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Strain-engineered graphene through a nanostructured substrate. II. Pseudomagnetic fields
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The strain-induced pseudomagnetic field in supported graphene deposited on top of a nanostructured substrate
is investigated by using atomistic simulations. A step, an elongated trench, a one-dimensional barrier, a spherical
bubble, a Gaussian bump, and a Gaussian depression are considered as support structures for graphene. From
the obtained optimum configurations we found very strong induced pseudomagnetic fields which can reach up
to ∼1000 T due to the strain-induced deformations in the supported graphene. Different magnetic confinements
with controllable geometries are found by tuning the pattern of the substrate. The resulting induced magnetic
fields for graphene on top of a step, barrier, and trench are calculated. In contrast to the step and trench the middle
part of graphene on top of a barrier has zero pseudomagnetic field. This study provides a theoretical background
for designing magnetic structures in graphene by nanostructuring substrates. We found that altering the radial
symmetry of the deformation changes the sixfold symmetry of the induced pseudomagnetic field.
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I. INTRODUCTION

In most of the experiments on graphene, the 2D atomic layer
is placed on top of a substrate, which at atomic scale is not flat.
Geometrically structured substrates affect various properties of
graphene1,2 and can prevent the crumpling of graphene which
occurs for freestanding graphene without support.3 Recently,
the modification of the properties of graphene on top of a
substrate were investigated. It was found that substrates can
induce corrugations, modify the electric conductance, and
deform graphene.4,5

Tomori et al. used pillars made of a dielectric material
placed on top of a substrate which is then overlayed with
graphene to generate nonuniform strain on a microscale.6

Elastic deformations in graphene create a pseudomagnetic
field which acts on graphene’s massless charge carriers.7–9

The resulting variation of the hopping energies can be viewed
as an induced pseudomagnetic field which enters in the Dirac
equation. Engineering the right topology of the induced pseu-
domagnetic field can provide magnetic confinement which
confines electrons in specific regions in space.10,11 It has
been shown theoretically that inhomogeneous magnetic fields
are able to confine massless Dirac fermions in a monolayer
graphene sheet.12 Pereira et al. investigated the influence of
local strain on the electronic structure of graphene and showed
that it can used to generate electron beam collimation, 1D
channels, surface states, and confinement.13

Here, we investigate several nanostructured substrates with
different geometrical deformations. We carried out molecular
dynamics simulations at T = 300 K to minimize the energy
and find the optimum profile of the deposited graphene on top
of different nanostructured substrates. An elongated trench, a
barrier, a bubble, a Gaussian bump, and a Gaussian depression
are considered as examples of nanostructured substrates. The
adhesion of the substrate to the deposited graphene can induce
a very strong pseudomagnetic field which we found depends
on the imposed boundary conditions on the graphene sheet.
Strong pseudomagnetic fields (∼1000 T) are found around the
deformed regions in graphene. A substrate with (i) a step forms
two magnetic barriers around the step with opposite sign, (ii) a

trench forms two narrow magnetic barriers around the trench
boundaries with the same sign and one with opposite sign
within the trench, and (iii) a one-dimensional barrier forms
two pairs of magnetic barriers around the barrier’s wall. The
magnetic confinement for a Gaussian depression in the sub-
strate loses the sixfold symmetry of the pseudomagnetic field
which is not the case for graphene on top of a Gaussian bump.

This paper is organized as follows. In Sec. II the details
of the atomistic model are presented. In Sec. III we present
the strain-induced gauge field model. In Sec. IV we present
results for the gauge fields and the pseudomagnetic fields, for
various nanostructured substrates. The results are summarized
in Sec. V.

II. ATOMISTIC MODEL

In order to find the optimum configuration of graphene
(GE) on top of various nanostructured substrates we employed
classical atomistic molecular dynamics simulation (MD).
The second generation of Brenner’s bond-order potential14

is employed for carbon-carbon interaction and the van der
Waals (vdW) interaction between GE and different substrates
is modeled by employing the Lennard-Jones (LJ) potential,
i.e.,

u(r) = 4ε[(σ/r)12 − (σ/r)6], (1)

where r is the distance between the two particles, and ε and
σ are the “energy parameter” and the “length parameter,”
respectively (see Table I for a list of parameters used in the
paper). To model the interaction between two different types of
atoms such as the carbon atom (C) and the substrate atom (S),
we adjust the LJ parameters using the equations εT = √

εCε

and σT = (σC + σ )/2. For carbon we use the parameters
σC = 3.369 Å and εC = 2.63 meV. For the substrate atoms
we set σ = 3.5 Å and ε = 10.0 meV, which is typical, e.g., for
a SiO2 substrate.15 The simulation is done for a GE sheet with
dimension lx = 19.17 nm and ly = 19.67 nm at T = 300 K.
The number of substrate atoms is M = 6000. In order to model
the substrate, a (100) surface having a typical lattice parameter
� = 3 Å is assumed. The density of sites in the substrate is
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TABLE I. A list of all relevant parameters used in the paper.

lx ,ly The graphene length and width
ε,σ The energy and length parameters in the van der Waals (vdW) potential for the substrate atoms, Eq. (1)
λ,θ (x) The wave length and the step function
R The radius of the Gaussian bump or depression
h0 The amplitude of sinusoidal waves or height (depth) of Gaussian bump/bubble/barrier (depression or trench)
h1,d A shift or vertical distance between graphene and substrate and the width of the trench/barrier
uαβ ,A,B Strain tensor, strain induced gauge field, and magnetic field

	S = �−2. The details of the found deformations are reported
in our previous study.16

III. STRAIN-INDUCED PSEUDOMAGNETIC FIELD

Generalizing the Dirac equation, which governs the low-
energy electronics of graphene, to curved surfaces is an
interesting development which may model some cosmological
problems.8,9 The metric of the curved surface enters now into
the Dirac equation. The origin of the deformations are external
stresses which deform graphene so that the nearest-neighbor
distances become nonequal. Notice that the external stresses
can be induced by the substrate. The latter results in modified
hopping parameters introduced in the tight-binding model
which are now a function of the atomic positions t(r).17

Assuming small atomic displacements (i.e., u = r′
i − ri < a0

where a0 is the carbon-carbon bond length) and rewriting the
Dirac Hamiltonian in the effective mass approximation with
nonequal hopping parameters tells us that the strain induces
an effective gauge field

A = 2βh̄

3a0e
(uxx − uyy, − 2uxy), (2)

where β (∼2–3) is a constant and uαβ is the strain tensor
including out-of-plane displacements.8 The corresponding
pseudomagnetic field perpendicular to the x-y plane is
obtained as

B = ∂yAx − ∂xAy. (3)

This is the pseudomagnetic field which the electron experi-
ences in the K valley. We will find B by making the neces-
sary differentiations numerically for longitudinally supported
boundary conditions. Here we are mostly interested in the
out-of-plane contributions of the pseudomagnetic field which
mainly appears around the deformed parts of graphene. The
other in-plane terms contribute less to the pseudomagnetic
field around the deformed parts, particularly when the system
is larger than the size of these deformed parts and is supported
from boundaries. Notice that in order to perform the numerical
differentiations [in Eq. (2) and Eq. (3)] one needs a reference
graphene lattice (ri) in order to compare the optimized
lattice (r′

i) with the reference system. We used the optimized
graphene profile at the given temperature over a flat substrate
as the reference system. However, when the boundaries are
free there is considerable difference (at the boundaries and
for some particular systems) between the optimized graphene
over the deformed substrate and the reference system. This
is due to the fact that at finite temperature the free edges of
graphene over the substrate can vibrate and deform (due to

the substrate induced strain) freely while they will not be
deformed in the reference system. Therefore the reference
system with free boundaries for some of the systems can be
very different from the optimized graphene over the deformed
substrate at finite temperature; hence the differentiation is not
well defined. Therefore, in this paper we focused on systems
with fixed boundaries, which were studied in our previous
paper,16 where we have a true reference system suitable for
numerical differentiations.

IV. RESULTS AND DISCUSSION

In this study we investigate several different geometries
for the substrate which can be realized experimentally. For
all studied cases we first obtained the optimum configuration
of GE on top of the different nanostructured substrates using
MD simulations (those results were presented in our previous
work16). Then, for the supported boundary condition, we
calculate the corresponding gauge field from which we obtain
the pseudomagnetic field.

A. Step

An interesting substrate configuration is a step which was
recently studied in an experiment to measure the electronic
and morphology of deposited graphene18

hS(x,y) = h0θ (x), (4)

where θ (x) is the Heaviside step function and h0 = 1 nm is
the height of the step. GE with armchair direction is put on top
of the step. In Fig. 1 the optimum configuration of GE along
the armchair direction with longitudinally supported boundary
condition is shown when placed over a sharp step defined by
Eq. (4).

The induced gauge field as obtained from Eq. (2) is averaged
over the y direction and is shown in Fig. 2(a). All atoms at
the step region are stretched which results in considerable
gauge fields around x ≈ 0. Figure 2(b) shows the averaged
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FIG. 1. (Color online) The optimum configuration of armchair
graphene over a step located at x = 0 with supported longitudinal
ends. The colors indicate the size of strain.
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(a) 

(b) 

FIG. 2. (Color online) The averaged gauge fields (a) and the
induced pseudomagnetic fields (b) averaged over the y direction
for graphene on top of a step as shown in Fig. 1 which has been
supported from the longitudinal ends while it can freely move along
the z direction.

pseudomagnetic field over the y direction, 〈B〉, versus x.
In order to calculate averages we made a histogram where
lx is divided into 60 equal parts. Notice that the induced
pseudomagnetic field is mostly concentrated beyond x = 0
and consists of a positive and an adjacent negative barrier
with total average zero. Because of thermal fluctuations
(i.e., T = 300 K) the positive and negative barrier are only
approximately identical. The larger the curvature the larger
the magnetic field. The large pseudomagnetic field around the
step separates the GE sheet into a left- and a right-hand side,
where “B” is small. Electrons will be trapped in this region
into snake orbits and electrons passing perpendicular to this
rectangular part will experience large pseudomagnetic fields.
Notice that by changing the height of the step (h0), we are able
to control the size of the magnetic barrier and consequently
the magnetic confinement.

B. Trench

The other important substrate that we study here is an
elongated trench

hS(x,y) = h0θ (x2 − d2), (5)

with two walls of height 1 nm located at x = ±d = ±1.5 nm.
In Fig. 3 we show the optimum configuration of armchair
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FIG. 3. (Color online) The optimum configuration of armchair
graphene over a trench located at |x| < 1.5 nm where both longitu-
dinal ends were supported in the x-y plane. The colors indicate the
size of the strain.

graphene with supported boundary condition on top of the
trench defined by Eq. (5).

The absolute value of the induced gauge field as obtained
from Eq. (2) is averaged over the y direction and is shown
in Fig. 4(a). All atoms at both sides are stretched toward the
well region which results in a considerable gauge field around
x ≈ ±d. Figure 4(b) shows the y-averaged pseudomagnetic
field. Notice that there is a nonzero 〈|A|〉 and 〈B〉 within the
trench which is a consequence of the bent (nonflat) graphene

(a)

(b) 

FIG. 4. (Color online) The averaged gauge field (a) and the
induced pseudomagnetic field (b) averaged over the y direction for
graphene on top of a well as shown in Fig. 3 which has been supported
from the longitudinal ends while it can freely move along the z

direction.
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FIG. 5. (Color online) The optimum configuration of armchair
graphene over an elongated cubic barrier with |x| < 1.5 nm where
the zigzag edges were supported in the x-y plane. The colors indicate
the size of strain.

in the middle region. Notice that the pseudomagnetic fields
are smaller than those obtained for a step profile. Indeed
supporting GE longitudinally from two ends prevents GE
from moving into the well and consequently there will be less
variations in the heights. The magnetic field profile consists of
a positive B barrier inside the trench and two negative barriers
located at the steps. The total average magnetic field is also
zero in this case.

C. Barriers

A barrier in the middle of the substrate is the reverse
situation of the previous case. An elongated barrier in the
y direction is parameterized as

hS(x,y) = h0θ (x2 − d2), (6)

with two walls at x = ±d = ±1.5 nm of height of 1 nm.
Figure 5 shows the optimum configuration of arm-chair GE
in the case of supported boundary condition over the barrier.

The induced gauge field as obtained from Eq. (2) was
averaged over the y direction and is shown in Fig. 6(a).
All atoms at both sides are stretched toward the barrier
region which causes considerable gauge fields around x ≈ ±d.
Figure 6(b) shows the averaged pseudomagnetic field over
the y direction which is less than 20 T. Both gauge and
pseudomagnetic fields are comparable with those found for
the substrate with a single step placed in the middle of the
GE sheet. The main difference is the formation of a zero
magnetic field channel in the region |x| < d. The electrons will
be trapped in this rectangular channel which can be realized
in experiments. On both sides of this magnetic channel there
are two double magnetic barriers of similar shape. Because of
thermal fluctuations the barriers are not identical.

D. Spherical bubble

The next important deformation of the substrate that has
been realized experimentally19,20 is a bubble

hS(xi,yi) =
√

R2 − ρ2
i + h1, (7)

where R is the radius of the bubble and ρ2
i = x2

i + y2
i is the

radial distance of the ith atom from the center. In order to create
an uniform discrete atomistic structure for the bubble, we set
h1 = −R/2 where R = 2 nm. The optimum configuration
for the longitudinally supported graphene over the bubble
substrate is shown in Fig. 7. Due to the supported end GE
is elongated longitudinally along the supported direction; see
inset in Fig. 7.

In Fig. 8(a) the induced gauge field (corresponding to the
induced strain and around the central part) is illustrated by
using Eq. (2). Figure 8(a) shows a vector plot of the induced

(a) 

(b) 

FIG. 6. (Color online) The averaged (a) gauge field and (b) the
induced pseudomagnetic field averaged over the y direction for a
graphene on top of a barrier as shown in Fig. 5 which has been
supported from the longitudinal ends while it can freely move along
the z direction.

gauge fields where the length of the vectors and the colors
denote the absolute value of A. The corresponding magnetic
field is depicted in Fig. 8(b). Notice that both the gauge field
and the pseudomagnetic field exhibit an approximate sixfold
symmetry.17,21 Because of thermal fluctuations the symmetry
is not exact. Notice that there is a little elongation along the
supported direction. We will discuss this symmetry in the next

x
y

FIG. 7. (Color online) The optimum configuration of armchair
graphene, with two longitudinal ends supported in the x-y plane,
on top of a bubble. The inset shows a different view indicating the
elongation of the deformation of graphene along the x direction, i.e.,
armchair direction. The colors indicate the size of the strain.
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FIG. 8. (Color online) (a) Vector plot of the gauge field and (b)
the induced pseudomagnetic field for armchair graphene placed over
a spherical bubble. The obtained deformation is shown in Fig. 7.
Graphene was supported from the longitudinal ends while it can
vibrate along the z direction.

section. Notice that the induced magnetic fields are larger than
those found for the step, trench, and barrier.

E. Gaussian bump/depression

The Gaussian bump (protrusion)/depression22,23 is param-
eterized as

hS(xi,yi) = ±h0 exp
( − ρ2

i /2γ 2
)
, (8)

where +h0 (−h0) (=1 nm) is the height (depth) of the Gaussian
bump (depression), ρi

2 = x2
i + y2

i is the radial distance of the
ith atom, and γ = 1 nm is the variance of the Gaussian.

Since the optimum configuration of supported graphene
over the Gaussian bump is similar to the one for a spherical
bubble, we will not report them here. For supported graphene
over a Gaussian depression the optimum configuration is not
Gaussian (as was shown in Ref. 16).

The results of the gauge fields and pseudomagnetic fields
for a graphene membrane with Gaussian deformation show
a clear sixfold symmetry.17,21 For a Gaussian deformation of
the graphene membrane, Eq. (8), using Eq. (2) and Eq. (3) we
found

A = −ρ2h2(ρ,θ )

2γ 4
[cos(2θ ), sin(2θ )/2], (9)

and for the corresponding pseudomagnetic field

B = ∇ × A = h2(ρ,θ )ρ2

γ 6
sin(3θ ), (10)

where x = ρ cos(θ ) and y = ρ sin(θ ). The well-known sixfold
symmetry is due to the dependence of B on sin(3θ ). Our
atomistic results for B [see Fig. 8(b)] are in good agreement
with Eq. (10).

It is surprising that we found a sixfold symmetry for
deformed graphene over a Gaussian bump but not for the-
Gaussian depression. This is due to the non-Gaussian profile
of GE on top of a Gaussian depression.16 Breaking the radial
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FIG. 9. (Color online) (a) Vector plot of the gauge field and (b)
the induced pseudomagnetic field for armchair graphene deposited
over a Gaussian depression. Graphene has been supported from the
longitudinal ends while it can vibrate along the z direction.

symmetry of graphene deformation reduces the symmetry in
B [see Fig. 9(b)]. This particular symmetry affects also the
energy eigenvalues and corresponding wave functions.17

In Fig. 9(a) the induced gauge fields for GE on top of a
Gaussian depression is shown where the length of the vectors
and the colors denote the absolute value of A. Both gauge
fields and pseudomagnetic fields are smaller than those found
for the supported graphene over the bubble and the Gaussian
bump. This is a consequence of the non-Gaussian profile for
the optimum configurations which yields alteration in sixfold
symmetry in the induced pseudomagnetic field.

V. SUMMARY

We investigated systematically the induced pseudomag-
netic field properties for graphene deposited on top of different
nanostructured substrates by using molecular dynamics simu-
lations at T = 300 K. The van der Waals interaction between
the substrate and graphene was modeled by a Lennard-Jones
potential. We found that the induced magnetic field for
graphene on top of a step consists of two magnetic barriers with
different sign, while for a trench it forms two narrow magnetic
barriers around the trench boundaries and one with opposite
sign within the trench. The one-directional substrate barrier
forms two sets of magnetic barriers around the barrier wall. The
magnetic field for the Gaussian depression looses its sixfold
symmetry (due to the non-Gaussian deformation of graphene)
as compared to GE on top of the Gaussian bump/bubble. The
strain induced strong pseudomagnetic fields. Controlling the
pseudomagnetic field is possible by controlling the substrate
pattern and the size of the deformation.
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