., 0.335 nm) occurring at 0.25 strain. Young’s
modulus was estimated to be 1 TPa, in good agreement with
theory.8 In 2009, Xiao and others reported on their theoretical
work,12 in which they obtained failure strain of ca. 0.10
for graphene sheets with Stone-Wales defects (one rotated
bond) with an intrinsic strength very close to that of the
pristine structure (the difference was larger for small-diameter
nanotubes). This result would be consistent with the continuum
model9 assuming the defect corresponds to a crack with a size
below 5 Å, which seems reasonable for this defect.

These early works concentrated on either mechanically
exfoliated pristine graphene or monocrystalline graphene with
point defects. The first experimental studies on mechanical
properties of polycrystalline graphene samples were carried
out only last year (2011).2,13,14 The experimental results
can be summarized as follows: The intrinsic strength for
polycrystalline samples is somewhat above one third of that
for monocrystalline graphene (ca. 35 GPa)2,13 and cracks
propagate through the bulk of the grains14 mostly along zigzag
and armchair directions, not along grain boundaries as could
be intuitively expected.

In the meanwhile, theoretical work on energetics and other
nonelastic properties5,15–17 of grain boundaries, as well as on
their mechanical response,13,18 has also been carried out. Total
energy calculations16,17 have established that the idealized
low-energy configuration of grain boundaries is a linear tilt
boundary consisting of a repeating set of pentagon-heptagon
pairs which act as dislocation cores in a lattice otherwise
constructed of hexagonal carbon rings. Intrinsic strength of
graphene sheets with infinitely long such boundaries has
been estimated to be 50–100 GPa with failure strains in the
range of 0.07–0.15,18 depending on the misorientation angle
between the adjacent grains. Since a higher misorientation
angle yields a higher density of dislocation cores at the linear
tilt boundary, but also to higher intrinsic strength of the model
structures, the authors noted that their results disagree with
the fracture mechanics model, assuming the heptagons of
the dislocation cores correspond to Griffith cracks, which
would predict graphene sheets to become weaker with an
increasing defect density. If the grain boundaries themselves
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are indeed the weakest point in the lattice, this can be
argued to be a reasonable comparison since also Stone-Wales
defect consists of pentagons and heptagons and it has been
shown to weaken graphene.12 However, despite similarities
between the theoretical models16,17 and short segments of
the actually observed nondecorated boundaries,1–5 it remains
unclear whether such infinitely long linear arrangements of
dislocation cores can serve as a realistic model for studying
mechanical properties of polycrystalline graphene.

Theoretical calculations presented along the experimental
work in Ref. 13 assumed that voids would exist in poly-
crystalline graphene samples and that they could explain
the apparent discrepancy between the experimental results
of ∼35 GPa and the theoretical estimates of 50–100 GPa.
However, it is questionable how well this model corresponds
to actual polycrystalline graphene samples. Moreover, the
inherent difficulties in assessing the mechanical properties of
a membrane suspended on a hole by applying force with a
tip of a microscope necessitate theoretical confirmation with a
realistic model system.

Here, we describe an automated method for creating poly-
crystalline graphene structures with realistic misorientation
angle and carbon ring size statistics as well as serpentlike
boundaries similar to those observed experimentally. Using
atomistic simulations, we then subject our samples to a
study of their mechanical properties. We show that close
to the failure strain, cracks appear typically at the points
where grain boundaries meet, and in agreement with the
recent experimental studies, then propagate through grains
predominantly in zigzag or armchair directions. Contrary to
earlier theoretical predictions,18 neither intrinsic strength nor
failure strain of our samples depend on the misorientation
angle between the grains, but are normally distributed similar
to recent experimental studies,2,13 where intrinsic strength of
∼35 GPa was reported. We obtain a slightly higher value
(46 GPa) which is still in a reasonably good agreement with

the experimental one. At the large grain size limit (� 15 nm)
the failure strain is about 0.09 and Young’s modulus is close to
600 GPa. The formation of cracks at the meeting points of grain
boundaries, completely neglected in the previous theoretical
studies, resolves the discrepancy between the experiments and
the theoretical results and shows that the Griffith model can
after all be used to describe the mechanical properties of
polycrystalline graphene samples when a realistic atomistic
model is used.

II. CREATING POLYCRYSTALLINE GRAPHENE

Without prepatterned seeds for growth, CVD growth of
graphene is initiated at several nucleation sites simultaneously.
On a substrate such as Cu, which doesn’t offer epitaxiality, the
lattice orientations of the growing grains are random.19 To
mimic such growth, we first wrote a computer code which
creates a preselected number of randomly placed nucleation
sites on a plane with predefined dimensions. For each such
nucleation site (i) a random orientation θi is selected for
the lattice. In order to obtain approximately uniform size
distribution for the grains, the sites are required to be at least
5.0 Å apart from each other (5 Å was selected arbitrarily).
Next, we carry out an iterative process in which any of the
missing neighbors of the already inserted atoms can appear
with the same probability. When two grains approach, we use
the following condition for deciding whether a lattice site is
available for another atom: if d < 1.0 Å or N > 3 (d is the
distance between the lattice site and the closest existing atom,
N is the number of atoms created closer than a − 1.0 Å to the
present site, where a is the length of the graphene lattice vector)
the site is not free and will thus be disregarded for further
growth. Upon testing, this condition was found to minimize
the dangling bond density at the boundaries.

To equilibrate thus created polycrystalline samples, we
first annealed them at 3000 K for 50 ps after which the

FIG. 1. (Color online) Model structures
for polycrystalline graphene. (a) Top and (b)
side view of a periodic 20 nm × 20 nm
graphene sheet with four grains, as marked by
the numbered shaded areas. The lines indicate
orientations of the graphene lattice within each
grain. Note that all the presented mechanical
studies have been carried out for bicrystalline
samples. (c) Distribution of misorientation
angles for the bicrystalline sample structures
used in this study. (d) Relative probabilities
for nonhexagonal carbon rings in the same
structures.

195447-2



MECHANICAL PROPERTIES OF POLYCRYSTALLINE . . . PHYSICAL REVIEW B 85, 195447 (2012)

system was quenched during a 10 ps run allowing the lattice
to obtain its equilibrium size (pressure driven to zero). At
this point the lattice appears somewhat crumpled even after
pressure relaxation since we did not restrict relaxation in the
out-of-plane direction. All simulations were carried out with
the classical molecular dynamics (MD) code PARCAS20–22 with
a reactive bond order potential developed by Brenner et al.23

Due to the large number of atoms in the structures (up to
almost 10 000) and the large number of structures (385 in
total), this is the only feasible method for carrying out the
simulations. A similar simulation setup has been used in earlier
theoretical studies of mechanical properties of graphene,18

where a good agreement with ab initio methods has been
noticed. Temperature and pressure control were handled using
the Berendsen method.24 The equilibration procedure leads to
grain boundary structures similar to the 20 nm × 20 nm model
presented in Figs. 1(a) and 1(b).

After establishing a method for creating model structures
for polycrystalline graphene, we applied it for creating 385
bicrystalline structures with grain sizes of ∼3–16 nm. Two
randomly placed seeds were used for each structure to
obtain exactly one misorientation angle (θ ) per structure. The
resulting distribution of θ is presented in Fig. 1(c), where
θ = θ ′ = |θ1 − θ2| if θ ′ � 30◦ and θ = 60◦ − θ ′ otherwise
(for graphene any θi ∈ [0◦,60◦]). As expected for two ran-
domly selected orientations, the distribution is uniform with
fluctuations resulting only from the finite sample size. In
Fig. 1(d), we plot the relative occurrence of carbon rings other
than hexagons within the created structures. The combined
likelihood for tetragons and pentagons is similar to that of
heptagons and octagons indicating mostly saturated bonds at
the boundaries. The significantly lower probability for rings
with more than eight atoms is a sign of an existing but
small local density deficit at the boundaries. Overall, the ring
statistics seem reasonable. We noticed only very rarely if ever
four-coordinated atoms which would indicate problems with
the interaction model (such coordination is never observed

in sp2-bonded graphene even when it is heavily amorphized
under an electron beam25,26). However, almost all structures
contain a few under-coordinated atoms which could serve as
reactive sites for covalently bonding adsorbates on the grain
boundaries. Thus, the experimentally observed high coverage
of grain boundaries gives further credibility for our model
structures.

III. TENSILE TESTING

Next, we subjected the created sample structures to exten-
sive tensile testing. The simulations were carried out at 300 K
as follows: We applied uniaxial strain in a step-by-step fashion
always equilibrating the structure for 5 ps before increasing the
strain (much slower pulling was also tested with no apparent
change in the results). We employed periodic boundary con-
ditions for all simulations in the in-plane (x and y) directions.
For this part of the simulations we modified the cutoff of the
interaction model to remove the unphysical softening at longer
interatomic distances (above 1.92 Å), which is crucial for many
MD simulations, but in the present case only affects at high
strains by leading to nonphysical features in the stress-strain
curve. For interatomic distances below 1.92 Å, the interaction
model remained unchanged. Modifying the cutoff has also
before been noticed to be required for properly addressing
the mechanical properties of graphene close to the fracture
strain.18 The continuity of atomic trajectories and conservation
of energy were monitored during the simulations to avoid any
problems resulting from this modification. We also carried out
test simulations to check that the differences caused to the
stress-strain curves—either in pristine graphene or our bicrys-
talline samples—were limited to the unphysical features near
fracture.

The stress during deformation was calculated from the
Virial expression as explained in Ref. 18 assuming a thickness
of 0.335 nm for the graphene membrane. The resulting
stress-strain curves for grains with three different average sizes

FIG. 2. (Color online) Stress-strain curves
for polycrystalline graphene samples as plotted
for grain sizes of (a) d ≈ 12 nm, (b) d ≈ 6 nm,
and (c) d ≈ 3 nm. The size of the grains is
determined as an average diameter for a grain
assumed to be circular as indicated in panel (d).
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are presented in Fig. 2. For pristine graphene, our method
yields an intrinsic strength of 90–100 GPa at a failure strain of
0.15–0.20, depending on the pulling angle, in good agreement
with the ab initio results.8 As can be seen in Fig. 2, the
presence of grain boundaries leads to approximately a 50%
reduction of the strength of the material independent of the
grain size (intrinsic strength corresponds to the maximum
stress before the failure). For grain sizes above ∼12 nm, the
average fracture strain is close to 0.10 [Fig. 2(a)], whereas
for the smaller ones it increases gradually [see Figs. 2(b)
and 2(c)] up to ca. 0.15 for the smallest reasonable grain
sizes (∼3 nm). This is because the grain boundaries are
more flexible than the bulk of the grains, and their role is
pronounced at small grain sizes allowing higher overall strains.
We point out that the Poisson effect has not been taken into
account in the presented data. However, we checked whether
it would affect the results by carrying out a subset of the
simulations also without periodic boundaries in the y direc-
tion. The observed deviations were within the uncertainties
stemming from the finite sample size (that is, those seen in
Fig. 2).

To better understand how the different measured properties
depend on the grain size (d) and misorientation between

the grains (θ ), we plot in Fig. 3 the failure strain, intrinsic
strength, and Young’s modulus as functions of θ and d. For
the data plotted as a function of θ [Figs. 3(a)–3(c)], we used
only one grain size (d ≈ 12 nm) to ease the interpretation
of the results. What can be readily observed is that none
of the calculated properties depend on θ . Instead, they are
normally distributed over an average value, in stark contrast
to the earlier theoretical prediction based on infinitely long
linear grain boundary structures.18 However, when the failure
strain is plotted as a function of d [Fig. 3(d)], a clear size
dependency emerges, as was qualitatively described above.
For intrinsic strength [Fig. 3(e)] we observe no d dependency
at all. Instead, the data is normally distributed for all d around
a value of ∼46 GPa. While Young’s modulus is defined as
the change in stress divided by the change in strain for the
linear part of the stress-strain curve (Fig. 2), its d-dependency
is determined by that of the strain [Fig. 3(f)]. For the strain,
we can describe the different contributions of the bulk of the
grain and the grain boundary with a constant describing the
large-grain-size-limit ε0 and a term inversely proportional to
the grain size (∝ d−1) to obtain ε = ε0 + const./d. Fitting
this equation to the data for the failure strain yields very good
agreement as can be seen in Fig. 3(d). Through the fit we

FIG. 3. (Color online) Mechanical proper-
ties of the sample structures as a function of the
misorientation between the two grains θ and the
grain size d (or system size). (a) Failure strain,
(b) intrinsic strength, and (c) Young’s modulus
as a function of θ for d ≈ 12 nm grains. (d)
Failure strain as a function of d . (e) Distribution
of the intrinsic strengths for all d . (f) Young’s
modulus as a function of d .
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FIG. 4. (Color online) An example case of crack formation and propagation. (a) The structure with no strain with different grains (1 and 2)
marked with different colors. The lines indicate the orientations of the grains. The square shows the area where the grain boundaries meet and
the crack will appear. (b-e) Snapshots of the area immediately around the crack during straining showing how the crack penetrates along the
zigzag axis of the bulk of the grain. (f) The structure after the crack has penetrated through the grains.

obtain failure strain for large grains of ∼0.09. A similar fit for
the Young’s modulus [Fig. 3(f)] gives a value of ∼600 GPa
similarly for large grains.

To further understand why the breaking stress is d indepen-
dent, we visually analyzed the evolution of the atomic structure
of our samples upon fracture. An example is presented
in Fig. 4. What we noticed is that the crack formation
often occurs at the points where the grain boundaries meet
(marked with a square in Fig. 4(a)). After the crack is
formed, however, it propagates typically along the armchair
or zigzag lattice directions in the bulk of the neighboring
grains, similar to what has been recently suggested based
on experimental observations.4 While the atomic structure
of the boundaries, and that of their meeting points, are
independent of the grain size, the fracture properties must
also be grain size-independent, which is exactly what we
observe in our results. Moreover, the characteristic size of
these meeting points in our structures [as can be seen in
Figs. 1(a) and 4(a) is ∼2 nm, which can be compared
to the Griffith model data from Ref. 9. The data would
indicate that such a crack size would result in roughly 50%
reduction in the strength of the material, in agreement with our
data.

IV. CONCLUSIONS

In conclusion, we established a method for creating realistic
polycrystalline graphene samples for atomistic simulations.
We applied this method for creating a representative set of
samples for mechanical testing, and showed that the presence
of grain boundaries reduces the strength of graphene by
about 50% (down to ∼46 GPa), in reasonable agreement
with experiments.2,13 However, we observed no misorientation
dependency on any of the mechanical properties of the created
samples, which was recently suggested based on a theoretical
study on graphene structures with infinitely long linear grain
boundaries.18 Furthermore, we showed that crack formation
occurs at points at which the boundaries meet and that the
cracks propagate through the bulk of the neighboring grains
typically along armchair and zigzag directions, similar to
recent experimental findings.4 The failure strain for polycrys-
talline graphene with grain sizes �15 nm was found to be
∼0.09 with a corresponding Young’s modulus of ∼600 GPa.
Overall our results show that the mechanical properties of
polycrystalline graphene can be reasonably well described
using the continuum model if the grain boundary meeting
points are identified as the Griffith cracks in this material.
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