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Scaling at chiral quantum critical points in two dimensions
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1Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
2Institute of Nuclear and Physical Engineering, FEI, Slovak University of Technology, 812 19 Bratislava, Slovakia

(Received 16 January 2012; revised manuscript received 30 March 2012; published 14 May 2012)

We study the localization properties of electrons moving on two-dimensional bipartite lattices in the presence
of disorder. The models investigated exhibit a chiral symmetry and belong to the chiral orthogonal (chO), chiral
symplectic (chS), or chiral unitary (chU) symmetry class. The disorder is introduced via real random hopping
terms for chO and chS, while complex random phases generate the disorder in the chiral unitary model. In the
latter case an additional spatially constant, perpendicular magnetic field is also applied. Using a transfer-matrix
method, we numerically calculate the smallest Lyapunov exponents that are related to the localization length of
the electronic eigenstates. From a finite-size scaling analysis, the logarithmic divergence of the localization length
at the quantum critical point at E = 0 is obtained. We always find for the critical exponent κ , which governs
the energy dependence of the divergence, a value close to 2/3. This result differs from the exponent κ = 1/2
found previously for a chiral unitary model in the absence of a constant magnetic field. We argue that a strong
constant magnetic field changes the exponent κ within the chiral unitary symmetry class by effectively restoring
particle-hole symmetry even though a magnetic-field-induced transition from the ballistic to the diffusive regime
cannot be fully excluded.
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I. INTRODUCTION

The properties of electrons moving in disordered two-
dimensional (2D) lattices featuring special symmetries rep-
resent a long-standing challenge for theories of Anderson
localization.1 It is known that the basic mechanism for electron
localization, i.e., quantum interference of an electron moving
along different paths in disordered media, depends on the
symmetry and topology of the particular model.2,3 Recently,
the discovery of topological insulators4 and the utilization of
graphene5,6—a two-dimensional honeycomb lattice of carbon
atoms—has been producing interest in this topic anew. In the
presence of disorder that preserves the sublattice symmetry
of the underlying two equivalent interpenetrating triangular
sublattices, the energy eigenvalues still come in pairs ±εi

around the Dirac point at E = 0. The phenomenon of a
quantum critical point at zero energy is not linked to graphene’s
hexagonal lattice but can arise also in other bipartite lattices
such as the simple square lattice. Disordered systems possess-
ing this property belong to the chiral symmetry classes.7,8 One
distinguishes three chiral Gaussian random matrix ensembles:
chiral orthogonal (chO), chiral unitary (chU), and chiral
symplectic (chS), which differ from each other by the presence
(chO) or absence (chU) of time-reversal symmetry. The
chS ensemble has time-reversal symmetry but spin-rotational
symmetry is lacking, due to spin-orbit interactions in most
cases. An additional particle-hole symmetry is obeyed in the
chO and chS classes.

In disordered 2D chiral systems, all electronic states are
localized with an energy-dependent localization length that di-
verges at the band center E = 0.9–13 The predicted divergence
of the disorder-averaged density of states (DOS) obtained
from nonlinear sigma-model field theories14–18 was apparently
observed in numerical studies,19 although the precise value
of the critical exponent remained unclear. On the contrary,
in numerical investigations20 of Motrunich et al. for chiral

orthogonal systems (in which time-reversal symmetry is con-
served), the exponent κ of the asymptotic energy dependence
of the disorder-averaged DOS, ρ(E) ∼ E−1 exp(−c| ln E|κ ),
was found to be compatible with κ = 2/3, where c is a
nonuniversal constant. This result is at variance with the
predicted universal exponent κ = 1/2,14–18,21 that is agreed
to be correct to all orders of perturbation theory. At first, this
difference was believed to be due to the strong-disorder limit
applied in Ref. 20. The same result κ = 2/3 was obtained,
however, also in the limit of weak disorder22 for a model of
noninteracting particles moving on a square lattice via random
nearest neighbor hopping in the presence of a π -flux phase.23

Very recently, it has been pointed out that nonperturbative
effects related to topologically nontrivial excitations have to
be taken into account in field-theoretical investigations of
quantum phase transitions in disordered systems belonging
to the chiral symmetry classes.24

Besides the divergence of the density of states discussed
above, a corresponding divergence of the localization length
with κ = 1/2, also predicted by theory21 to occur in a very
narrow energy interval close to E = 0, has been successfully
observed for a chU model in a numerical study of the smallest
Lyapunov exponent only recently,25 despite several previous
attempts.26–30 Scaling properties of 2D chiral systems can
be studied numerically by the analysis of the length and
disorder or energy dependence of Lyapunov exponents defined
for quasi-one-dimensional (q1D) systems. In the numerical
analysis, strips of finite width L and length Lz � L are
calculated by the transfer matrix method. The quantity of
interest is the smallest eigenvalue x1 of the matrix ln(T †T ),
where T is the transfer matrix. Following the finite-size-scaling
method, from which the localization length of the infinite
2D system can be inferred by studying q1D samples, we
assume that the smallest positive Lyapunov exponent γ =
limLz→∞ x1L/Lz is a function of the ratio ln L/ ln ξ , where
ξ (E) is the correlation length.
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By using a bricklayer lattice model with uncorrelated
random-magnetic-flux (RMF) disorder,31 distributed uni-
formly with zero mean, a scaling of the dimensionless quantity
z1 = x1L/Lz was observed,25

z1(E,L) = F1

(
ln L

ln ξ (E)

)
, (1)

with the scaling function F1 depending only on the ratio
(ln L)/[ln ξ (E)]. This model belongs to the chiral unitary
symmetry class (broken time-reversal symmetry). The same
exponent was found also for a similar model defined
on the square lattice.25 This result confirms theoretical
predictions that for |E| � E0 the localization length is
ξ (E) = ξ0 exp{A[ln(E0/|E|)]κ} with a universal exponent
κ = 1/2.15,21 However, the recent suggestion24 that nonper-
turbative effects have to be taken into account applies also to
these investigations.

It is the aim of our work to improve the understanding of
critical properties at chiral quantum critical points and to find
possible reasons for the differing critical exponents obtained
in the energy dependence of the DOS and in the divergence
of the localization length. Therefore, we present in this
paper further comprehensive numerical results obtained for
different disorder strengths in model systems exhibiting chiral
orthogonal, chiral symplectic, or chiral unitary symmetry in
the presence of a very strong perpendicular magnetic field. The
latter situation is quite intriguing because it is well known that
in a “normal” two-dimensional (diagonal) disordered system
with broken time-reversal symmetry (unitary) all electronic
states are localized. However, this situation converts into
the quantum Hall case, where current-carrying critical states
appear in the disorder-broadened Landau bands, if a strong
normal magnetic field is applied. Therefore, the question arises
whether in the case of chiral unitary symmetry the properties
in the vicinity of the chiral critical point at E = 0 are also
influenced by the presence of a strong magnetic field.

We find, in all three cases mentioned above, a divergence
in the energy dependence of the localization length at E = 0
with a critical exponent κ � 2/3 similar to the exponent found
in Refs. 20 and 22 for the diverging disorder-averaged DOS.
This value is, however, in contrast to our previous result for the
chiral unitary case without a constant magnetic field, where
κ � 1/2 was obtained. We argue that a broken particle-hole
symmetry may be responsible for this difference.

II. MODELS

We consider two-dimensional tight binding models defined
on bipartite square or bricklayer lattices with periodic bound-
ary conditions applied in both directions. The latter model
has recently been shown to be well suited for describing the
electronic properties of noninteracting particles on graphene’s
honeycomb lattice in the presence of disorder.31 Also, in
contrast to the square lattice, the van Hove singularities do
not coincide with the quantum critical point at E = 0, which
facilitates the observation of the energy dependence of the
critical divergences. In the absence of diagonal disorder the

Hamiltonian reads

H =
∑

〈n	=n′〉
tnn′c†ncn′ , (2)

where c
†
n and cn are the fermionic creation and annihilation

operators at lattice site n, and the sum runs over nearest
neighbors only. The disorder is incorporated in the real random
hopping (RRH) terms

ty = t0 exp
W

t0
ε (3)

pointing in the transversal direction and connecting every
other pair of atoms (those bonds between the zigzag lines
on a hexagonal lattice) in the bricklayer situation. Here, {ε}
is a set of uncorrelated random numbers with box probability
distribution, |ε| � 1/2. In our investigation, the strength of
the disorder is varied between W/t0 = 2 and W/t0 = 8. The
spectral bandwidth 	 is determined by the sum over the
mean of the hopping terms and the coordination number Z,
	 = (Z/2)(〈tx〉 + 〈ty〉), with tx/t0 = 1 and

〈ty〉 = t0

∫ +1/2

−1/2
dε exp

[
W

t0
ε

]
= 2t2

0

W
sinh

W

2t0
. (4)

	 increases by a factor of 6 when the disorder strength W is
increased from W/t0 = 4 to W/t0 = 8.

The same off-diagonal disorder type with W/t0 = 4 was
used in the chiral symplectic model defined on an ordinary
square lattice. We consider a chiral version of the two-
dimensional Ando model.32,33 The hopping terms tnn′ are now
2 × 2 matrices

t‖ = t0

(
r −s

−s r

)
, t⊥ = ty

(
r is

−is r

)
, (5)

where r2 + s2 = 1, s = 1/2, and the disorder in the hopping
ty is given by Eq. (3).

The chiral unitary model is studied again on a bricklayer
lattice.31 The hopping terms in the transversal direction are
defined as

ty = t0e
iθx,y;x,y±a , (6)

where the phases θx,y;x,y+a = θx+2a,y;x+2a,y+a − 2πe
h

�x,y are
determined by the total flux threading the plaquette at (x,y),

�x,y = p

q

h

e
+ φx,y, (7)

where p/q (with p and q mutually prime integers) is the
rational number of magnetic flux quanta h/e per plaquette
2a2, and B = ph/(2qea2) is the magnetic flux density per-
pendicular to the two-dimensional lattice. This differs from
the random flux model of our previous work,25 where the
constant magnetic field part was absent. The random part
originates from the magnetic fluxes φx,y , which are uniformly
distributed, −f/2 � φx,y � f/2, with zero mean and disorder
strength 0 � f/(h/e) � 1.

III. METHOD

We calculate the two smallest dimensionless scaling vari-
ables z1,z2 for quasi-one-dimensional samples having an even
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width L in the range 8 � L/a � 160 of lattice spacings a

using the transfer-matrix-method.34 For E = 0, z1 = 2L/λ

is related to the electronic localization length λ(E = 0,L).
The values of z1,z2 were obtained with the relative accuracy√

σ1/z1 ∼ α × 10−4, where α = 3 for small L, and α increases
to 10 for L/a = 128 and larger. For zero energy, we checked
that the difference

z1(E = 0,L) − z2(E = 0,L) (8)

is smaller than the numerical uncertainty of our data for all L.
For the energy dependence, a narrow interval of |E| � 10−8t0
around the critical point at E = 0 was considered.

While investigating various disorder strengths increasing
from W/t0 = 2 to W/t0 = 8 for the chiral orthogonal model,
it turned out that the scaling is more difficult to observe for
weak disorder. The reason is that in this case the smallest
scaling variable z1 is less than 1, which means that the related
localization length exceeds the sample width. Therefore,
putting, for instance, W/t0 = 2, we could not observe the
insulating regime for nonzero energies even on length scales
L/a � 160, and our data suffer from strong finite-size effects.
Therefore, in what follows we discuss only data for stronger
disorder W/t0 � 5 with z1 � 1.

We fit our numerical data to the polynomial functions

Z1,2(E,L) = z1,2(E = 0,L) ±
nf∑
n

bnχ
n, (9)

where z1(E = 0,L) and z2(E = 0,L) are the numerically
obtained values related to the two smallest Lyapunov expo-
nents at zero energy. The dimensionless scaling parameter χ is
defined as

χ = [ln(L)/A]x3

[ln(E0/|E|)]x2
. (10)

We assume the following energy dependence of the correlation
length:

ln[ξ (E)/ξ0] = A| ln(E0/|E|)|κ , (11)

with unknown parameters E0, ξ0, and critical exponent
κ = x2/x3.

The total number of fitting parameters is Np = 4 + nf ,
where nf determines the highest order of polynomial in Eq. (9).
The additional four parameters are the two exponents x2 and
x3, the energy E0, and the length scale ξ0. The latter was fixed
to ξ0 = 1 in all our analysis.42 In the fitting procedure, we
minimize the following function:

F = 1

N

N∑
n

([
z

(n)
1 (E,L) − Z1(E,L)

]2

σ1(E,L)

+
[
z

(n)
2 (E,L) − Z2(E,L)

]2

σ2(E,L)

)
. (12)

In Eq. (12), z
(n)
1 and z

(n)
2 are the numerically obtained data for

the first and the second smallest scaling variable, and σ1 and
σ2 are their numerical uncertainties. To estimate the accuracy
of the fit, we create a statistical ensemble of up to Nstat =
50 sets with initial conditions taken as z1 + √

σ1 × ε with
random number |ε| < 1.

After fitting the obtained numerical data for z1 and z2 to the
function (9), we change the number of fitting parameters (i.e.,
the order nf of the polynomial) in order to check the reliability
of the fit. Although we do not expect strong finite-size effects,
we also vary the smallest size of the systems taken into account
in the data ensembles. Another check of the stability of the
resulting exponent is to reduce the energy interval, for instance
to values E < 10−13t0.

IV. RESULTS

The results for all models analyzed are summarized in
Table I. For the chiral orthogonal model, we present data
for four different values of the disorder strength in the range
5 � W/t0 � 8. These disorders are strong enough to ensure
that the smallest scaling variable is z1 > 1, so that we are in
the localized regime for nonzero energies. The exponents κ

are close to the value 2/3. Small deviations are seen for weak
disorder W = 5.

For the chiral symplectic system, we analyzed only one
value of the disorder strength, W/t0 = 4. The obtained value
for the critical exponent is compatible with κ = 2/3 and agrees
well with the one found for the chiral orthogonal symmetry.

For chiral unitary systems, we consider a model with
a constant magnetic flux density B = (1/12) h/(2ea2)
and RMF disorder strength f/(h/e) = 0.5 (labeled
chU[1/12, 0.5]), and also a model where the constant magnetic
field B = (1/16) h/(2ea2) is combined with real hopping
terms ty as given by Eq. (3) (model chU[1/16, 5.0]). Both
systems exhibit a critical exponent consistent with a value
2/3. Note that the energies of the quantum Hall critical states
belonging to the zeroth Landau band are split31 by the disorder,
and so they do not interfere with the chiral critical point at
E = 0 studied here.

To compare the new results with our previous data published
in Ref. 25 for the chiral unitary system without a constant
magnetic field, we use the present fitting method also for the
analysis of our previous data. In Table II we see that the critical
exponent for the model chU[0, 0.5] is consistent with the value
1/2 as reported previously,25 but it differs significantly from
the value 2/3 obtained here for all other ensembles. Also, in
order to check a possible disorder dependence of κ , again a
bricklayer model with zero constant magnetic field but with a
stronger RMF disorder strength f = 0.7 h/e (labeled chU[0,
0.7]) was calculated. We obtain the same value κ � 1/2,
confirming our previous results. In Fig. 1 we compare some of
the raw numerical data for zi(E,L) − zi(E = 0,L), i = 1,2,
with the fit given by Eq. (9). Some other models, listed in
Table II, which also exhibit an exponent κ = 1/2 will be
discussed in the next section.

V. DISCUSSION AND CONCLUSIONS

Our numerical data for two-dimensional models with
various chiral symmetry confirm the logarithmic energy
dependence of the localization length reported previously.25

Here, we find that this logarithmic dependence is determined
by the critical exponent κ , which is universal and close to 2/3
for chO, chS, and chU (with magnetic field) symmetry classes.
The only exception is the chiral unitary system with zero
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TABLE I. The critical parameters for models with RRH or RMF disorder with a strong constant magnetic field as obtained by the fitting
procedure described in Sec. III. In the ensembles marked by ∗, a restricted energy interval |E| < 10−13t0 was used instead of |E| < 10−8t0. The
labeling of the chiral orthogonal chO[ ], symplectic chS[ ], and unitary models chU[ ] is explained in the text. These models exhibit a critical
exponent close to 2/3.

Np L/a ln E0 κ x3
Fmin

2

chO: RRH W/t0 = 5, z1 = 1.35
5 12–96 −1.60 ± 0.41 0.813 ± 0.013 1.100 ± 0.03 0.29
5∗ 12–96 −2.3 ± 1.5 0.801 ± 0.03 1.17 ± 0.02 0.11
chO: RRH W/t0 = 6, z1 = 1.79
5 12–160 −5.50 ± 0.20 0.665 ± 0.006 1.220 ± 0.003 2.24
5∗ 24–160 −4.17 ± 2.02 0.724 ± 0.046 1.160 ± 0.11 0.28
chO: RRH W/t0 = 7, z1 = 2.23
5 12–128 −3.65 ± 0.18 0.675 ± 0.005 1.272 ± 0.002 4.89
5∗ 12–128 −4.4 ± 1.5 0.693 ± 0.03 1.204 ± 0.02 0.39
chO: RRH W/t0 = 8, z1 = 2.65
5∗ 12–96 −6.4 ± 0.5 0.628 ± 0.01 1.25 ± 0.03 1.71
chS: RRH W/t0 = 4, z1 = 1.97
4 8–160 −5.4 ± 0.1 0.687 ± 0.049 1.403 ± 0.021 7.40
4∗ 8–160 −7.5 ± 0.5 0.692 ± 0.015 1.257 ± 0.004 1.22
4 16–160 −6.1 ± 0.1 0.676 ± 0.058 1.409 ± 0.041 6.40
5 16–160 −3.4 ± 0.1 0.796 ± 0.078 1.045 ± 0.033 2.83
5 48–160 −6.1 ± 0.7 0.664 ± 0.028 1.186 ± 0.025 0.98
chU[1/16, 5.0]: B = 1/16 h/(2ea2), RRH W/t0 = 5, z1 = 2.47
6 32–96 −1.74 ± 0.37 0.636 ± 0.01 1.27 ± 0.13 1.4
7 32–96 −1.23 ± 0.64 0.648 ± 0.02 1.17 ± 0.17 0.8
chU[1/12, 0.5]: B = 1/12 h/(2ea2), RMF f = 0.5 h/e, z1 = 1.03
4 24–72 −6.74 ± 0.24 0.567 ± 0.008 1.75 ± 0.003 3.504
5 24–72 −4.14 ± 0.65 0.643 ± 0.02 1.313 ± 0.02 2.142
6 24–72 −3.45 ± 0.65 0.663 ± 0.02 1.332 ± 0.23 2.055
7 24–72 −3.02 ± 0.96 0.676 ± 0.03 1.411 ± 0.33 2.016

TABLE II. The critical parameters for models with RMF disorder and zero or small constant magnetic fields as obtained by the fitting
procedure described in Sec. III. A critical exponent close to 1/2 is found. The energy interval used was |E| < 10−10t0. The labeling of the
various models chU[ ] is explained in the text.

Np L/a ln E0 κ x3
Fmin

2

chU[0, 0.5]: B = 0, RMF f = 0.5 h/e, z1 = z1 = 1.555
6 8–160 −2.6 ± 1.6 0.414 ± 0.04 2.49 ± 0.44 0.91
7 8–160 0.25 ± 2.5 0.476 ± 0.05 1.98 ± 0.5 1.43
8 8–160 1.86 ± 1.1 0.511 ± 0.025 2.01 ± 0.44 1.28
chU[0, 0.7]: B = 0, RMF f = 0.7 h/e, z1 = 1.22
5 24–96 −4.5 ± 1.5 0.515 ± 0.04 1.86 ± 0.20 2.43
5 32–96 −3.5 ± 1.5 0.55 ± 0.035 1.68 ± 0.11 2.01
5 40-96 −4.0 ± 1.7 0.54 ± 0.04 1.65 ± 0.10 1.86
chU[0, as]: B = 0, RMF f/(h/e) = −0.25,0.125, z1 = 1.328
5 16–96 −4.58 ± 1.8 0.474 ± 0.04 2.156 ± 0.02 1.36
6 16–96 −1.66 ± 2.6 0.535 ± 0.05 2.40 ± 0.38 1.22
chU[1/10K, 0.5]: B = 1/10000 h/(2ea2), RMF f = 0.5 h/e, z1 = 1.5559
7 24–96 0.38 ± 4 0.464 ± 0.07 2.38 ± 1.14 2.01
8 24–96 1 ± 1 0.475 ± 0.02 3.16 ± 0.75 2.39
chU[1/1K, 0.5]: B = 1/1000 h/(2ea2), RMF f = 0.5 h/e, z1 = 1.557
6 24–96 −0.7 ± 3.7 0.448 ± 0.063 2.27 ± 0.64 1.82
7 24–96 2.7 ± 2.5 0.511 ± 0.043 2.40 ± 0.75 2.52
8 24–96 2.8 ± 1.4 0.512 ± 0.023 2.73 ± 0.44 2.22
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FIG. 1. (Color online) The difference −|zi(E,L) − zi(E = 0,L)|
of the two smallest dimensionless scaling variables plotted as a
function of the parameter χ with corresponding fits (solid lines)
for some systems listed in Table I and II. The previously obtained
chU[0, 0.5] data25 are shown only in part since χ increases up to
values of ∼10 in this case.

constant magnetic field where κ � 1/2. We have confirmed
this previous result by additional calculations for a RMF
disorder strength f = 0.7 h/e. Therefore, the chiral unitary
models with and without constant magnetic field studied here
exhibit different critical behaviors.

One source for this outcome could be that the distribution
of the random magnetic fluxes, which was chosen to be
symmetric about zero flux in the B = 0 situation, turns into an
asymmetric one due to the addition of a spatially constant
magnetic flux in the finite magnetic field case. We have
checked that an asymmetric distribution of random magnetic
fluxes still leads to a critical exponent 1/2 as long as the
average magnetic flux remains zero. In these calculations, the
random flux was taken to be −0.25 h/e with probability 1/3
and 0.125 h/e with probability 2/3 so that the distribution of
random fluxes is asymmetric, albeit the mean value is zero.
Using a six-parametric fit as given by Eq. (10), we obtained
that κ = 0.535 ± 0.05 for 16 � L/a � 96. The details for the
antisymmetric RMF distribution chU[0, as] can be seen in
Table II.

Another reason for the different exponents could be that,
for the largest system size studied, the disorder strength is
still too small in the zero constant magnetic field situation.
Due to the periodicity, the effect of the random flux disorder
−f/2 � φx,y � f/2 appearing in the phases exp(−iθx,y+a;x,y)
with θx,y+a;x,y = θx+2a,y;x+2a,y+a − 2πeφx,y/h is bounded,
being maximal for disorder strength f = 1.0 h/e for the
bricklayer lattice. The dependence of the smallest scaling
variable z1(E = 0,f ) on the disorder strength f � 0.01 is
shown in Fig. 2 for B = 0, p/q = 1/24, and p/q = 1/12,
respectively. In the small disorder regime, the behavior is
complicated and not important for the problem of different

f/(h/e)

z 1
(E

=
0
,L

/a
=

24
)

10.50

2

1.5

1

0.5

0

FIG. 2. (Color online) The smallest scaling variable z1(E = 0,f )
vs RMF disorder strength f . The constant magnetic field is zero
(red dots), B = 1/24 × h/(2ea2) (green squares), and B = 1/12 ×
h/(2ea2) (blue triangles), respectively. These results do not depend
on the system width in the range 24 � L/a � 128 checked.

critical exponents discussed here. For large f , the z1(E = 0,f )
decrease in all RMF models, independent of the presence
or absence of a constant magnetic field, and become equal
(∼0.76) for f = h/e. Usually, a decreasing z1 is equivalent
to an increasing localization length λ = 2L/z1. A similar
increase of the two-terminal conductance with increasing
RMF disorder strength has been reported previously.31,35 The
behavior of the RMF models is opposite to the chO and chS
situation where z1(E = 0,W ) becomes larger with increasing
disorder strength W . However, when comparing the various
values of z1(E = 0) obtained for different models (see Table
I), which are related to the effective disorder strength, the
above suggestion that too weak a disorder was applied in the
RMF model without a magnetic field seems to be unlikely, and
we do not believe that this is the correct explanation for the
observed difference in the critical exponents.

Another distinction between the two chU cases is the behav-
ior of the density of states, ρ(E), very close to E = 0. Although
both the chU models with and without strong magnetic field
exhibit a narrow depression,36 with ρ(E) going to zero at
the critical point, the disorder dependence is quite different.
With increasing RMF disorder strength, the energy range of the
depression gets narrower in the absence of a constant magnetic
field while it increases when a strong perpendicular magnetic
field is present. The appearance of such “microgaps” has
been attributed to the nonperturbative ergodic regime17,37,38 of
the chiral model; i.e., the localization length greatly exceeds
the sample size so that for time scales large compared to the
diffusion time the particle extends over the whole sample.
A similar behavior was observed also for the chS model.39

We note, however, that DOS depressions (“microgaps”) are
absent in our numerical calculations performed for the chO
case. For strong disorder, a narrow peak appears instead at
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E = 0,39 presumably originating from the different type of
disorder (real random hopping) that, in contrast to the complex
random phases in the RMF models, can lead to isolated
sites having eigenenergies around E = 0. This extra peak
is observed for both the bricklayer and the square lattice
systems. Nevertheless, it is unclear whether the different
disorder dependence of the DOS around the critical point can
account for the observed difference in the critical exponents.

Finally, we would like to remind the reader that the
presence of a strong magnetic field causes a special topological
term in the appropriate field theories.3,40,41 This extra term
is responsible for the occurrence of current-carrying states
that are essential for the explanation of the integer quantum
Hall effect, and so it accounts for the difference between the
ordinary Gaussian unitary ensemble and the quantum Hall
situation, i.e., the appearance of critical electronic states in the
latter case.

Furthermore, the strong magnetic field may effectively
restore the particle-hole symmetry that is usually lacking when
time-reversal symmetry is broken. The recovery of the particle-
hole symmetry can take place when the scattering between
electronic states belonging to different disorder-broadened
Landau bands is suppressed by a large energy separation.
Thus, a single Landau band model containing a chiral quantum
critical point at E = 0 is effectively created in the chiral unitary
case with an additional very strong, spatially constant, perpen-
dicular magnetic field. We therefore suggest that the presence
or absence of particle-hole symmetry is responsible for the
different critical exponents found in our numerical calculations
of various chiral unitary models. To check this view, we

investigated also chiral unitary models with weaker constant
magnetic fields p/q = 1/10 000 and p/q = 1/1000 (see
chU[1/10K, 0.5] and chU[1/1K, 0.5] in Table II) and found
critical exponents � 1/2 as in the magnetic-field-free case.

In conclusion, we calculated the two smallest Lyapunov
exponents of lattice models belonging to the chiral orthogonal,
the chiral symplectic, and the chiral unitary classes in the
presence of a strong spatially constant magnetic field. We
found in all cases a critical exponent κ � 2/3 that governs the
divergence of the localization length at the band center E = 0.
This result is in agreement with previous calculations for the
diverging energy dependence of the density of states.20,22 It
is, however, at variance with the earlier analytically obtained
results.15,21 While reasons for this difference were suggested
in Refs. 1, 20, 22, and 24, the origin of the numerically25

obtained value κ � 1/2 for chiral unitary lattice models in the
absence of a strong perpendicular magnetic field is still an
open question. The latter result was again corroborated in the
present study and suggested to be due to the absence of particle-
hole symmetry in the RMF model without a strong spatially
constant magnetic field. However, due to the limited achievable
system size in the numerical calculations, a magnetic-field-
induced transition from the ballistic to the diffusive regime, as
discussed above, cannot be completely excluded.
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