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Dephasing and hyperfine interaction in carbon nanotubes double quantum dots: Disordered case
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We study theoretically the return probability experiment, which is used to measure the dephasing time T ∗
2 , in a

double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced
valley mixing. Dephasing is due to hyperfine interaction with the spins of the 13C nuclei. Due to the valley and
spin degrees of freedom, four bounded states exist for any given longitudinal mode in the quantum dot. At zero
magnetic field, the spin-orbit coupling and the valley mixing split those four states into two Kramers doublets. The
valley-mixing term for a given dot is determined by the intradot disorder; this leads to (i) states in the Kramers
doublets belonging to different dots being different, and (ii) nonzero interdot tunneling amplitudes between
states belonging to different doublets. We show that these amplitudes give rise to new avoided crossings, as a
function of detuning, in the relevant two-particle spectrum: mixing and crossings of the two electrons in one-dot
states (0,2) with the one electron in each dot configuration (1,1). In contrast to the clean system, sequences of
different Landau-Zener processes affect the separation and joining stages of each single-shot measurement and,
even in a spin-orbit-dominated situation, they affect the outcome of the measurement in a way that strongly
depends on the initial state. We find that a well-defined return probability experiment is realized when, at each
single-shot cycle, the (0,2) ground state is prepared. In this case, the probability to return to the (0,2) ground
state remains unchanged, but the valley mixing increases the saturation value of the measured return probability.
Finally, we study the effect of the valley mixing in the high magnetic field limit; for a parallel magnetic field,
the predictions coincide with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant
when the magnetic field is perpendicular to the nanotube axis.
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I. INTRODUCTION

Since the Loss and DiVincenzo proposal,1 electrons con-
fined in quantum dots have become one of the most attractive
platforms for realizing qubits in condensed matter systems.2

For dots devised in GaAs-based two-dimensional electron
gases (2DEGs), the spins of the confined electrons are affected
by the hyperfine interaction with the nuclear spins: the nuclear
spin I0 = 3/2 is common to the 69Ga, 71Ga, and 75As isotopes.
In the pursuit of fault-tolerant quantum computation,3 this
interaction has been recognized as one of the primary sources
of dephasing,4–6 and the challenge of avoiding this problem
has led to the implementation and design of several techniques
(such as dynamic nuclear polarization, Hahn echoes, etc.) with
general success.7–9

In parallel, there has been an increasing interest in de-
vising quantum dots in systems that can be isotopically
purified, leaving only spinless isotopes. This is the case of
silicon,10,11 graphene, and carbon nanotubes (CNTs), which is
the system studied in this work. As a carbon-based system,
CNTs profit from the 99% natural abundance of the zero
nuclear spin isotope 12C. In particular, the gap found in
semiconducting CNTs allows for confining electrons using
gate-defined quantum dots; this has motivated a great deal of
experimental12–19 and theoretical studies.20–31 In particular, the
generality of the presence of the spin-orbit coupling effects
in quantum dots, due to the nanotube curvature,32–36 has
only recently been experimentally recognized;13,14 the effect
persists even in disordered quantum dots occupied by hundreds
of electrons.17,19

One of the experimental tools for measuring dephasing is
the return probability experiment (RPE) (see Fig. 1), which
involves both control and readout of the charge state of a
double quantum dot, (NL,NR), where NL and NR are the
number of electrons in the left and the right dots, respectively.
As sketched inside the charge stability map in gate-voltage
space in Fig. 1(b), each single-shot measurement consists of
five stages: (i) preparation, the electron is prepared at the
(0,2) region; (ii) separation, the system is taken adiabatically
to the (1,1) region; (iii) evolution, electrons are left to evolve
under different environments during a time τs ; (iv) joining,
the system is taken adiabatically back to the (0,2); and
(v) measuring, the outcome is nonzero and set to 1 only
if the measured charge state has returned to be (0,2). For
each τs , many single-shot measurements are repeated and their
outcomes are averaged leading to the return probability shape
P (τs), which characterizes the dephasing in the system, with a
typical P (τs) shape shown in Fig. 1(d). Due to this, the RPE is
also known as the measurement of T ∗

2 , which in these systems
is the characteristic dephasing time for two-electron states in
the double quantum dot. The time scale for performing the fives
stages of the RPE should be much shorter than the inelastic
time, T1.

In order to understand the impact of the hyperfine inter-
action, quantum dots have been devised in nanotubes with
natural abundance as well as in samples grown from 99% 13C
(i.e., nuclear spin 1/2) enriched methane.14,15 In Ref. 14, the
RPE was used to measure T ∗

2 in a sample rich in 13C at zero
magnetic field, but neither finite magnetic field measurements
nor results for samples rich in 12C are currently available.
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FIG. 1. (Color online) Double quantum dot in a CNT and the
return probability experiment. (a) Scheme of the DQD, gate voltages
VL and VR allow for the control of the number of electrons in each dot.
(b) Single-shot experimental cycle in gate-voltage space consisting in
preparing at point “p”, evolving at point “e,” and measuring at point
“m”. The detuning ε is zero at the frontier between the (1,1) and
(0,2) regions. (c) Simplification of the applied pulse of detuning as
a function of time during a single-shot experiment. (d) Sketch of the
return probability P (τs) obtained from averaging many single-shot
measurements; the saturation value P∞ is qualitatively presented.

In absence of defects and impurities, except from the
hyperfine interaction effects, there is no scattering between
states from inequivalent valleys of the graphene-based band
structure. Already in such a clean limit, the RPE in a nanotube
double dot leads to a rich variety of scenarios. Due to the spin
and valley degrees of freedom, a CNT DQD can be prepared in
six different (0,2) states and, once separated, in the evolution
stage, the system has 16 (1,1) states available for dephasing.
The situation is different from GaAs-based DQDs in which
case only the spin-singlet state can be prepared and four (1,1)
states are available at the evolution stage.37–43 In Ref. 44,
for the RPE in clean nanotubes, we found nine dynamically
inequivalent situations and five different lowest bounds for the
saturation value of the return probability. The RPE outcome is
highly dependent on the prepared state, the curvature-induced
spin-orbit coupling, and the diamagnetic and the Zeeman
effects of an external magnetic field. However, the lowest
possible saturation return probability P∞ [see Fig. 1(d)], is
1/3, as in spin-only DQDs systems, which is above the 0.17
reported in the experiment of Ref. 14. Therefore, in order to
expand our understanding of the RPE to nonideal samples,
we present here a study that includes a spin-conserving
valley-mixing interaction, which is induced by nonmagnetic
impurities and defects in the nanotube.45

At zero magnetic field, the valley mixing, which depends
on the disorder profile and therefore is different for the two
quantum dots, demands us to adopt a more general treatment
than the clean case.44 This arises because the products of triplet
and singlet functions in valley and spin spaces are no longer
the eigenstates of the (0,2) and the (1,1) charge states. Each
single-dot eigenfunction is a particular combination of the two
valleys and the single-particle tunneling amplitudes between
solutions of different dots become nontrivial. Therefore, no
simple selection rules apply to the mixing between the (0,2)
eigenstates and the (1,1) eigenstates, and multiple avoided
crossings appear in the two-particle energy versus detuning.

We investigate the physics of the experiment by working
in a small tunneling picture that allows us to treat the stages
in which the detuning is changed as sequences of different
Landau-Zener (LZ) processes. As these concatenated LZ
processes affect the separation and the joining stages of
the RPE, the outcome of the experiment becomes highly
dependent on the shapes of the detuning pulses at those stages
[see the arrow starting at point “p” (“e”) and ending at point
“e” (“m”) in Fig. 1(b) for the separation (joining) stage and the
associated shape of the detuning pulse in Fig. 1(c)]. We show
that the passage through multiple LZ processes is avoided only
if the (0,2) ground state is prepared. The return probability
experiment becomes well defined because the preparation
guarantees that after the separation stage (at the beginning of
the evolution stage), the electrons are in a (1,1) state, i.e., they
are really separated. In this situation, we find that the saturation
return probability P∞ is increased above 1/3; the hyperfine
interaction behaves qualitatively as in the clean case whereas
the (1,1) tripletlike states have an increased probability to
return to (0,2) due to a valley-mixing-induced avoided crossing
that affects the joining stage.

We note that if the highest excited (0,2) state is prepared,
P∞ ≈ 1/6 is found for a broad region in parameter space. This
number is in good agreement with the saturation value reported
in the experiment of Ref. 14. However, in our calculations, the
multiple LZ processes also affect the separation and joining
stages, generating a return probability less than one (even if
no dephasing is allowed) by returning to the measurement
point without waiting at the (1,1) region, and we find P0 ≡
P (τs = 0) ≈ 1/2. Despite the fact that the measurements
at short times, P (τs → 0) ≈ 1, are the ones with greatest
error bar, we conclude that valley mixing does not explain
the reported experimental result. In order to draw stronger
conclusions, more measurements controlling both the prepared
state (unknown in Ref. 14) and the pulse shapes would be
desirable.

The behavior for nonzero magnetic fields is also unexplored
experimentally. Here, we show that, in the limit of high parallel
magnetic field, the presence of valley mixing leads to the same
predictions obtained for the clean case. This occurs because
the diamagnetic effect dominates, so that the single-dot single-
particle solutions are valley polarized and the mixing between
valleys induced by disorder becomes negligible. On the other
hand, a perpendicular external magnetic field, irrespective of
its strength, is unable to avoid the effect of the valley mixing
because it only introduces Zeeman interaction. Here again,
the return probability experiment is not well defined due to the
presence of multiple avoided crossings affecting the separation
and joining stages. We point out that this highly disorder-
dependent mixing between the (1,1) and the (0,2) states in a
perpendicular magnetic field can be relevant for understanding
Pauli-blockade measurements.

The paper is organized as follows. In the next section,
we study the model for the single dot including the effective
hyperfine-field interaction for a Kramers doublet and we
introduce the two-particle (0,2) and (1,1) eigenstates. We
show the effect of interdot tunneling and classify the resulting
two-particle spectrum in Sec. III. Our return probability
calculation method and the results are presented in Sec. IV,
with conclusions in Sec. V.
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II. ISOLATED QUANTUM DOTS

In the following, we include Coulomb effects in the constant
interaction model, which is valid when the size quantization
energy in the quantum dot is large (short dots) or when a
strong dielectric substrate screens the interaction,26,27 and thus
Wigner molecular states and other interaction effects are not
considered. Experimentally, the absence of Coulomb exchange
effects has been corroborated in many studies.13,14,17,19 Our
model is then constructed from two-particle Slater determi-
nants based, for convenience, on the single-dot eigenfunctions
of the left and the right dots. In this section, we focus on
those single-dot wave functions on the effective hyperfine
interaction seen by the solutions in a single dot, and we present
the two-particle solutions assuming isolated dots.

A. Dot Hamiltonian in valley and spin spaces

The gate-defined quantum dots we study are devised in
semiconducting tubes with a band gap that is due to either
chirality or, for nominally metallic tubes, to curvature.46,47

The low-energy π -band electrons in the CNT are described
by two gapped Dirac equations in one spatial dimension [two
Hamiltonian operators acting on four-dimensional spinors due
to the spin and pseudo-spin (weight in the two inequivalent
sublattices) degrees of freedom], one for each of the two
inequivalent valleys in reciprocal space K and K ′. Each of
the two Dirac equations includes the Zeeman interaction, the
diamagnetic effect, and also spin-orbit coupling terms. For the
quantum dots in nanotubes, since the electrostatic confinement
potential that defines each dot is smooth on the length scale of
the graphene honeycomb lattice spacing, the measured valley
mixing effects are not likely to be generated by roughness
at interfaces as opposite to other higher-dimensional and/or
etched-defined systems.48 Instead, as results in Ref. 45 suggest,
valley mixing in nanotubes is expected as a result of the
existence of nonmagnetic impurities and defects within each
dot region.

We work with an effective Hamiltonian for the lowest-
energy bounded electron state. Such a description follows
after solving the Dirac equation,22,30 and has been shown to fit
well experimental results.13,17 In contrast to quantum dots in
2DEGs here, due to the coexistence of spin and valley degrees
of freedom, the description of a bounded state in the dot is four
dimensional. We introduce the identity and Pauli matrices in
spin space σi , with i = {0,x,y,z} and the three-dimensional
spin vector σ ≡ (σx,σy,σz). The spin projection along the tube
axis (z direction) is denoted by σ = {↑, ↓} (or alternatively
its numerical version σ = {+,−}). Similarly, the identity and
Pauli matrices in valley space are τj , with j = {0,1,2,3},
where we choose τ = {K,K ′} as the positive and negative
projections of τ3, respectively; then, the three-dimensional
valley vector operator is just τ ≡ (τ1,τ2,τ3). Neglecting the
hyperfine interaction, the description for the right (R) and the
left (L) quantum dots is given by the Hamiltonians

H
ξ

0 = εξσ0τ0 − 1
2�ξ

soτ3σz + 1
2σ0

{
�

ξ

KK ′,1τ1 + �
ξ

KK ′,2τ2
}

+μB

{
1
2gs(B · σ )τ0 + gorb(B · ẑ)σ0τ3

}
, (1)

with ξ = {L,R}. The first term describes the effect of the gate
voltage applied to the dot ξ ; we assume that it only introduces

a global energy shift of energy εξ . The second term is the
spin-orbit coupling splitting energy �

ξ
so between Kσ and K ′σ

states, where σ stands for the spin projection opposite to σ .
Note that the curvature does not depend on the position in
the nanotube and therefore the spin-orbit splitting seen by the
lowest-lying state is the same for the two dots �L

so = �R
so if

the dots have the same length.17 The third term describes the
valley mixing in the dot ξ . For convenience, we work with a
single energy parameter (and its phase) to quantify the valley
mixing:

�
ξ

KK ′ ≡ ∣∣�ξ

KK ′,1 − i�ξ

KK ′,2

∣∣,
(2)

ϕ
ξ

KK ′ ≡ Arg
{
�

ξ

KK ′,1 − i�ξ

KK ′,2
}
.

Since in the RPE the sample under study has its own static
pattern of impurities and defects, it is reasonable to assume that
�

ξ

KK ′ and ϕ
ξ

KK ′ are fixed sample-specific quantities. Finally,
the fourth term describes the effect of an external magnetic
field B, and it includes both the usual Zeeman interaction
(∝gs) and the diamagnetic effect (∝gorb), which only appears
if the external magnetic field has a nonzero component along
the tube’s axis. Typically, the orbital gyromagnetic factor gorb

is greater than the spin gyromagnetic factor gs leading to
anisotropic magnetic effects.13,17,49 It is useful to define the
Zeeman and orbital splitting energies as Es ≡ gsμB |B| and
Eorb ≡ 2gorbμB (B · ẑ), respectively.

For zero magnetic field (and for magnetic fields along the
tube axis), the spin projection σ is a good quantum number,
then we decompose the Hamiltonian as H

ξ

0 = H
ξ

↑ + H
ξ

↓ , with

Hξ
σ = Eξ

σ τ0 + (
�ξ

σ

/
2
)
ς̂ ξ

σ · τ , (3)

where

Eξ
σ ≡ εξ + σEs/2,

∣∣ς̂ ξ
σ

∣∣ = 1, (4a)

ς̂ ξ
σ ≡ 1

�
ξ
σ

(
�

ξ

KK ′ cos ϕ
ξ

KK ′ , − �
ξ

KK ′ sin ϕ
ξ

KK ′ ,δ
ξ
σ

)
, (4b)

δξ
σ ≡ Eorb − σ�ξ

so, �ξ
σ ≡

√(
�

ξ

KK ′
)2 + (

δ
ξ
σ

)2
. (4c)

Note that for a given σ , the 2 × 2 Hamiltonian of Eq. (3) can
be interpreted as a pseudo-Zeeman interaction in valley space.
While the spin part of the solution is simply |σ 〉, the valley
components of the eigenstates are the up and down eigenstates
of the valley operator ς̂ ξ

σ · τ . Then, the four eigenfunctions of
H

ξ

0 , with energies Eξ,±,σ = Eξ
σ ± �ξ

σ /2, are

|ξ, ±,σ 〉 = ∣∣ς̂ ξ
σ , ± 〉 ⊗ |σ 〉 with

∣∣ς̂ ξ
σ , ± 〉

≡
⎛⎝ e

i
2 ϕ

ξ

KK′ cos α
ξ
±,σ

2

±e− i
2 ϕ

ξ

KK′ sin α
ξ
±,σ

2

⎞⎠ , (5)

where the spinor in valley space for the |ξ, ±,σ 〉 solution has
α

ξ
±,σ and −ϕ

ξ

KK ′ as inclination and azimuthal angles, respec-
tively, in the valley Bloch sphere (see Fig. 2). The inclination
angles of the (+) and (−) solutions with spin σ fulfill

α
ξ
+,σ + α

ξ
−,σ = π, (6a)

α
ξ
+,σ ≡ arctan

(
�

ξ

KK ′
/
δξ
σ

)
mod π, (6b)

which follow from Eq. (4b).
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ξς
↑

ξΔ

ξ
σδ

ξϕ−

ξ
σα+

ξς↓

ξ
σς

ξ
σα−

ξϕ−

FIG. 2. Representation of the Hamiltonians Hξ
σ and their so-

lutions. (a) Effective Zeeman-type field in the valley-space Bloch
sphere. The valley mixing is spin independent and it introduces the
in-plane component; on the other hand, the diamagnetic effect and
the spin-orbit coupling enter in the out-of-plane component. The
situation plotted corresponds to zero magnetic field. (b) Angles of
the valley-space spinors corresponding to the two eigenstates with
spin σ .

We see from the expression (4) that when the spin-orbit
coupling dominates, the z components of the Zeeman-type
valley field δξ

σ have opposite sign for the two spin projections.
This situation is sketched in Fig. 2(a); the unit vectors ς̂ ξ

σ

are drawn on a Bloch sphere in valley space for the B = 0
case. Focusing on the two lowest (or the two highest) energy
eigenfunctions, this implies that solutions for opposite spins
have inverted weights in K and K ′ valleys. On the other
hand, if |Eorb|
|�ξ

so|, the sign of δξ
σ does not depend on

σ . Then, in a high parallel magnetic field limit |δξ
σ |
�

ξ

KK ′ ,
and the valley characteristic of the lowest-energy solutions for
different spin σ tends to be the same, i.e., they become valley
polarized.

It is worth noting that the Hamiltonians for opposite spin
projections are related by the transformation

Hξ
σ (Bz) = τ1

(
H

ξ

σ (−Bz)
)∗

τ1, (7)

which for Bz = 0 reduces to the time-reversal-symmetry
relation. The last expression is useful for a direct construction
of solutions for opposite spin projections (and opposite field
Bz) just by interchanging K and K ′ and conjugating the wave
functions. Explicitly, this means that for a known solution
|
(σ,Bz)〉, there exists a related solution with the same energy
|
(σ ,−Bz)〉, such that

|
(σ,Bz)〉 = ψKσ |Kσ 〉 + ψK ′σ |K ′σ 〉,
(8)

|
(σ ,−Bz)〉 = ψ∗
K ′σ |Kσ 〉 + ψ∗

Kσ |K ′σ 〉,

which in terms of the inclination angles it reduces to
recognizing that α

ξ
±,σ (Bz) = α

ξ

∓,σ (−Bz). For B = 0, the two
degenerated solutions |ξ,d,↑〉 and |ξ,d,↓〉 fulfill Eq. (8). To
simplify the notation, we introduce in the following the doublet
index d = {+,−}. The two states in the doublet d make a
Kramers doublet because they are linked by time-reversal

symmetry. Each doublet can be regarded as a spin-1/2 system,
where unlike spin-only quantum dots, the orbital parts of the
two states are different.

B. Effective hyperfine interaction inside the doublets

For brevity, we omit in this section the dot index ξ = {L,R};
for instance, the eigenstates |ξ,d,σ 〉 become |d,σ 〉, and the
following applies for both dots. The effective Hamiltonian
seen by a confined electron in a quantum dot, as a result of the
hyperfine interaction with the 13C nuclear spins, can be cast
as25

H eff
HF = 1

2

2∑
i=0

τih(i) · σ , (9)

where we have adopted an isotropic hyperfine field interaction
(HFI), although there is some degree of anisotropy.23 The
dynamics of the electron spin is much faster than the precession
time of the nuclear spins Tnuc, and, furthermore, each single-
shot measurement in the RPE is realized over a time much
shorter than Tnuc. Therefore, during each experiment, the
fields h(i) are constants given by the matrix elements of the
hyperfine interaction Hamiltonian HHF = Aiso

∑
l σ · Ilδ(r −

Rl) (where Aiso is the hyperfine coupling constant and the
summation is taken over all the lattice sites, l, that have a 13C
atom in the quantum dot region, with Il the spin-1/2 vector
operator of the nucleus located at Rl) and tracing over the
ensemble of nuclear spins.38

To simulate the RPE many realizations of the single-
shot measurement are averaged over. The numbers h

(i)
j ,

with i = {0,1,2} and j = {x,y,z}, follow Gaussian prob-
ability distributions with zero mean and the following
variances:25

σ 2
H = A2

isoν
/

(4NQD) = 〈(
h

(0)
j

)2〉 = 2
〈(
h

(1)
j

)2〉 = 2
〈(
h

(2)
j

)2〉
,

(10)

where NQD is the number of atoms in the quantum dot and ν

is the abundance of 13C atoms in the dot.
We now focus on dots that have both nonzero �KK ′ and

nonzero �so splittings.13,14,17,19 The estimation for variances
in Eq. (10) is typically much smaller than the energy separation
� ≡

√
(�KK ′)2 + (�so)2 between the d = + and the d = −

doublets. Due to this condition, the HFI mixing of electron
states belonging to different Kramers doublets can be neglected
and therefore we only include matrix elements within each
doublet d:

〈d,σ |H eff
HF|d,σ ′〉. (11)

This allows us to write an effective hyperfine interaction for
the doublet d as

H d
HF = Bd · σ d + Bd

0σ d
0 , (12)
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where the operators σ d
0 , σ d

x , σ d
y , and σ d

z are the Pauli matrices operating in the (d) Kramers doublet states and

Bd
0 = 1

2
d
(
h(1)

z cos ϕKK ′ − h(2)
z sin ϕKK ′

)
(sin αd,↑ − sin αd,↓)

¯
,

Bd
x = h(0)

x cos

(
αd,↑ − αd,↓

2

)
+ d

(
h(1)

x cos ϕKK ′ − h(2)
x sin ϕKK ′

)
sin

(
αd,↑ + αd,↓

2

)
+ d

(
h(1)

y sin ϕKK ′ + h(2)
y cos ϕKK ′

)
sin

(
αd,↑ − αd,↓

2

)
, (13)

Bd
y = h(0)

y cos

(
αd,↑ − αd,↓

2

)
+ d

(
h(1)

y cos ϕKK ′ − h(2)
y sin ϕKK ′

)
sin

(
αd,↑ + αd,↓

2

)
− d

(
h(1)

x sin ϕKK ′ + h(2)
x cos ϕKK ′

)
sin

(
αd,↑ − αd,↓

2

)
,

Bd
z = h(0)

z + 1

2
d
(
h(1)

z cos ϕKK ′ − h(2)
z sin ϕKK ′

)
(sin αd,↑ + sin αd,↓).

These effective fields can be readily written as a function
of the parameters of the Hamiltonian by using the expressions
given in Eqs. (6). Furthermore, as discussed above, at zero
magnetic field, the inclination angles of the two solutions
within the same doublet are related by time-reversal symmetry
αd,↑ + αd,↓ = π (they are opposite spinors in the valley Bloch
sphere), and the expressions become simpler.

The new fields also follow Gaussian probability distribu-
tions with zero mean. The variances of the effective field
for the Kramers doublet d [defined as σ 2

d,α ≡ 〈(Bd
α)2〉, with

α = 0,x,y,z] are

σ 2
d,0

σ 2
H

= 1

8
(sin2 αd,↑ + sin2 αd,↓ − 2 sin αd,↑ sin αd,↓), (14a)

σ 2
d,x

σ 2
H

= σ 2
d,y

σ 2
H

= 1 + 1

2
sin αd,↑ sin αd,↓, (14b)

σ 2
d,z

σ 2
H

= 1 + 1

8

(
sin2 αd,↑ + sin2 αd,↓ + 2 sin αd,↑ sin αd,↓

)
.

(14c)

In Fig. 3, we plot the variances of the three components
of the effective magnetic field as a function of the ratio
�so/�KK ′ for the case of zero magnetic field. The component
proportional to the identity operator in the Kramers doublet
only produces an energy shift and therefore it is irrelevant
for the dynamics of the problem. The first important result
is that the total variance of the three relevant components
are equal, moreover, they are the same in the two doublets.
This means that the hyperfine field within each doublet is
statistically isotropic and therefore the dephasing of a given
state in the doublet is similar to the dephasing of an electron
spin confined in a GaAs quantum dot.

We also present the contribution of the valley-mixing terms
(∝h(1) and ∝h(2)) and the valley-conserving terms (∝h(0))
of the effective HFI effective Hamiltonian of Eq. (9). Both
contributions are isotropic when the disorder dominates. This
happens because the eigenstates are valley spinors having
equal weight in |K〉 and |K ′〉 (the spinors lie in the plane of the

valley Bloch sphere) and therefore both classes of terms can
mix those states. On the other hand, the states for �so 
 �KK ′

are

|−,↑〉 = |K〉 ⊗ |↑〉, |−,↓〉 = |K ′〉 ⊗ |↓〉, (15a)

|+,↑〉 = |K ′〉 ⊗ |↑〉, |+,↓〉 = |K〉 ⊗ |↓〉. (15b)

In this limit, the valley-conserving hyperfine operator τ0h(0) · σ

contributes to Bd
z since it provides diagonal matrix elements for

|d,↑〉 and |d,↓〉 states; at the same time, the operator is unable
to flip the valley and it does not contribute to the effective
fields Bd

x and Bd
y . On the other hand, the operators τ1h(1) · σ

and τ2h(2) · σ both flip the valley index and therefore they do
not contribute to Bd

z , but they contribute to Bd
x and Bd

y .

-10 0 10
0

1

0

1

σ
α 
/σ

Δ Δ

α=

σ
/σ

FIG. 3. Effect of the valley mixing on the variances of the
effective hyperfine field components (x, y, and z directions) that act
on the subspace of the two states in the Kramers doublet d = {+,−},
namely, |d,↑〉 and |d,↓〉 [see Eq. (5)]. We also show the partial
contributions to the variances that arise as a result of (gray solid
line) the valley-conserving components of the HFI, h(0), and (black
dotted line) the non-valley-conserving HFI components: the addition
of the contributions generated by the h(1) and the h(2) components.
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C. The (0,2) and (1,1) eigenstates

Here, we give the two-particle solutions for two electrons
occupying the right dot and for one electron occupying each
in absence of tunneling, i.e., in the high detuning limit valid
for the preparation, evolution, and measurement stages [see
Fig. 1(a)]. For simplicity, we number the four eigenstates
and eigenenergies in the dot ξ = {L,R} as |ξn〉 and Eξn with
n = {1,2,3,4}. We define a two-particle Slater determinant
built from states ξn and ξ ′n′ as∣∣ξ ′n′

ξn

〉 = 1√
2

(|ξn〉1|ξ ′n′〉2 − |ξ ′n′〉1|ξn〉2). (16)

For two electrons in the right dot, the (0,2) charge
configuration, only six independent states can be constructed
using the four single-particle states |Rn〉. These eigenstates
and their eigenenergies are

(0,2) :
∣∣Rn′
Rn

〉
, E

(0,2)
n,n′ = 2εR + ERn + ERn′ + URR, (17)

where n < n′ and URR is the Coulomb repulsion energy.
The eigenstates in the (1,1) charge configuration are the

Slater determinants constructed from states |Rn〉 and |Ln′〉.
Therefore, we have the 16 states and energies

(1,1) :
∣∣Ln′
Rn

〉
, E

(1,1)
n,n′ = εL + εR + ERn + ELn′ + ULR,

(18)

with ULR the Coulomb repulsion energy for electrons in
different dots.

Energies in Eqs. (17) and (18) are shifted by the gate-voltage
controlled energies εL and εR. For simplicity, we define

ε ≡ εL − εR − URR + ULR, (19a)

EAV ≡ 1
2 (εL + 3εR + ULR + URR) , (19b)

where the detuning ε is the difference and EAV is the
average between energies E(1,1) and E(0,2) (neglecting the part
depending on n and n′). Energies for (0,2) and for (1,1) now
become

E
(0,2)
n,n′ = EAV − ε/2 + ERn + ERn′ , (20a)

E
(1,1)
n,n′ = EAV + ε/2 + ERn + ELn′ . (20b)

In what follows, the common energy shift EAV is omitted
because it is irrelevant for the dynamics of the RPE.

In a clean system, the single-particle eigenstates in both
dots have the same spin and valley properties and therefore the
left/right dot part of the (1,1) eigenstates can be separated from
the n-space part (valley and spin spaces). This separability
allows one to write the two-particle eigenstates as products
of singlet and triplet functions in spin, valley, and dot spaces
(see, for example, the clean case in Ref. 44). Here, on the
other hand, the valley disorder profile and therefore the single-
particle eigenstates are different in the two dots, and each
two-particle eigenstate (the Slater determinants given above)
becomes an arbitrary linear combination of the dot/valley/spin
tensor product states. This avoids identifying the eigenstates
as singlet and triplet states in spin and valley spaces. However,
we will identify singletlike and tripletlike states according to

how they behave when considering single-particle tunneling
mixing between (0,2) and (1,1) states. In the next section, we
see that some particular linear combinations of these Slater
determinants, within the subspaces generated by degenerated
solutions, are the most physically relevant states.

III. INTERDOT TUNNELING

A. Disorder-induced tunneling between states in different
Kramers doublets

The eigenfunctions of the quantum-dot Hamiltonians H
ξ

0
[see Eq. (1)] are |ξ,d,σ 〉 with ξ = {L,R}, d = {+,−}, and σ =
{↑,↓}. These isolated-dot single-particle solutions become
mixed when including tunneling between the dots. In order
to proceed, we introduce the identity and Pauli matrices in
left/right dot space ξi , with i = {0,1,2,3} (taking |L〉 and |R〉
as the +1 and −1 eigenstates, respectively, of the operator
ξ3). Further, for referring to specific blocks of the Hamilto-
nian, we define σ↑ ≡ 2−1 (σ0 + σz), σ↓ ≡ 2−1 (σ0 − σz), ξL ≡
2−1 (ξ0 + ξ3), and ξR ≡ 2−1 (ξ0 − ξ3).

We assume that the interdot tunneling preserves valley
and spin degrees of freedom. This is because the tunneling
amplitudes follow from the overlap between the quasibounded
states in each dot. We take a tunneling energy t independent
of the spin and valley that is being tunneled; this is a good ap-
proximation if the height of the confining barrier is much larger
than all the energy scales in the DQD Hamiltonian.27,30 Then,
the interdot tunneling Hamiltonian becomes HT = −tξ1σ0τ0.
The complete eight-dimensional single-particle Hamiltonian
can now be compactly written as

HDQD = ξRH R
0 + ξLH L

0 − tξ1σ0τ0. (21)

In a clean system, the isolated-dot solutions of H
ξ

0 , |ξ,d,σ 〉,
have the same spin and valley characteristics in the two dots
and tunneling can therefore be described by four independent
subsystems of 2 × 2 mixing |L,d,σ 〉 with |R,d,σ 〉, which
allows one to build the two-particle (0,2) and (1,1) eigenstates
as tensor products of triplet and singlet functions in left/right
dot, valley, and spin spaces.25,27,29,30,44 Moreover, the selection
rules for the mixing between (0,2) states and (1,1) states follow
correspondingly. There is only one avoided crossing produced
by the interdot tunneling for each (0,2) state with one (1,1)
state.44

In the general disordered case considered here, the disorder
in each dot can be different, and therefore the mixing becomes
more complicated. We now proceed to the case of zero field
(or B ‖ ẑ). According to Eq. (3), the Hamiltonian within
each dot does not mix opposite spin-z projections, and we
have

HDQD = ξLσ↑H L
↑ + ξLσ↓H L

↓ + ξRσ↑H R
↑

+ ξRσ↓H R
↓ − tξ1σ0τ0. (22)

Each valley operator Hξ
σ has the valley solutions |ς̂ ξ

σ ,d〉
given in Eq. (5). Using as a basis the eigenstates of
each dot, we see that the interdot mixing matrix elements
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FIG. 4. (Color online) (a) For a given disordered sample, the
valley-mixing terms are fixed nonzero values which are different for
the two dots: the spin σ state in Kramers doublet Ld is a different
valley spinor than the spin σ state in doublet Rd. Nonzero tunneling
amplitudes appear between σ states in different Kramers doublets.
(b) For a two-particle (0,2) Slater determinant (which is an eigenstate
in the high detuning limit), the interdot tunneling has nonzero matrix
elements with four (instead of two) (1,1) Slater determinants.

tσLdL,RdR
≡ 〈L,dL,σ |HT |R,dR,σ 〉 are

tσLdL,RdR
= (

tσRdR,LdL
)∗ = −t

〈
ς̂L

σ ,dL

∣∣ς̂R
σ ,dR

〉
= −t

[
cos

ϕRL

2
cos

(
αR

dR,σ − dRdLαL
dL,σ

2

)
+ i sin

ϕRL

2
cos

(
αR

dR,σ + dRdLαL
dL,σ

2

)]
, (23)

where ϕRL = ϕR
KK ′ − ϕL

KK ′ . As in the clean case, the state
|R,d,σ 〉 can mix with the state |L,d,σ 〉, but now also with the
state |L,d̄,σ 〉. This situation is sketched in Fig. 4(a). In order to
derive properties of the tunneling amplitudes, we arrange the
four quantities, tσLd,Rd′/(−t), as a 2 × 2 matrix in doublet space
Dσ,LR. Using the unitary transformations Uξ

σ that diagonalize
the valley operators Hξ

σ , one can readily show that Dσ,LR is a
unitary matrix. The same holds for the matrix Dσ,RL (=D

†
σ,LR).

This allows us to write∣∣tσ
Ld,Rd

∣∣2 + ∣∣tσLd,Rd

∣∣2 = ∣∣tσ
Ld,Rd

∣∣2 + ∣∣tσLd,Rd

∣∣2 = |t |2. (24)

In addition, the orthogonality relation α
γ
+,σ + α

γ
−,σ = π ,

combined (for zero magnetic field) with the time-reversal-
symmetry relation α

γ

d,σ = α
γ

d,σ
, lead to the following proper-

ties:

tσLd,Rd = (
tσLd,Rd

)∗ = (
tσ
Ld,Rd

)∗
,

(25)
tσ
Ld,Rd

= −(
tσ
Ld,Rd

)∗ = −(
tσ
Ld,Rd

)∗
.

In what follows, we use these expressions, and their relation
to the parameters of the problem, to quantify the effect of the
disorder in the return probability experiment.

B. Disorder-induced avoided crossings in the two-particle
spectrum

In Eq. (23), we have shown that the disorder induces
single-particle interdot tunneling that does not conserve the
Kramers doublet index. Before presenting the effect on the
mixing between the two-particle states, we perform unitary
transformations in the doublet basis of each dot in order to
work with a real tunneling matrix. This greatly simplifies the
notation in the following.

Instead of using as a basis the wave functions |ξ,d,σ 〉,
presented in Eq. (5), we multiply each of them by a phase
factor

|ξ,d,σ 〉new = eiμξ

d,σ |ξ,d,σ 〉old, (26)

and the new matrix elements become(
tσLd,Rd′

)
new = (

tσLd,Rd′
)

olde
i(μR

d′ ,σ −μL
d,σ )

. (27)

There are infinite choices for making the new tunneling
amplitudes real numbers. We choose

μR
−,σ = 0, (28a)

μL
−,σ = Arg

[( − tσL−,R−
)

old

]
, (28b)

μL
+,σ = Arg

[( − tσL+,R−
)

old

]
, (28c)

μR
+,σ = μL

−,σ + μL
+,σ , (28d)

and then we have(
tσLd,Rd

)
new = −t cos

ησ

2
, (29a)(

tσLd,Rd̄

)
new = −td sin

ησ

2
, (29b)

with ησ the angle between the vectors in valley space: ς̂R
σ

and ς̂L
σ . The amplitudes (tσRd,Ld′ )new follow straightforwardly

by conjugating the matrix elements above.
A physical intuitive (and equivalent) approach for writing

the tunneling amplitudes as real numbers follows from
(i) performing a unitary transformation in both dots making
the z axis coincide with one of the valley vectors, for example
ς̂R

σ ; (ii) rotating both dots around the new z axis in order to
take the other valley vector, i.e., ς̂L

σ , to the xz plane where
its eigenvectors can be written as real valley spinors fully
described by the angle ησ between the vectors ς̂ ξ

σ ; (iii) leaving
the valley basis fixed in the first dot (ξ = R) and performing
a unitary transformation in the other dot (ξ = L), making the
real eigenvectors the new basis; (iv) the resulting tunneling
amplitudes become real.

From here on, we use the new single-particle eigenstates
of the isolated dots presented in Eq. (26) for the derivations
involving two-particle states.

C. Landau-Zener physics for different kind of crossings

We now apply the tunneling Hamiltonian, its two-
particle version [H 2p

T = 1l1 ⊗ (H 1p
T )2 + (H 1p

T )1 ⊗ l2], to the
(0,2) eigenstates

H
2p
T

∣∣R,d,σ
R,d1,σ1

〉 =
∑
d′=±

[
t
σ1
Ld′,Rd1

∣∣R,d,σ
L,d′,σ1

〉 + tσLd′,Rd

∣∣L,d′,σ
R,d1,σ1

〉]
. (30)
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FIG. 5. (Color online) (a) Simplest case for an avoided crossing as a result of the mixing between a (0,2) state (|a〉) and an (1,1) state (|b〉).
A detuning pulse takes the system, initialized in |a〉, from positive to negative detuning. The Landau-Zener probability to follow the avoided
crossing is Pdd′ . (b) Probability Pdd (in a DCAC) as a function of Pdd̄ (in a disorder-induced avoided crossing, i.e., a DFAC), for different ratios
between the gaps β ≡ (�dd̄/�dd)2, assuming that both processes are realized at the same detuning speed. One sees that β, which quantifies
the disorder, must be very small for the probabilities Pdd̄ to be neglected and while simultaneously assuming that Pdd is close to 1 (adiabatic
process). (c) Color plot of β as a function of the parameters of the problem for B = 0. We see that moderated values of the valley-mixing
parameters can generate non-negligible values of β and therefore the LZ physics in the disorder-induced avoided crossings must be in general
taken into account.

This result is sketched in Fig. 4(b) where we show that, by
virtue of the disorder, each (0,2) Slater determinant have
nonzero matrix elements with four, instead of two, (1,1) Slater
determinants.

We now focus on the disorder-induced Landau-Zener
processes that arise due to the additional mixing terms.
For simplicity, in this first approximation to the problem,
we assume that the energies El of the four (1,1) Slater
determinants (we label them l = {1,2,3,4}) are well separated
on the scale of the tunneling t and therefore we can write four
separated effective Hamiltonians describing the mixing with
the (0,2) state as

Hl =
(− ε

2 −tl
−tl

ε
2 + El

)
. (31)

At the crossing energies, the mixing due to interdot tunneling is
maximum and avoided crossings with gaps �l = 2|tl| appear.
By inspecting Eqs. (29) and (30), we readily identify two
different avoided crossings types; (a) the doublet-conserving
avoided crossings (DCACs), with a gap value of �σ

dd =
2|t cos(ησ /2)|; and (b) the doublet-flipping avoided crossings
(DFACs), with a gap value of �σ

dd̄ = 2|t sin(ησ /2)|. The latter
type, DFACs, is the one induced by disorder because when the
two valley vectors are the same, as in a clean case, we have
ησ = 0 and �dd̄ = 0.

As described in the Introduction and in Fig. 1, detuning
changes are intrinsic to the RPE single-shot cycle: the sepa-
ration and joining stages. The gap is an important parameter
for determining the probability of realizing a state conversion
when a change of detuning is applied and the system passes
through an avoided crossing. In a given stage of the problem
h (with h = s,j, separation and joining stages, respectively),

the Landau-Zener probability of realizing the state conversion
in an avoided crossing l is

P (h) = 1 − P
(h)

, (32a)

P
(h) ≡ exp

[
− 2π�2

l

h̄v
(h)
l

]
. (32b)

The probability P (h) grows the slower is the rate of change
of detuning at the crossing l, v

(h)
l , and the bigger is the gap

of the avoided crossing �l . For convenience, we have defined

P
(h)

as the probability to remain in the original state; this
probability approaches zero the more adiabatically the Landau-
Zener process is realized.

Because the gaps in the exponents of the Landau-Zener
formula appear to the second power, we define

βσ ≡
(

�σ
dd̄

�σ
dd

)2

= tan2 (ησ /2) . (33)

This number allows us to quantify the effect of the valley mix-
ing for the Landau-Zener physics involved in the experiment.
How sensitive βσ is with the parameters in the double dot is an
important question. Since the angle between the valley fields
is given by

ησ = arccos

(
�L

KK ′�
R
KK ′ cos ϕRL + δR

σ δL
σ

�L
σ�R

σ

)
; (34)

by virtue of the half-angle relations, we find that βσ is given
by the quotient

βσ = �L
σ�R

σ − �L
KK ′�

R
KK ′ cos ϕRL − δL

σ δR
σ

�L
σ�R

σ + �L
KK ′�

R
KK ′ cos ϕRL + δL

σ δR
σ

. (35)
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When B = 0, there is no dependence with σ in the angle
ησ and, consequently, nor in the tunnelings amplitudes and
the gaps. In what follows, we assume that the lengths of the
two dots are the same and thus the spin-orbit splitting for
the lowest-lying bound states is identical in both dots, i.e.,
δR
σ � δL

σ = σ̄�so. However, it must be noted that if the dots
have different lengths leading to different spin-orbit splittings,
then the effect of disorder in the Landau-Zener physics can
be even more drastic than what we show below because the
angle ησ becomes more sensitive to the in-plane valley fields
differences. Our formulas in Eqs. (34) and (35) are general and
can be used for such cases.

Figure 5(a) shows a sketch of an avoided crossing between
a (0,2) state and a (1,1) state reflecting the Hamiltonian
presented in Eq. (31). In the example, the avoided crossing
mixes a (0,2) state |a〉 with a (1,1) state |b〉. Note that the
|b〉 Slater determinant differs from the |a〉 one in that a σ

single-particle right-dot eigenstate with double index d is
replaced by a σ left-dot eigenstate with the doublet index
d′; thus, the mixing is due to the tσLd′,Rd tunneling amplitude.
The system is prepared, at positive detuning, in the state
|
p〉 = |a〉 and then the detuning is swept to negative values.
The Landau-Zener process governs the probabilities that the
final measured state |
f〉 reflects a state conversion |
f〉 ∝|b〉
[with Pdd′ as given in Eq. (32)], or it remains in the original
state |
f〉 ∝|a〉 (with P dd′ ≡ 1 − Pdd′ ).

Figure 5(b) shows the Landau-Zener probabilities [see
Eq. (32)] in a DCAC versus the probability in a DFAC linked by
different values of β assuming both Landau-Zener processes
were performed at the same detuning rate. The result shows
that only for β � 0.01 one could ignore the disorder-induced
avoided crossings assuming that Pdd̄ ≈ 0 and at the same
time assume that the doublet-conserving crossings provide
adiabatic state conversions, i.e., Pdd ≈ 1. In Fig. 5(c), we
present a map of βσ (= βσ̄ = β), from Eq. (35), for different
phase differences between the valley-mixing terms and as a
function of their strengths �

ξ

KK ′ , normalized to the spin-orbit
coupling splitting. The plot allows us to see that β can be
above 0.01, i.e., the Landau-Zener physics in the DFACs can
not be neglected, in a broad region in parameter space, even in
situations in which the spin-orbit coupling dominates in both
quantum dots.

D. Full spectrum, classification of the avoided crossings

As shown above for the zero-field case, the Landau-Zener
physics in doublet-flipping avoided crossings can be important
for the return probability experiment and therefore their effects
must be studied. If the tunneling energy t is larger than the
splitting energies in the dots �ξ , the mixing of each (0,2) state
with the four (1,1) states given in Eq. (30) must be considered
simultaneously. No simple Landau-Zener physics concepts
can be applied because the mixing can not be decomposed
into two-level avoided crossings. In what follows, we study
the problem assuming that t is smaller than the �ξ energies
and that the valley mixing is sufficiently different in the two
quantum dots so that |�L − �R| > t . In this limit, the
22-level two-particle spectrum [describing the mixing of the
6 (0,2) states with the 16 (1,1) states) can be decomposed into
two-level avoided crossings. The LZ formula can be used to
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FIG. 6. (Color online) Avoided crossings classification in the
two-particle spectrum for zero magnetic field reflecting the mixing
between the 6 (0,2) states and the 16 (1,1) states as a function of
detuning. The avoided crossings III, III′, II, and II′ are induced
by disorder, and they rely on tunneling matrix elements that do
not conserve doublet index. In the example, �L/�R = 0.55 and
β = 0.29.

describe all the processes in the different avoided crossings
happening as the separation and the joining stages of the RPE
are performed. The qualitative conclusions drawn for the low-t
picture can be extended to the general t case. We also note
that for zero magnetic field, the tunneling amplitudes given in
Eq. (29) can be chosen to be independent of σ , therefore, in
what follows we omit the superindex σ and set tLd′,Rd ≡ tσLd′,Rd.

The small-t assumption allows us to introduce a classifica-
tion of the avoided crossings. In Fig. 6, we show such a classi-
fication in the two-particle spectrum as a function of detuning,
obtained by taking the two-particle version of the Hamiltonian
of Eq. (21) and using the Slater determinants constructed from
the valley and spin single-particle states |ξτσ 〉 = |ξ 〉 ⊗ |τ 〉 ⊗
|σ 〉, i.e., the 6 independent (0,2) states |Rτσ

Rτ ′σ ′ 〉 with (τ ′σ ′) �=
(τσ ), plus the 16 (1,1) Slater determinants |Lτσ

Rτ ′σ ′ 〉. The
avoided crossings presented in the figure are studied in detail
below, and their associated detuning and energy values are
given in Table I.

From Figure 6 it is clear that in the high detuning limit,
the 16 (1,1) states are grouped into four subsets of four states
given by those doublets that are occupied in the left and the
right dots dL and dR, respectively. We denote those four subsets
as (LdL,RdR), with states, |LdLσ

RdRσ ′ 〉, and energies

E
(1,1)
LdL,RdR

= ε/2 + dL�L/2 + dR�R/2. (36)

Similarly, the energies of the (0,2) states in the high detuning
limit are

E
(0,2)
Rd1,Rd2

= −ε/2 + d1�
R/2 + d2�

R/2. (37)
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TABLE I. Detuning and energy values for the avoided crossings presented in Figs. 6 and 7. The detuning position of the avoided crossings
are obtained by equating the high detuning energies of Eqs. (36) and (37). The Kramers doublet index conservation (or not) of the tunneling
that generates the mixing is also stated.

C1, C2 εC1 = εC2 EC1 EC2 Type

III, II′ − 1
2 (�L + �R) 1

4 (�L − 3�R) 1
4 (�L + �R) DFAC

III′, II 1
2 (�L + �R) 1

4 (3�R − �L) − 1
4 (�L + �R) DFAC

I, IV′ 1
2 (�L − �R) − 1

4 (�L + 3�R) 1
4 (�R − �L) DCAC

I′, IV 1
2 (�R − �L) 1

4 (�L + 3�R) 1
4 (�L − �R) DCAC

V 0 0 DCAC

For d1 = −d2, the energy level −ε/2 is fourfold degenerated
since it is associated with the four states |R+σ

R−σ ′ 〉. For future
reference, we denote this subset as (R + ,R−).

We first focus on the avoided crossings involving the two
(0,2) nondegenerated states [with high detuning energies in
Eq. (37) taking d1 = d2 = ±], namely, the ground state and
the highest excited (0,2) states∣∣S(0,2)

dd

〉 ≡ ∣∣Rd↑
Rd↓

〉
. (38)

Because the two electrons occupy the same Kramers doublet
d, the total spin is zero. We use the letter S for these singletlike
solutions even though these states are not singlets in spin space:
the spin part of the two-particle state can not be separated even
in the absence of valley mixing.25,44 Following Eq. (30) and
applying the low-t picture, we can treat separately the mixing
due to the tunneling Hamiltonian between the states |S(0,2)

dd 〉
and (1,1) states in different levels (LdL,RdR). Since the single-
particle tunneling is unable to change two single-particle states
simultaneously, the state |S(0,2)

dd 〉 does not mix with the states
in subsets (LdL,Rd̄).

Each doublet-conserving tunneling amplitude tLd,Rd mixes
the state |S(0,2)

dd 〉 with the (1,1) combination

∣∣S(1,1)
dd

〉 ≡ 1√
2

(∣∣Rd↑
Ld↓

〉 + ∣∣Ld↑
Rd↓

〉)
(39)

of the subset (Ld,Rd). This defines the I (d = −) and I′ (d = +)
doublet-conserving avoided crossings shown in Fig. 6. In this
case, the matrix element of the tunneling operator is

√
2tLd,Rd

and therefore the gaps are �I = �I′ = 2
√

2| cos η

2 |.
Similarly, each tunneling amplitude tLd̄,Rd mixes the state

|S(0,2)
dd 〉 with the (1,1) combination

∣∣S(1,1)
d̄d

〉 ≡ 1√
2

(∣∣Rd↑
Ld̄↓

〉 + ∣∣Ld̄↑
Rd↓

〉)
(40)

of the subset (Ld̄,Rd). This mixing generates the two doublet-
flipping avoided crossings III (d = −) and III′ (d = +), with
gaps �III = �III′ = 2

√
2| sin η

2 |.
Apart from the factor

√
2 in the gaps, the avoided crossings

I, I′, III, and III′ share another important feature. Because
in each crossing the single (0,2) state |S(0,2)

dd 〉 crosses four
degenerated (1,1) states (and mixes with only one combination
of them), three other (1,1) states of the (Ld′,Rd) subset are

unaffected by the interdot tunneling. These states are∣∣T (1,1)
+1,d′d

〉 ≡ ∣∣Ld′↑
Rd↑

〉
, (41a)∣∣T (1,1)

−1,d′d
〉 ≡ ∣∣Ld′↓

Rd↓
〉
, (41b)∣∣T (1,1)

0,d′d
〉 ≡ 1√

2

(∣∣Rd↑
Ld′↓

〉 − ∣∣Ld′↑
Rd↓

〉)
, (41c)

with energies growing linear with detuning following Eq. (36).
We denote them with T in direct analogy with the spin-triplet
states of the (1,1) configuration in spin-only double dots;
in such a situation, the interdot tunneling only affects the
spin singlets (0,2) and (1,1), leaving the spin-triplet states
unaffected. In the language of Pauli blockade, these are
blocked states.6,25,50 We will refer to them as tripletlike states
despite the fact that |T (1,1)

0,d′d 〉 is not a spin triplet.
We now focus on the crossings involving the remaining

(0,2) states, i.e., states of the (R + ,R−) subset. Again, the
small-t picture allows us to study separately the four crossings
with the (LdL,RdR) subsets of the (1,1) configuration. By
inspecting the action of the interdot tunneling operator on
a (0,2) eigenstate given in Eq. (30), one can show that all the
crossings become avoided crossings and no blocked states
remain. This is easily seen by noting that any (1,1) state
|RdRσ
LdL,σ ′ 〉 is mixed in an effective 2 × 2 system, due to interdot

tunneling amplitude tLdL,Rd̄R
, with the (0,2) state |RdRσ

Rd̄R,σ ′ 〉.
The singletlike and tripletlike basis defined in Eqs. (39)–(41)
facilitates the calculation of the hyperfine dynamics. For the
avoided crossings here, we have〈

T
(1,1)
σt ,dLdR

∣∣H 2p
T

∣∣T (0,2)
σt ,d̄RdR

〉 = tLdL,Rd̄R
, (42a)〈

S
(1,1)
dLdR

∣∣H 2p
T

∣∣S(0,2)
d̄RdR

〉 = tLdL,Rd̄R
, (42b)

with σt = {−1,0,1} and∣∣T (0,2)
+1,d̄d

〉 ≡ ∣∣Rd̄↑
Rd↑

〉
,

∣∣T (0,2)
−1,d̄d

〉 ≡ ∣∣Rd̄↓
Rd↓

〉
,∣∣T (0,2)

0,d̄d

〉 ≡ 1√
2

(∣∣Rd↑
Rd̄↓

〉 − ∣∣Rd̄↑
Rd↓

〉)
, (43)

∣∣S(0,2)
dd̄

〉 ≡ 1√
2

(∣∣Rd↑
Rd̄↓

〉 + ∣∣Rd̄↑
Rd↓

〉)
,

i.e., we have defined tripletlike and singletlike states inside the
fourfold-degenerated subset (R +,R−).

In particular, the doublet-conserving tunneling amplitudes
generate avoiding crossings with (1,1) states in the (L + ,R−)
and (L − ,R+) subsets; in Fig. 6, we have labeled these avoided
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FIG. 7. (Color online) States involved in the avoided crossings
presented in Fig. 6. (a) Avoided crossings G = I, I′, III, or III′; the
last two are induced by disorder. As a single (0,2) state crosses
four (1,1) states, there are three (1,1) blocked states (not mixed
by interdot tunneling) in close analogy with spin-only double dots.
(b) No blocked states appear in the disorder-induced avoided
crossings II and II′, and four (0,2) states cross four (1,1) states.
(c) The doublet-conserving avoided crossings IV and IV′ also do
not present blocked states. According to the values �L and �R, the
detuning dependence changes, which leads to different outcomes in
the RPE; we refer to the gray arrows in Sec. IV B2 when showing
the two possible situations available if |S(0,2)

++ 〉 is prepared. When
�R = �L (extremely unlike in a disordered system), the (L + ,R−)
and (L − ,R+) subsets become degenerated and IV and IV′ would
collapse in a single crossing V.

crossings as IV and IV′, respectively. Their gaps are given
by �IV = �IV′ = 2|t cos η

2 |. Conversely, the doublet-flipping
avoided crossings II and II′ have gaps �II = �II′ = 2|t sin η

2 |,
and are associated with the crossings between (0,2) states
belonging to the (R + ,R−) subset and (1,1) states belonging
to the subsets (L − ,R−) and (L + ,R+), respectively.

In Fig. 7, we present a detailed sketch of all the mentioned
crossings that include the relevant states. Figure 7(c) reflects
the fact that, as it is shown in Table I, the relative positions
of crossings IV and IV′ depend on the difference between �R

and �L. This happens because the avoided crossing involving
the (0,2) subset (R + ,R−) is IV when crossing (L + ,R−) and
IV′ when crossing (L − ,R+). As it is shown in the following,

this leads to different outcomes of the return probability
experiment if excited (0,2) states are prepared. Finally, in the
central panel of Fig. 7(c), we show that IV and IV′ collapse
into a single avoided crossing V when �R = �L. We do not
consider this avoided crossing further because such a special
case is not representative for a disordered system.

It is worth to note that in the low-t picture, the knowledge
of β allows one to quantify all gaps in the 22 × 22 system as
a function of a single one. We choose as reference the valley-
conserving avoided crossing I. In a clean system, the energy
gap 2

√
2|t | is common to the six existing avoided crossings,

namely, I, I′, and the four crossings associated with case V.44

Here, one has 20 avoided crossings [I, I′, III, III′, II (4), II′ (4),
IV (4), and IV′ (4)] and four distinct energy gaps

�I = �I′ = 2
√

2|tL−,R−|, (44a)

�III = �III′ =
√

β�I, (44b)

�IV = �IV′

√
1

2
�I, (44c)

�II = �II′ =
√

β

2
�I. (44d)

In the next section, we make use of these relations for calcu-
lating the outcomes of the multiple Landau-Zener processes
in the separation and joining stages.

IV. RETURN PROBABILITY, METHOD, AND RESULTS

A. Obtaining the return probability

Having identified the complexity added by the presence of
valley mixing in the double dot, we now develop a scheme for
computing the outcome of the return probability experiment,
including all stages. The path we take is designed for gaining
knowledge about the physics of the experiment with a degree of
generality, any quantitative study designed for fitting a partic-
ular experiment must include further details as the actual pulse
shapes and the dependence of the parameters with detuning. A
full numeric time-dependent approach would be necessary if
the avoided crossings overlap each other avoiding the applica-
tion of the Landau-Zener formula separately for each crossing.

The most important information that the experiment pro-
vides is the dephasing time T ∗

2 . Also important is the shape of
P (τs) and in particular its saturation value

P∞ ≡ lim
τs→∞ P (τs). (45)

Our theoretical study aims for a qualitative understanding of
which saturation values can be expected due to the hyperfine-
field-induced dephasing in a disordered nanotube double dot.
We show that the avoided crossing induced by disorder can
also affect the return probability value even in the absence of
dephasing. If the probability

P0 ≡ lim
τs→0

P (τs) (46)

is smaller than 1, it means that the application of the separation
and joining stages, without waiting at the evolution stage,
is reducing the return probability due to the additional LZ
processes. As it is discussed below, this statement is relevant
for prepared states different than the ground state. Figure 8
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FIG. 8. (Color online) Single-shot return probability experiment: separation (“s”), evolution (“e”, during a time τs) and joining (“j”) stages.
Avoiding crossings (A) are doublet conserving and, in the situation we study, their gaps are much bigger than the others; the state conversions
in crossings (A) are performed in the adiabatic limit. (a) The prepared state 
p is the (0,2) ground state and the separation stage involves the
avoided crossing I which is type (A); at the beginning of the evolution stage, the system is in a (1,1) state. Due to the hyperfine dephasing
during the evolution stage (e, τS), states blocked for crossing I are populated. Those blocked states can still return to (0,2) at the joining stage
due to the disorder-induced avoiding crossing II. The return probability thus depends on the detuning value at the measuring stage; see that
P i �= P m (see Sec. IV B). (b) The prepared state is the (0,2) highest excited state (case shown is for �L < �R). At the separation stage, the
system passes through multiple Landau-Zener process, moreover, the first one is the disorder-induced avoided crossing III′. The system is not
guaranteed to be in a (1,1) state at the beginning of the evolution stage; we study in detail this case in Sec. IV B2.

sketches two situations studied below, preparing the ground
state, Fig. 8(a), and preparing an excited state, Fig. 8(b).

We focus now on the preparation stage. Any given (0,2) pre-
pared state can be decomposed into the six (0,2) eigenstates of
Eq. (17), which we label |l,(0,2)〉, as |
p〉 = ∑6

l=1 al|l,(0,2)〉.
To obtain the return probability, one computes the average,
over an ensemble of random hyperfine fields, of the single-shot
measurement’s outcomes; the final result does not depend on
the phases of coefficients al (Ref. 44):

Pψp
(τs) =

∑
l

|al|2Pl(τs), (47)

where Pl(τs) is the return probability found if the (0,2) eigen-
state |l,(0,2)〉 is prepared. We then study separately the RPE
assuming that a given eigenstate is prepared. Equation (47)
can also be applied to prepared mixed states, e.g., a thermal
mixture, by replacing |al|2 with the probability weight of the
state |l,(0,2)〉 in the prepared mixture. However, here we will
assume that the kBT < �R/L [for typical systems �R and
�L are a few hundreds of μeV and the temperature is below
100 mK (kBT � 9 μeV)] and therefore individual eigenstates
can be prepared.14

When preparing (0,2) excited states [see Fig. 8(b)], the
system must pass through multiple Landau-Zener processes
at the separation stage and similarly at the joining stage. As
shown in Fig. 8(a), this is not the case if the ground state is
prepared. In order to solve this problem for a general prepared
state, we profit from the low-t picture and from the fact that the
experiment is performed over an ensemble of hyperfine realiza-
tions. This allows us to obtain the final result by analyzing the
Landau-Zener processes from a probabilistic perspective (free
of interference effects) and combining those (both separation
and joining stages) with the averaged behavior of the dephasing
due to hyperfine at the evolution stage. It is important to keep in
mind that t is still much bigger than the hyperfine characteristic
energy σH of Eq. (10): the duration of the separation and joining

stages [see Fig. 1(c)] is shorter than h̄/σH and therefore it is still
a good approximation to consider the effect of the hyperfine
interaction only at the evolution stage.

When applying the probabilistic approach, we are assuming
that the quantum interference effects, which arise only in
Landau-Zener loops (when the system can arrive to a given
state through different paths), average out. In order to explain
the approximation, we focus on the example shown in Fig. 8(b)
in which the highest excited (0,2) state is prepared. At the
separation stage, the prepared state first visits the avoided
crossing III′ and then the crossing II′ (note that I′ and IV′
are doublet-conserving avoided crossings, which in the figure
are assumed as adiabatic processes). The energy difference
between the two branches of the loop is given by �L. If,
during the separation detuning pulse, the time spent inside
the loop Tl varies �Tl , the phase difference that controls the
interference after the crossing II′ changes in �φ ≈ �L�Tl/h̄.
The interference averages out if the phase gets randomized in
a range �φ > 2π .

Taking the typical experimental values for �L, the ran-
domization happens if �Tl varies in a range of at least
15 ps. Such �Tl variations are expected to be present in
the experiment when combining the errors in preparing the
system at point “p” [see Fig. 1(a)] with the imperfections
of the detuning rising pulse from “p” to “e.” If, on the
other hand, �Tl < 10 ps, the phase changes are not big
enough and the interference effects would persist.51 In such
cases, the single-shot cycles can be designed ad hoc with
different times Tl in order to get rid of the interference in the
Landau-Zener loop and the treatment we do here would still
be valid.52 The main conclusions of the paper regarding the
preparation of excited states are that the experiment no longer
responds to the standard return probability experiment, leading
to P0 < 1. Those conclusions apply to the general case: we
have performed full time-dependent simulations (that contain
the interference effects) and, if they are not tuned to sit in a
destructive interference condition, they share this feature.
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By working in the limit that the quantum interference in the
Landau-Zener loops can be neglected, we manage to analyze in
a simpler frame the general features that arise when preparing
excited states. We define the matrices M (s) for the separation
stage, M (e)(τs) for the evolution stage, and M (j) for the joining
stages. We make these matrices explicit below. They operate
on the space of the 22 eigenstates with zero tunneling, i.e., the
6 (0,2) states (that can be prepared) and the 16 (1,1) states.
The result of operating with these matrices on a given vector
gives the probabilities of finding the system in a new state after
performing the stage. Therefore, the vectors and matrices here
are real positive numbers; in what follows, for each regular
quantum state we associate a real probability vector using the
modified ket and bra notation

|ψ〉 → |ψ̃〉. (48)

We have introduced the “overtilde” symbol to clearly distin-
guish the probabilistic picture from usual quantum mechanics.
This non-quantum-mechanical bra and ket notation greatly
simplifies the writing of the matrix elements of the probability
matrices and their operation on probability vectors.

Following Eq. (47), |al|2 are the nonzero components of
|
̃p〉, the probability vector associated with the prepared state;
the components lie in the (0,2) block of the vector. Since in
what follows we study the RPE after preparation of specific
(0,2) eigenstates, then a single component of |
̃p〉 is nonzero
and equal to 1. We apply the separation stage and obtain the
real vector ∣∣
̃0

e

〉 = M (s)|
̃p〉, (49)

which contains the probabilities of finding the system in
each of the 22 states at the beginning of the evolution stage.
The matrix M (e)(τs) is applied next; it contains the transition
probabilities between the different states due to the action of
the hyperfine field during a time τs . The average over the
hyperfine field ensemble is already contained in M (e)(τs). The
probabilities after the evolution stage are

|˜
e(τs)〉 = M (e)(τs)
∣∣
̃0

e

〉
. (50)

And, finally, we apply the joining stage matrix to obtain the
final probability vector

|
̃m〉 = M (j)|˜
e(τs)〉. (51)

The probability to measure the system in a (0,2) charge state
is obtained simply by summing over the six components
associated with (0,2) states. We define the (0,2) real-vector
projector | ˜(0,2)〉, having the six (0,2) components equal to 1
and zero for all the other ones. The return probability then
becomes

P (τs) = 〈 ˜(0,2)|
̃m〉. (52)

1. Separation and joining stages

The states involved in each avoided crossing follow from
the analysis presented in Sec. III D. From Table I and Fig. 6,
we recognize four different detuning values, εI, εII, εIII, and
εIV, in which two avoided crossings operate. As an example,
at εI the action of the avoided crossings I and IV is comprised

in the matrix M (s)
εI

, where (s) refers to the separation stage.
Since the crossing I is a Landau-Zener process between states
|S(0,2)

−− 〉 and |S(1,1)
−− 〉, we have

〈˜S(0,2)
−− |M (s)

εI
|˜S(0,2)

−− 〉 = 〈˜S(1,1)
−− |M (s)

εI
|˜S(1,1)

−− 〉 = P
(s)
I , (53a)

〈˜S(0,2)
−− |M (s)

εI
|˜S(1,1)

−− 〉 = 〈˜S(1,1)
−− |M (s)

εI
|˜S(0,2)

−− 〉 = P
(s)
I . (53b)

Similarly, given the mixing at crossing IV described by
Eq. (42), we have

〈˜S(0,2)
−+ |M (s)

εI
|˜S(0,2)

−+ 〉 = 〈˜S(1,1)
−+ |M (s)

εI
|˜S(1,1)

−+ 〉 = P
(s)
IV, (54a)〈

˜

T
(0,2)
σt ,−+

∣∣M (s)
εI

∣∣˜T (0,2)
σt ,−+

〉 = 〈
˜

T
(1,1)
σt ,−+

∣∣M (s)
εI

∣∣˜T (1,1)
σt ,−+

〉 = P
(s)
IV, (54b)

〈˜S(1,1)
−+ |M (s)

εI
|˜S(0,2)

−+ 〉 = 〈˜S(0,2)
−+ |M (s)

εI
|˜S(1,1)

−+ 〉 = P
(s)
IV , (54c)〈

˜

T
(1,1)
σt ,−+

∣∣M (s)
εI

∣∣˜T (0,2)
σt ,−+

〉 = 〈
˜

T
(0,2)
σt ,−+

∣∣M (s)
εI

∣∣˜T (1,1)
σt ,−+

〉 = P
(s)
IV , (54d)

with σt = {−1,0,1}. All the remaining matrix elements of M (s)
εI

are trivial, being 0 the nondiagonal ones and 1 the diagonals
ones. We construct in the same way the remaining three
matrices of the separation stage M (s)

εII
, M (s)

εIII
, and M (s)

εIV
. The

matrices for the joining stage follow from replacing the LZ
probabilities with the ones corresponding to the joining stage
P (j). These probabilities can be different because, even though
the gaps of the avoiding crossings are the same, we allow
for a difference in the detuning rate of change between the
separation and the joining stages. We define the ratio between
the speeds as

κ = v(j)

v(s)
. (55)

For simplicity, we assume that the detuning speeds v(s) and
v(j) do not depend on detuning fast enough to be considered
different at the four relevant detunings {i.e., in the detuning
range [εIII,εII], which from Table I is [−(�L + �R)/2,(�L +
�R)/2]}. One can write all the Landau-Zener probabilities as
a function of a single probability, for instance P

(s)
I , once κ

and β are known. We do so by combining the Landau-Zener
formula of Eq. (32), with the relations fixed by β between all
the gaps in Eq. (44) and the definition of κ given in Eq. (55).

The full separation (joining) stage matrix is then given by
the successive application of the matrices above in decreasing
(increasing) detuning order:

M (s) =
{

M (s)
εIII

M (s)
εIV

M (s)
εI

M (s)
εII

for �L > �R,

M (s)
εIII

M (s)
εI

M (s)
εIV

M (s)
εII

for �L < �R,
(56a)

M (j) =
{

M
(j)
εII M

(j)
εI M

(j)
εIVM

(j)
εIII for �L > �R,

M
(j)
εII M

(j)
εIVM

(j)
εI M

(j)
εIII for �L < �R.

(56b)

2. Evolution stage, hyperfine interaction

As discussed in Sec. II B, during each single-shot cycle, the
hyperfine fields can be considered fixed. Because �ξ 
 σH,
ξ = L,R, the evolution of an electron is assumed to be
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restricted to the Kramers doublet it occupies, i.e., the dynamics
follows Hamiltonians H

LdL
HF or H

RdR
HF as the one given in

Eq. (12). The phase prefactors incorporated in the unitary
transformation in Eq. (26) modify the effective fields presented
in Eq. (13). This does not introduce any complication because
the transformed Hamiltonians have the form of Eq. (12) with
transformed hyperfine-field components that follow the same
zero-mean Gaussian distributions of Eq. (14); i.e., the effective
hyperfine field seen in any given Kramers doublet retains its
statistical isotropic property.

Therefore, the time evolution operator (taken from t0 = 0)
for an electron in the doublet (ξdξ ) is

uξdξ (t) = exp
( − iH

ξdξ

HF t
)

= cos(ωξdξ t)σ
ξdξ

0

− i sin(ωξdx i t)σ ξdξ · n̂ξdξ , (57)

where σ ξdξ ≡ (σ
ξdξ

x ,σ
ξdξ

y ,σ
ξdξ
z ) are the Pauli matrices op-

erating on the pseudospin of the (ξdξ ) Kramers doublet,
Bξdξ n̂ξdξ ≡ Bξdξ is the effective hyperfine field vector with
n̂ξdξ being the unit vector that defines the direction of the field,
and ωξdξ = Bξdξ /h̄ the precession frequency.

In order to compute the dynamics for any (1,1) or (0,2)
state, we use the Slater determinants’ basis constructed with
eigenstates of the two quantum dots |ξdξ σξ 〉. The time
evolution of each Slater determinant is dictated by

U (t)
∣∣ξ ′dξ ′ σξ ′
ξdξ σξ

〉 =
∑
σ1,σ2

u
ξdξ

σ1,σξ
(t) × u

ξ ′dξ ′
σ2,σξ ′ (t)

∣∣ξ ′dξ ′σ2

ξdξ σ1

〉
,

=
∑
σ1,σ2

U
ξdξ ;ξ ′dξ ′
σ1,σξ ;σ2,σξ ′ (t)

∣∣ξ ′dξ ′σ2

ξdξ σ1

〉
. (58)

From Eq. (50), the matrix element Pi,f (τs) =
〈�̃f |M (e)(τs)|�̃i〉 is the probability (averaged over all
the single-shot cycles) of finding the system after a time
τs in the state |�f 〉 given that the state at the beginning of
the evolution stage is |�i〉. From the doublet-conservation
dynamics dictated by Eq. (57), it follows that nonzero matrix
elements arise only if the occupied Kramers doublets (for
example, ξ1d1 and ξ2d2, in |�i〉 and in |�f 〉 are the same.

The probabilities Pi,f (τs) are obtained by applying the
time evolution operator of Eq. (58) to the two-particle state
|�i〉, and averaging |〈�f |U (τs)|�i〉|2 over the hyperfine-field
realizations that are independent in different dots and doublets.
As shown in Sec. II B, for zero magnetic field, the effective
hyperfine-field components in a given dot follow zero-mean
Gaussian distributions with the same variances irrespective
of the Kramers doublet, i.e., σξ ≡ σξdξ ,j with j = x,y,z and
dξ = ±. All the probabilities can be expressed in terms of only
two ensemble averages per dot:38,39

f
ξ

C (τs) ≡ 〈cos2(ωξdξ τs)〉hyperfine

= 1

2

[
1 +

(
1 − 4

σ 2
ξ τ 2

s

h̄2

)
exp

(
− 2

σ 2
ξ τ 2

s

h̄2

)]
, (59)

f
ξ

S (τs) ≡ 〈(
n

ξdξ

j

)2
sin2 (

ωξdξ τs

)〉
hyperfine

= 1

6

[
1 −

(
1 − 4

σ 2
ξ τ 2

s

h̄2

)
exp

(
− 2

σ 2
ξ τ 2

s

h̄2

)]
. (60)

Note that the average over the hyperfine fields of
(n

ξdξ

j )2 sin2(ωξdx iτs), where n
ξdξ

j is a Cartesian component of
the unit vector n̂ξdξ , is independent of j because of the isotropy,
in average, of the effective hyperfine field. Due to the zero
mean of the Gaussian distributions that govern all components
of Bξdξ , terms having odd powers in any given component n

ξdξ

j

average out being absent in Pi,f (τs).
The nonzero probability elements for the evolution depend

on τs as sums of products of the above functions. Starting with
spin-polarized states, the matrix elements are〈

˜

T
(NL,NR)
±1,d1d2

∣∣M (e)
∣∣ ˜

T
(NL,NR)
±1,d1d2

〉 = (
f

ξ1
C + f

ξ1
S

)(
f

ξ2
C + f

ξ2
S

)
, (61a)〈

˜

T
(NL,NR)
∓1,d1d2

∣∣M (e)
∣∣ ˜

T
(NL,NR)
±1,d1d2

〉 = 4f
ξ1
S f

ξ2
S , (61b)〈

˜

T
(NL,NR)

0,d1d2

∣∣M (e)
∣∣ ˜

T
(NL,NR)
±1,d1d2

〉 = 2f
ξ1
S f

ξ2
S + f

ξ1
S f

ξ2
C + f

ξ1
C f

ξ2
S ,

(61c)〈
˜

S
(NL,NR)
d1d2

∣∣M (e)
∣∣ ˜

T
(NL,NR)
±1,d1d2

〉 = 2f
ξ1
S f

ξ2
S + f

ξ1
S f

ξ2
C + f

ξ1
C f

ξ2
S ,

(61d)

while if the evolution starts in singletlike states, we have〈
˜

S
(NL,NR)
d1d2

∣∣M (e)
∣∣ ˜

S
(NL,NR)
d1d2

〉 = f
ξ1
C f

ξ2
C + 3f

ξ1
S f

ξ2
S , (62a)〈

˜

T
(NL,NR)

0,d1d2

∣∣M (e)
∣∣ ˜

S
(NL,NR)
d1d2

〉 = f
ξ1
C f

ξ2
S + f

ξ1
S f

ξ2
C + 2f

ξ1
S f

ξ2
S ,

(62b)〈
˜

T
(NL,NR)
±,d1d2

∣∣M (e)
∣∣ ˜

S
(NL,NR)
d1d2

〉 = f
ξ1
C f

ξ2
S + f

ξ1
S f

ξ2
C + 2f

ξ1
S f

ξ2
S ,

(62c)

where for (NL,NR) = (1,1) there are four possible d1d2 cases
with ξ1 = L and ξ2 = R, while for (NL,NR) = (0,2), ξ1,2 = R,
and the only valid case is d1d2 = +−. The matrix elements
of M (e)(τs) for the case that the evolution starts in a T0-like
function can be obtained from Eq. (62) by making the
replacement T0 ↔ S. Two nonzero matrix elements remain
to be defined: those for (0,2) singletlike states in the same
Kramers doublet. Since these are nondegenerated states that
are well separated in energy from the remaining 21 states, we
have 〈

˜

S
(0,2)
dd

∣∣M (e)
∣∣˜S(0,2)

dd

〉 = 1. (63)

B. Results, zero magnetic field

The separation and joining stages produce different out-
comes for singletlike and tripletlike states even if they belong
to the same subset (ξ1d1,ξ2d2). This can be seen in Fig. 7(a) for
crossings I, I′, III, and III′ where only the singletlike states are
mixed. It is therefore important to see how the probabilities of
finding the system in the different states behave for long times
after the evolution stage.

First, from the results in Sec. IV A2, we see that Pi,i(0) = 1,
with Pi,i(τs) the probability of finding the system after the
evolution in the same state as the initial state |�̃i〉. In general,
Pi,i(τs) decays to a saturation value in a time of the order h̄/σH;
this decaying time is sensitive to differences in the number of
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13C atoms in each quantum dot leading to σ L
H �= σ R

H . On the
other hand, the saturation value is robust because the limits
f

ξ

C (τs → ∞) = 1/2 and f
ξ

S (τs → ∞) = 1/6 are independent
of the variances as long as they are finite. For example,
when |�i〉 is singletlike [excluding the trivial Pi,i(τs) = 1
cases of Eq. (63)], we get from Eq. (62a) that Pi,i(∞) = 1/3.
This means that the system is found with probability 2/3 in
tripletlike states that will produce different outcomes after the
joining stage.

In summary, the evolution matrix is robust in two limits:
at τs → ∞ we get the saturation behavior, while M (e)(τs = 0)
is just the identity matrix. For this reason, we focus on P0

and P∞. In the following, we discuss in detail the physics
of the most interesting situations, those shown in Fig. 8. As
discussed above, with the knowledge of κ , β, and any one
of the LZ probabilities, we can fully describe the separation
and joining stages M (s) and M (j). While the disorder imposes
the value of β, the chosen detuning rates v(j) and v(s) control
both our reference probability (usually a LZ probability in
a specific avoided crossing that we desire to maintain in the
adiabatic limit) and the value of κ .

The most natural choice for κ is 1, when assuming that
the detuning speeds at the separation and joining stages are
the same. However, that might not be the case experimentally.
As an example, in Fig. 9(b) we show that pulse generation
through the charging and discharging in a resistor-capacitor
(RC) circuit can induce a κ �= 1 situation. This happens
for all cases if the boundary between the (0,2) region and
the (1,1) region (the detuning zone containing the avoided
crossings, ε ≈ 0, or more specifically εIII > ε > εII) is not
centered between the preparation and measurement points [see
Fig. 1(a)]. Experimentally, the point “p” is often closer to the
boundary;14,40 as shown in the picture, the separation stage is
faster than the joining stage leading to κ < 1. This means that
all the avoided crossings would become more effective at the
joining stage and could, therefore, modify the outcome of the
experiment. As we see in the following, a situation with κ �= 1
here has more impact on the final result than in 2DEG-based
double dots where there is a unique energy gap due to interdot
tunneling.

1. Return probability when preparing the (0,2) ground state

Here, we study the return probability if the ground state
is prepared, |
p〉 = |S(0,2)

−− 〉. The goal is understanding how
the return probability experiment is affected by the doublet-
flipping interdot tunneling, i.e., for β > 0. We also investigate
the effects of a mismatch in the rising times of the separation
and the joining stages: the behavior for different values of κ .
We start by choosing equal separation and joining detuning
speeds κ = 1. For any given value of β, the speed chosen,
v(s) = v(j), changes the outcome of the experiment. From
Fig. 8(a), we see that the probability of state conversion at
the avoided crossing II (that arises due to the disorder) is
meaningful for the experiment, therefore, instead of showing
the results as a function of v(j) and β, we do it as a function of
P

(s)
II and β. The result presented in Fig. 9(a) is the saturation

return probability at the measurement region P m
∞, i.e., after

a joining stage that takes the system to a large measurement
detuning εm, so that εm > εII.

In order to study a region in the two-dimensional space
(P (s)

II ,β) meaningful for the experiment, we need an additional
constraint: we will assume that at the time of performing the
experiment one assures that the doublet-conserving avoided
crossing I, having the biggest gap in the system (for β < 1), is
in the adiabatic limit. As seen in Fig. 8(a), this guarantees that
the separation stage is fully effective, leaving the system in the
(1,1) state |S(1,1)

−− 〉. The condition for adiabatic separation at I
is equivalent to requiring a small complementary probability

or leakage P
(s)
leak ≡ P

(s)
I ≈ 0. From the LZ formula of Eq. (32)

and from the relations between the different gaps given in
Eq. (44d), we obtain

P
(s)
II

(
β,P

(s)
leak

) = 1 − (
P

(s)
leak

) β

2 . (64)

In Fig. 9(a), we present three curves P
(s)
II (β,P

(s)
leak) with I

approaching the adiabatic regime as P
(s)
leak = 10−2,10−4, and

10−16. It is clear that for reducing P
(s)
leak one needs to slow

down the detuning speed as

v(s)|new = v(s)|old

y
⇒ P

(s)
leak|new = (

P
(s)
leak

∣∣
old

)y
. (65)

With v0 being the detuning speed that assures P
(s)
leak = 10−2,

the cases with P
(s)
leak = 10−4 and 10−16 shown in the figure are

performed at speeds v0/2 and v0/8, respectively. The smaller
P

(s)
leak, the more the experimental curve shifts to the left; such

a shift increases the effectiveness of the avoided crossing II,
leading to a larger return probability.

Having identified the experimentally relevant trajectories,
we compute the probability of finding the system in a (0,2)
state, for τs = 0 and for τs → ∞, choosing P

(s)
leak = 10−3. The

results, in general, only depend on β and κ . As described
above, a regular joining stage moves the detuning all the way
to the εm > εII region, i.e., the measurement region; this leads
us to the probabilities P m

0 and P m
∞. However, as sketched in

Fig. 8(a), one can also envision an experiment with a joining
stage having a final detuning in the intermediate region given
by εI < εm < εII and measuring the probabilities P i

0 and P i
∞.

We obtain the intermediate final state simply by excluding
M

(j)
εII in the composition of M (j) given in Eq. (56); the return

probabilities are found applying Eq. (52), i.e., summing the
probabilities of ending in an (0,2) state.

Here, this distinction is very useful because by studying
how the P m probabilities differ from the P i ones, we manage
to isolate the effect of the avoided crossing II. Moreover, the
return probabilities P i

0 and P i
∞ [as shown in Figs. 9(c) and 9(d)]

behave as the well-known spin-only double dot, which gives
P i

0 = 1 and P i
∞ = 1/3.38–41 This result is expected because, as

we have shown above, the hyperfine field in the space of each
Kramers doublet (for each dot) is isotropic in average, and also
because the behavior of crossing I is completely analogous to
the crossing involving the (1,1) and the (0,2) spin singlets in
2DEGs’ dots. The independence with β of the P i probabilities
is trivial because, for a given value of β at the separation stage,
the detuning speed is adjusted to reduce the leakage making the
avoided crossing I adiabatic, and because the reduced joining
stage does not involve the crossing II.
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FIG. 9. (Color online) Return probability if the (0,2) ground state |S(0,2)
−− 〉 is prepared [see Fig. 8(a)]. (a) Saturation return probability P m

∞ at
the measurement region (εm > εII) as a function of β and of the LZ probability in the DFAC II, P

(s)
II , for κ = 1. The three trajectories fall in

the experimental relevant regime: the LZ probability at I is assured to be in the adiabatic limit, i.e., P
(s)
I is small. The detuning velocity v0 is

chosen such that P
(s)
I = 0.01. As the speed decreases (v0/2 and v0/8), II becomes more effective; both P

(s)
II and P m

∞ grow. (b) Example of κ �= 1
for detuning pulses generated using a RC-charging/discharging circuit. If the zero detuning region is closer to the preparation point than to the

evolution point (this is x < 1/2), a κRC < 1 situation is expected. Return probabilities along a physical relevant trajectory (P (s)
leak = P

(s)
I = 10−3)

are shown as a function of β and κ in panels (c) and (d) (at the intermediate region, εI > εm > εII), and (e) and (f) (at the measurement region).
The values for τs = 0 [panels (c) and (e)] are β independent and they remain close to 1 unless the joining stage becomes too rapid (κ = 9,
see text). Panels (d) and (f) show the saturation return probabilities. In (d), the joining stage does not include the crossing II and P i

∞ ≈ 1/3
independently of β and κ (for κ � 2). In (f), the system passes through the crossing II before entering the measuring region and P m

∞ > 1/3.
The return probability in (f) grows as the tripletlike states can return to (0,2) more effectively, i.e., the bigger is β and the slower is the joining
stage.

Regarding the dependence with κ of the probabilities P i,
we find a drastic reduction when the joining stage is performed
too fast (see, for example, κ = 9). This means that the avoided
crossing I becomes nonadiabatic and the (1,1) singletlike state
is not effectively converted to an (0,2) singletlike state. By a
reasoning similar to the one leading to Eq. (65), one gets

Because κ = v(j)

v(s)
⇒ P

(j)
leak = (

P
(s)
leak

) 1
κ . (66)

Having P
(s)
leak = 10−3, we obtain that P

(j)
leak ≈ 0.464 for κ = 9

since the leaking at I becomes very high such that too
rapid joining stages are always avoided when designing the
experiment. In what follows, we concentrate the discussion on
the smaller values of κ .

We note that for κ < 2 the P i values are virtually unaffected
by changing the detuning speed of the joining stage (either
decreasing or increasing it). On the other hand, the P m

∞
probability [see Fig. 9(f)] is always affected by κ when the
double-dot system has β > 0.001. The smaller κ , the larger
P m

∞ becomes, increasing the difference with the standard case
of P i

∞ ≈ 1/3. Those effects are due to the avoiding crossing

II because it provides a new path for returning to (0,2) to
the (1,1) tripletlike states that are blocked at the avoided
crossing I [states in Eq. (41) taking d = d′ = −]. Of course,
the enhancement of the return probability grows with β even
for κ = 1. Assuming that I is adiabatic also at the joining stage
(which is a good approximation for κ < 2), we can write the
return probability simply as

P i (τs) = f L
C (τs) f R

C (τs) + 3f L
S (τs) f R

S (τs) , (67a)

P m (τs) = P i (τs) + (1 − P i(τs))P
(j)
II . (67b)

The return probability P i (τs) is just Eq. (62a), the well-
known probability for spin-only double dots at zero magnetic
field of being found in a singletlike state having started the
evolution in the same singletlike state. The enhancement term
in P m (τs) is proportional to P

(j)
II and to the probability of

being found after the evolution stage in a (1,1) tripletlike state
[1 − P i (τs)]. Experimentally, it is possible to explore if the
system responds to this description by designing a joining
pulse with different v(j) at the two avoided crossings. This can
be done for instance by fixing v(j) at I slow enough to maintain
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P
(j)
leak small and by repeating the experiment for different values

of v(j) at the avoiding crossing II.
To summarize this part, when the prepared state is the

ground state, the return probability experiment produces a very
similar output to the case of a spin-only double dot. A mapping
between the two situations in the absence of valley was done
in our previous publication.44 Here, the hyperfine dynamics
remains isotropic in average, but the joining stage is affected
by a disorder-induced avoided crossing (II) that allows for an
enhancement of the return probability because it unblocks the
tripletlike (1,1) states.

2. Return probability when preparing (0,2) higher-energy states

The purpose of this section is to demonstrate the com-
plications that arise when the prepared state is not the (0,2)
ground state. We show that the simple procedure followed
in Sec. IV B of reducing the leakage probability in the
avoided crossings with the biggest gaps (for β � 1 the doublet
conserving, I and I′) does not assure a successful separation
stage. After a successful separation stage, the system is in a
(1,1) configuration, therefore, the probability of finding the
system in (0,2) at the evolution region P e must be close to
zero.

The situation we study is sketched in Fig. 8(b); the prepared
state is the highest-energy excited state |
p〉 = |S(0,2)

++ 〉. As
opposite to the ground-state case, the separation stage first
involves the LZ process in III′, which is an avoided crossing
induced by disorder (a DFAC). From Eq. (44), we have
that �III′ = √

β�I′ , and this links the probabilities of state
conversion in I′ and III′ (assuming the detuning speed is the
same) as shown in Fig. 5(b). For weak disorder, �III′ is small
and therefore the adiabatic condition can not be met while
still maintaining the passage time larger than the characteristic
time of the HFI. Instead, we explore the effect of III′ being
a non-adiabatic process in general, although the limit of III′
being adiabatic is explored when β is close to 1 and �III′ ≈ �I′ .

Once an excited state is prepared, multiple Landau-Zener
processes, including LZ loops as discussed in Sec. IV A1,
affect the separation and joining stages. Furthermore, the
Landau-Zener sequence of relevant avoided crossings differs
for �R < �L and �L > �R. Obviously, these two cases
can be investigated experimentally in the same device first
by performing the RPE after the preparation of a desired
excited state in the (0,2) configuration and then repeating the
measurement preparing an equivalent excited state in the (2,0)
charge configuration. In our calculations, we always assume
the preparation of an (0,2) state; therefore, the dot R referred
to here must be identified with the dot in which the RPE is
prepared with two electrons.

First, we study the saturation return probability at the
measurement region P m

∞, fixing κ = 1. For a given double
dot, β is fixed and the separation and joining stages can be
performed slower or faster, changing the whole set of LZ
probabilities. With the assumptions discussed in Sec. IV A1,
all the LZ probabilities are linked once β and κ are given.
In this case, we choose the LZ probability P

(s)
III′ and β as

the two variables that define P m
∞. We do so because here,

as shown in Fig. 8(b), the probability of state conversion at the
avoided crossing III′ plays a crucial role. The result is shown

in Figs. 10(a) and 10(b) in the whole parameter space. In order
to study situations experimentally relevant, we assume that
the detuning speed is tuned so that the avoided crossings with

the biggest gaps are the adiabatic limit, i.e., P
(s)
I′ = P

(s)
leak ≈ 0.

From Eqs. (32) and (44d), we find that the LZ probability of
state conversion at III′ is

P
(s)
III′

(
β,P

(s)
leak

) = 1 − (
P

(s)
leak

)β
. (68)

In Figs. 10(a) and 10(e), we show two curves with the values
of P

(s)
III′ resulting from choosing P

(s)
leak = 10−2 or, as it results

from halving the speed of the separation stage, 10−4.
We fix P

(s)
leak = 10−3 (i.e., an intermediate situation between

the latter two conditions) and we investigate the effectiveness
of the separation stage by plotting P e as a function of β;
Figs. 10(c) and 10(f) correspond to �R < �L and �R > �L,
respectively. We can see that for β < 0.001, the separation is
effective P e ≈ 0. The system is essentially clean and only the
DCAC I′ is active. This is consistent with the result shown in
Fig. 5(b); for very small β, the LZ process in the DFAC can be
neglected even though the LZ processes in the DCAC (visited
with the same detuning speed) approach the adiabatic regime.
This can also be seen from Eq. (68): the small value of P

(s)
leak,

curves presented in Figs. 10(a) and 10(e), implies only for β

very small that P
(s)
III′ can be neglected.

As β grows up to 0.1, P e also grows: the separation
stage becomes ineffective. This results from a non-negligible
P

(s)
III′ . However, for the range of β between 0.1 and 1, P e

decreases for �R < �L and the separation stage improves,
whereas for �L < �R, P e keeps growing with β. This is
caused by the arrangements of the LZ processes, as sketched
with gray arrows in the panels (i) and (iii) of Fig. 7(c). A
finite P

(s)
III′ implies the passage through the DCAC IV′ in a

detuning/energy configuration that differs depending on �R

and �L. Due to the gap ratios in Eq. (44), the LZ processes
at IV′ and IV are almost adiabatic (from P

(s)
leak = 10−3 we get

P
(s)
IV′ ≈ 0.969). This means that for �R < �L, the state |S(1,1)

−,+ 〉
is converted at IV′ into |S(0,2)

−+ 〉 and IV is irrelevant, whereas
for �L < �R both IV′ and IV are involved leading to the state
|S(1,1)

+− 〉.
In the limiting case of β = 1, the LZ processes in all the

avoided crossings can be considered adiabatic. Since P
(s)
III →

1, the system follows 100% the path indicated by the gray
arrows in panels (i) and (iii) of Fig. 7(c). This means that for
�L < �R, the system leaves IV at state |S(1,1)

+− 〉 and then fully
follows III (see Fig. 6) ending up in the |S(0,2)

−− 〉 (0,2) state. This
justifies the fact that for β = 1 the separation stage is fully
ineffective for �L < �R and P e → 1. On the other hand, the
separation stage is effective, P e → 0, in the adiabatic limit for
�R < �L: the system leaves IV′ at state |S(0,2)

+− 〉 and after the
adiabatic state conversion at II′ (see Fig. 6) it ends up in the
|S(1,1)

++ 〉 state.
It is clear, from Fig. 6, that only when the ground

state is prepared the first avoided crossing involved in the
separation stage is a doublet-conserving one. Through the
present example, we have shown a feature common to the case
of preparing any excited state of (0,2), namely, that if the region
of detuning involving the avoided crossings is visited with
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FIG. 10. (Color online) Return probability for |
p〉 = |S(0,2)
++ 〉 [see Figs. 8(b) and 6 for the evolution and measurement regions Re and Rm,

respectively). Panels (a), (b), (c), and (d) are for �L < �R, while panels (e), (f), (g), and (h) are for �L > �R; see Fig. 7(c) and Eq. (56).
Panels (a) and (e) show the saturation return probability P m

∞ at the measurement region as a function of β and of the LZ probability in the
disorder-induced crossing III′, P

(s)
III′ , for κ = 1. The two trajectories indicate the experimental conditions, assuring that the LZ probability at

crossing I′ approaches the adiabatic limit, i.e., P
(s)
I′ is small. We choose P

(s)
I′ = 10−3 and present the results as a function of β for different

values of κ in the six panels (b) and (f) (probabilities at region Re, P e), (c) and (g) (probabilities at region Rm for τs = 0, P m
0 ), and (d) and (h)

(probabilities at region Rm for τs → ∞, P m
∞). First, P e is not zero and it depends on β, i.e., the system can remain in (1,1) after separation stage.

Moreover, the ineffective separation stage combined with an ineffective joining stage make the return probabilities for τs = 0 smaller than 1.
In panel (d), we find that the saturation return probability can be around 1/6 for a broad region in parameter space (β,κ), B; the associated
τs = 0 value in panel (c) is around 1/2. Results in (g) and (h) for �L > �R do not show the 1/6 saturation value with the same robustness as a
function of β and κ; such a difference could be tested by repeating the experiment preparing an (2,0) state (see text).

a constant detuning speed the separation stage is, in general,
not effective. A return probability experiment performed
in such a condition does not achieve the first conceptual
goal of the RPE: separating the electrons. A detuning pulse
engineered with different speeds at the different crossings can
be the solution. This is the most important conclusion of this
section.

For the sake of completeness, despite the ineffectiveness of
the separation stage, we now show what return probabilities
P m would be observed at the measurement region as a function
of β and fixing P

(s)
leak = 10−3. The results are shown for

different values of κ in Figs. 10(c), 10(d), 10(g), and 10(h).
Similarly to the case in the previous section, κ = 9 implies a
too fast joining stage that affects even the clean limit. For
the smaller values of κ , the first observation is the trivial
recovery for β → 0 of the P m

0 ≈ 1, P m
∞ ≈ 1/3, consistent with

the results with no valley mixing.44 In a very disordered system
with β → 1 and �R < �L, as discussed above, the separation
stage is effective and again we recover the P m

0 ≈ 1, P m
∞ ≈ 1/3

physics. On the other hand, for β → 1 and �L < �R, one
measures P m

0 ≈ 1 and P m
∞ ≈ 1, but the system does not have

electrons separated in (1,1) states in the evolution stage.

Notably, for �R < �L, we find an intermediate region in
the β axis [see zone B in Fig. 10(d)] for which P m

∞ ≈ 1/6;
the result persists even when the velocities of the separation
and joining stages differ (for κ � 2). This value agrees very
well with the saturation probability, 0.17, measured in Ref.
14. However, while in the experiment for τs → 0 the return
probability is 1, in our case study the ineffective separation
and joining stages produce, in region B, P m

0 ≈ 1/2 as shown
in Fig. 10(c).

Here, the robustness of the P m
0 ≈ 1/2, P m

∞ ≈ 1/6 physics
can be understood because the nonadiabatic LZ probabilities
are linked by P

(h)
II′ = 1 − (1 − P

(h)
III′ )

1
2 with h = {s,j}. We find

that the region B approximately cover the values of β that
produce 0.3 > P

(s)
III′ > 0.8. We do not discuss further this

situation because, as mentioned above, it is not a proper return
probability experiment. However, a final interesting remark
can be made regarding the experimental results of Ref. 14.
If the measured P m

∞ ≈ 1/6 were due to the preparation of
the highest excited state (0,2), as described here, then the
preparation of the (2,0) analog state would not show such a
saturation value with the same robustness as a function of κ

and β; this is shown in Fig. 10(h) with �L < �R.
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C. RPE in the high magnetic field limit

In spin-only double quantum dots, one of the most common
procedures is applying an external magnetic field much larger
than the hyperfine interaction energy. Focusing on the (1,1)
states, the Zeeman interaction shifts in energy the spin-
polarized triplets leaving in a double-degenerated subspace
the spin-singlet state |S〉 = |↑↓〉 − |↓↑〉 and the triplet-0 state
|T0〉 = |↑↓〉 + |↓↑〉. This two-level system defines a qubit
that can be manipulated. The return probability experiment
becomes simpler than for the case for zero magnetic field.
The (0,2) singlet is prepared, and after the separation stage
the inhomogeneous part of the hyperfine interaction mixes the
(1,1) singlet with the triplet 0. The result of averaging over
many realizations leads to P∞ = 1/2 in the high detuning
limit (negligible tunneling exchange).39–41

The search for two-level subspaces that can be manipulated
naturally leads to the investigation of the effect of external
magnetic field. Here, we focus on how the return probability
behaves in such cases for double dots in nanotubes with
valley mixing. The finite-field case was studied for the clean
nanotube system in Ref. 44. Here, our goal is exploring the
high magnetic field case, i.e., when the magnetic energies are
much bigger than the hyperfine energy, the spin-orbit splitting,
and the valley-mixing energies. The form of the single-particle

solutions at those limits determines the nature of the (0,2) and
(1,1) solutions and the behavior of the experiment.

We solve the dot Hamiltonian of Eq. (1), and in Figs. 11(a)
and 11(b), we plot the single-particle energies as a function
of the Zeeman energy Es for the isolated left and right
dots assuming they have different valley-mixing energies. We
present in the same panels the cases with B ‖ ẑ and B ⊥ ẑ
where ẑ is taken along the tube axis. The two-particle energies
for the (0,2) and the (1,1) charge configurations (at t = 0 or in
high detuning limit) are plotted in Figs. 11(c) and 11(d); they
follow from Eqs. (17) and (18).

We first focus on the B ‖ ẑ case. Neglecting the HFI, the
spin projection along the z-axis, σ , is a good quantum number.
The general single-dot single-particle solutions for this case is
given in Eq. (5). The solutions in valley space are the spinors
|ς̂ ξ

σ ,±〉, they point parallel (+) and antiparallel (−) to the valley
vector ς̂ ξ

σ . In the high-field limit, the valley-vector component
out of the plane dominates due to the diamagnetic component
that couples with the valley degree of freedom |δξ

σ | = |σ�
ξ
so −

Eorb| 
 �
ξ

KK ′ , and the valley spinors |ς̂ ξ
σ ,±〉 become |τ 〉, with

τ = K,K ′ (the ±1 eigenstates of τ3). This means that the
solutions for the dots are simply |ξτσ 〉 with eigenenergies

Eξτσ = (Esσ + Eorbτ − �soτσ ) /2, (69)

FIG. 11. (Color online) Qualitative differences between parallel and perpendicular (to the tube axis) magnetic fields and their interplay
with disorder. We take a common spin-orbit splitting �so, and the disorder generates dot-dependent valley-mixing energies �L

KK ′ �= �R
KK ′ .

Panels (a) and (b) show the single-particle eigenvalues for the isolated right and left dots, respectively, as a function of the Zeeman energy Es;
we distinguish the parallel from the perpendicular magnetic field case. At the high-field limit �so � |Es |, the valley-mixing effect is irrelevant
for the parallel case (due to the diamagnetic term), while on the other hand it is important for the perpendicular case. It follows that in the
high-field limit, parallel magnetic fields lead to the same physics as in a clean nanotube (Ref. 44). In panels (c) and (d), we plot the energies
of the (0,2) and (1,1) eigenstates (in the high detuning limit or for t = 0). Differences in the two valley-mixing energies generate splitting of
the four lowest-energy (1,1) states for perpendicular magnetic field case. In panel (e), we plot the mixing between (0,2) and (1,1) states as a
function of the detuning for a case in which the Zeeman energy due to the perpendicular magnetic field is dominant. We focus on the mixing
involving the (0,2) ground state GS(0,2). The (0,2) ground state is spin polarized and therefore can only mix with the four lowest-energy states
of (1,1), L − ,R−, which are also spin polarized. As follows from Eq. (74), the tunneling is determined by the valley properties and therefore
the phase difference between the valley mixings ϕRL tunes the mixing. In the insets above, we show that, unless ϕLR = nπ , one should expect
mixing of GS(0,2) with the four L − ,R− states of the (1,1) configuration.
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where τ is +1 or −1 for K or K ′, respectively. This result
is identical to a clean nanotube quantum dot with spin-orbit
coupling in a parallel field. This is confirmed by the (0,2)
and (1,1) spectrum at the high B ‖ ẑ limit in Figs. 11(c) and
11(d). The available return probability situations correspond
to those reported in Ref. 44, leading to P∞ = 1/2 or P∞ = 1
depending on the prepared state. No disorder-induced avoided
crossings survive in such a limit because the solutions in both
dots have the same spin and valley characteristics. Any given
(0,2) state is mixed, due to interdot tunneling, with a single
(1,1) state and the gap energy is 2

√
2|t | in all six avoided

crossings.
We now focus on the perpendicular magnetic field case,

and we take B = Bx x̂. We choose the single-particle basis
|ξτsx〉 with sx =↑x , ↓x (or sx = ±) the spin projection along
the direction of the magnetic field. The spin-orbit coupling
term in the Hamiltonian of Eq. (1) is − 1

2�
ξ
soτ3σz and mixes

|ξKsx〉 with |ξKs̄x〉. Such a mixing can be neglected in the
high magnetic field limit because states with opposite spin
projections sx are split in energy by the Zeeman term Esτ0σx .
However, the valley-mixing term in the Hamiltonian mixes
states of opposite valley but identical spin projection sx ; the
effective Hamiltonian at high Bx for the electrons sx in dot ξ

is the valley operator

H⊥
ξ,sx

= 1

2

(
Essx �

ξ

KK ′ exp
(
iϕξ

KK ′
)

�
ξ

KK ′ exp
( − iϕξ

KK ′
)

Essx

)
.

(70)

The solutions are the in-plane valley spinors

|uξ 〉 ≡ 1√
2

(
e

i
2 ϕ

ξ

KK′

±e− i
2 ϕ

ξ

KK′

)
, (71)

with uξ = ±. Thus, the full single-particle solutions are
|ξuξ sx〉 = |ξ 〉 ⊗ |uξ 〉 ⊗ |sx〉, with energies

Eξuξ sx
= (

Essx + uξ�
ξ

KK ′
)/

2. (72)

The four (1,1) lowest-energy states Fig. 11(d) are the
(1,1) four Slater determinants with sx =↓x , i.e., |LuL↓x

RuR↓x
〉 with

uR = ± and uL = ±. In general, �R
KK ′ �= �L

KK ′ and therefore
the valley mixing breaks the degeneracy between these four
states because (disregarding a global energy shift) the energies
are

E(1,1),↓x

uL,uR
= −Es + uR

2
�R

KK ′ + uL

2
�L

KK ′ . (73)

This is a clear distinction of this system with spin-only
double dots; there is not any double-degenerated subspace
(analogous to the one spanned by |T0〉 and |S〉) in the (1,1)
configuration.

The last issue we investigate for perpendicular field is how
the (0,2) ground state |R+↓x

R−↓x
〉 mixes with the (1,1) states. This

is important for the return probability experiment if the ground
state is to be prepared. First, due to spin conservation of the
single-particle tunneling HT = −tξ1τ0σ0, the two spin-down
electrons can only mix with the four lowest-energy (1,1) states

having the same spin configuration. The result is confirmed
in Fig. 11(e) where we plot the two-particle spectrum as
a function of detuning choosing a high value of Bx . We
notice that the phase difference between the valley-mixing
interactions in the two dots ϕRL = ϕR

KK ′ − ϕL
KK ′ plays a key

role in weighting the tunneling between the (0,2) ground state
and the different (1,1) states. This is shown in the insets in
Fig. 11(e).

Such a dependence follows from computing the matrix
elements of the tunneling Hamiltonian between solutions with
a given spin in different dots; we get

〈LuLsx |HT |RuRsx〉 =
{−t cos ϕRL

2 for uR = uL = ±,

−t i sin ϕRL

2 for uR = −uL = ±.

(74)

Then, the application of the tunneling Hamiltonian to the (0,2)
ground state gives

H
2p
T

∣∣R+↓x

R−↓x

〉 = −t cos
ϕRL

2

(∣∣L+↓x

R−↓x

〉 + ∣∣R+↓x

L−↓x

〉)
−t i sin

ϕRL

2

(∣∣L−↓x

R−↓x

〉 + ∣∣R+↓x

L+↓x

〉)
. (75)

Therefore, for ϕRL = 0, sin ϕRL

2 = 0, and the (0,2) ground state
mixes only with the two intermediate energy states, while on
the other hand, for ϕRL = π , cos ϕRL

2 = 0 and the mixing is
only with the other two states. For other values of ϕRL, there
are tunneling amplitudes with the four states.

All these effects have to be considered if a return probability
experiment is to be performed preparing the (0,2) ground
state. We note that if 1

2 |�R
KK ′ − �L

KK ′ | 
 σH, the hyperfine
interaction would not induce mixing between the (1,1) states.
However, the experiment, if performed with different detuning
speeds and different waiting times τs , can provide information
about the values of �

ξ

KK ′ and ϕRL. Some oscillations in the
signal would not average out when repeating the single-shot
cycle if the values of �

ξ

KK ′ are fixed in time. This would be
the case if its origin is indeed static disorder and defects.

V. CONCLUSIONS

The return probability experiment is a standard tool for
characterizing dephasing in double-quantum-dot systems. The
valley degree of freedom in nanotubes introduces more
states in the system. The spin-orbit coupling, the Zeeman
interaction, and the diamagnetic effect of a parallel magnetic
field are elements to be considered when performing the
experiment. In ultraclean nanotube quantum dots, in which
one can neglect valley-mixing effects, the return probability
experiment presents many different scenarios.44 In such a
case, the origin of the different cases lies in the effective
hyperfine-induced dynamics within subspaces of (1,1) states.
Those subspaces are defined by the chosen parameters. On the
other hand, the separation and joining stages of the experiment
are trivial.

In this paper, we focus on nanotubes for which the valley-
mixing energy is much larger than the hyperfine energy σH

and therefore it can not be neglected. The presence of valley
mixing could be due to defects and impurities in the nanotube.
Since the disorder profile is position dependent, the resulting

195441-20



DEPHASING AND HYPERFINE INTERACTION IN CARBON . . . PHYSICAL REVIEW B 85, 195441 (2012)

valley-mixing terms are dot dependent. First, we focused on
the zero magnetic field case and solved the single-dot problem.
At the dot ξ = {L,R}, the spin-orbit coupling and the valley
mixing split the four states |ξdξ σ 〉, an energy dξ�

ξ/2 into two
Kramers doublets, the low-energy one dξ = − and the high-
energy one dξ = +. Because σH � �ξ , the hyperfine interac-
tion is unable to mix states from different doublets. We have
shown that the effective hyperfine interaction in the space of the
two states in a Kramers doublet remains statistically isotropic
as for the case of clean nanotubes. The dynamics due to hy-
perfine interaction in the (1,1) states is, as in spin-only double
dots, dictated by precession along the local hyperfine effective
fields that are different in the two dots and in the two Kramers
doublets.

In the high detuning limit in absence of hyperfine interac-
tions, the 16 (1,1) eigenenergies split into the four fourfold-
degenerated subsets (LdL,RdR). The action of the hyperfine
interaction can not change the Kramers doublet index dξ and
thus the final state lies in the same subset as the initial state. We
get the standard behavior for the hyperfine dynamics within
each subset: if starting in a singletlike state, the probability to
be found at τs 
 h̄/σH in the same state saturates (averaging
over many single-shot experiments) to a value 1/3. It is worth
noting that the isotropic hyperfine field we have obtained is the
most effective coherent form for dephasing the system. This
isotropy, in average, leads to the lowest possible saturation
value; the presence of anisotropy in the hyperfine field, which
can arise in clean systems for perpendicular magnetic fields,
increases the saturation value up to 3/8.44 The situation we are
studying is therefore the most favorable to achieve a secondary
goal, obtaining the lowest possible saturation values allowed
in the system given that the only experimental result available
is lower than 1/3.14

While the valley mixing does not introduce qualitative
changes in the hyperfine interaction, it does so for the single-
particle interdot tunneling. The solutions in each dot point
in noncollinear directions in valley space. This is shown to
produce nonzero tunneling matrix elements between solutions
in different dots with the same spin σ irrespective of the
Kramers doublet index. In the two-particle spectrum reflecting
the mixing between the (1,1) and (0,2) states as a function of
detuning, we show that several new avoided crossings appear
as a consequence of the doublet-flipping interdot tunneling
amplitudes. These avoided crossings can play a crucial role in
the separation and joining stages, modifying the output of the
experiment.

For gaining qualitative knowledge of the implications
of the novel crossings, we adopt a low tunneling picture
that allows us to use the Landau-Zener formula for each
avoiding crossing. The parameter β, i.e., the absolute square
ratio between the doublet-flipping and the doublet-conserving
tunneling amplitudes, defines the relations among all the gaps
in the avoided crossings. We show that when any excited
(0,2) state is prepared, the separation stage first involves
an avoided crossing induced by disorder. Any separation
stage that passes through the mixing region with the same
detuning speed (a non-fine-tuned detuning pulse) can lead
to imperfect separation, leaving the electrons in the same
dot. This is not consistent with a proper return probability
experiment since it leads to P (τs = 0) < 1; for example,

we show that when preparing the highest excited state one
gets P (τs = 0) ≈ 1/2 and P∞ ≈ 1/6 in a broad region in
parameter space. Despite the agreement of the saturation
value with the experimental one,14 0.17, there exists a strong
discrepancy at short evolving times because the measurement
goes to 1. As mentioned above, more experimental work
would be desirable, including the dependence with magnetic
fields.44

We also showed that preparing the ground state leads to
a separation stage that first involves the doublet-conserving
avoided crossing I. This crossing can be visited adiabatically
and no further avoided crossings are involved in the separation
stage. We find that the return probability experiment behaves
very similar to the spin-only case, except that the (1,1)
tripletlike states (with 2/3 probabilities of being occupied
in average at τs → ∞) have a nonzero probability P

(j)
II of

returning to (0,2) due to the disorder-induced LZ process at
the avoided crossing II. For the saturation return probability,
this implies that it can not be smaller than 1/3, namely,
P∞ ≈ 1/3 + 2/3P

(j)
II .

Finally, we have studied the high magnetic field limit. When
the magnetic field is parallel to the tube axis, the diamagnetic
effect competes directly with the valley-mixing term because
both operate in valley space for electrons with the same spin
projection. This makes the valley mixing irrelevant for high
magnetic fields, the single-particle solutions become valley
polarized, and the return probability experiment produces the
same results predicted for clean nanotubes in parallel magnetic
fields.44 On the other hand, if the magnetic field is perpendicu-
lar to the tube axis, there is no diamagnetic interaction and the
valley mixing splits states with the same spin that otherwise
would be degenerated at high magnetic fields. We show that
the phase difference between the valley-mixing terms in the
two dots controls how the interdot tunneling behaves and
this changes the avoided crossing pattern between the (0,2)
ground state and the (1,1) four lowest-energy states (all being
fully spin polarized). Although the hyperfine interaction would
play no role, variations of the return probability experiment
could give insight of the valley-mixing terms by studying the
oscillations in the signal. The combination of the multiple
mixing of the (0,2) ground state with the fact that no double-
degenerate (1,1) subspace remains due to disorder, analogous
to the singlet and triplet-0 subspace in spin-only double
dots, can be important in the interpretation of Pauli-blockade
measurements in nanotubes in a perpendicular magnetic
field.53
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10D. Culcer, L. Cywiński, Q. Li, X. Hu, and S. Das Sarma, Phys. Rev.

B 80, 205302 (2009); 82, 155312 (2010).
11A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan,

H. Huebl, M. Mottonen, C. D. Nugroho, C. Yang, J. A. van
Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L.
Hollenberg, R. G. Clark, and A. S. Dzurak, Nature (London) 467,
687 (2010); N. S. Lai, W. H. Lim, C. H. Yang, F. A. Zwanenburg,
W. A. Coish, F. Qassemi, A. Morello, and A. S. Dzurak, Sci. Rep.
1, 110 (2011).

12M. J. Biercuk, D. J. Reilly, T. M. Buehler, V. C. Chan, J. M. Chow,
R. G. Clark, and C. M. Marcus, Phys. Rev. B 73, 201402 (2006).

13F. Kuemmeth, S. Ilani, D. Ralph, and P. McEuen, Nature (London)
452, 448 (2008).

14H. O. H. Churchill, F. Kuemmeth, J. W. Harlow, A. J. Bestwick,
E. I. Rashba, K. Flensberg, C. H. Stwertka, T. Taychatanapat, S. K.
Watson, and C. M. Marcus, Phys. Rev. Lett. 102, 166802 (2009).

15H. Churchill, A. Bestwick, J. Harlow, D. Marcos, C. Stwertka,
S. Watson, and C. Marcus, Nat. Phys. 5, 321 (2009).

16G. A. Steele, G. Gotz, and L. P. Kouwenhoven, Nat. Nanotechnol.
4, 363 (2009).

17T. S. Jespersen, K. Grove-Rasmussen, J. Paaske, K. Muraki,
T. Fujisawa, J. Nygard, and K. Flensberg, Nat. Phys. 7, 348 (2011).

18S. J. Chorley, G. Giavaras, J. Wabnig, G. A. C. Jones, C. G. Smith,
G. A. D. Briggs, and M. R. Buitelaar, Phys. Rev. Lett. 106, 206801
(2011).

19T. S. Jespersen, K. Grove-Rasmussen, K. Flensberg, J. Paaske,
K. Muraki, T. Fujisawa, and J. Nygård, Phys. Rev. Lett. 107,
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