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Fast computations of the dielectric response of systems with spherical or axial symmetry
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When the size of a system does not permit a quantum-mechanical treatment it is still possible to obtain
an accurate description of the collective electronic excitations by using a semiclassical approximation for the
density-density response function. The dielectric function in this approach is a nonlocal quantity dependent on
the electron density as a single parameter. The optical response is described by the Fredholm integral equation
as demonstrated by Mukhopadhyay and Lundqvist [Nuovo Cimento B 27, 1 (1975)]. The optical response has
to be evaluated numerically, except for few models amenable to analytic solutions (typically with the density
abruptly varying at the interface). We demonstrate that for the systems with a spherical or an axial symmetry
this equation can be reduced to the Volterra integral equation, which furthermore can be solved as a system of
differential equations. This observation leads to an efficient numerical scheme that scales as O(N ), where N

is the number of mesh points for the density. This is to be contrasted with O(N3) scaling in commonly used
brute-force implementations.
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I. INTRODUCTION

The dielectric response of electronic matter1 is a key
quantity for a wide range of phenomena including the energy
ω and momentum k exchange with a traversing particle and
the refraction and absorption of light. The recent reviews
on the interaction of nanoparticles with light2 or electrons3

provide an overview on the topics including the relevance for
the nanotechnology and plasmonics. In the linear response
regime, the key quantity in the treatment of the dielectric
response, regardless of the type of excitations, is the density-
density response χ (r,r′; ω) function. When the exciting light
wave-length exceeds well the nanoparticle size the dipole
approximation is justified and only the dipole term (� = 1)
in a spherical harmonics expansion of χ (r,r′; ω) is required.
This is not so for excitations using the scanning tunneling
microscopy and the electron energy loss spectroscopy that
may involve a full range of angular momenta �.

Quantum theory accounts inherently for the nonlocality of
the dielectric function that can in principle be calculated fully
ab initio. However, due to enormous computational cost, a
fully atomistic approach is feasible only for small molecular
systems. As a first approximation to treat nanoparticles one
may assume a delocalized electron with boundary conditions
compatible with the system symmetry (jellium model). In fact,
this assumption is reasonable even for molecular structures,
as we have shown recently4,5 for fullerenes. The usefulness of
the jellium model was demonstrated by the pioneering works
of Ekardt on sodium clusters6,7 or of Puska and Nieminen
on C60.8 Relatively simple electronic structure (absence of
the localized d-electrons) substantiates the approach. Another
important prerequisite is a trick suggested by Zangwill and
Soven9 to avoid summation over the infinite number of
unoccupied states for the calculation of the noninteracting
density-density response function χ (0)(r,r′; ω). Over the years
several authors perfected the method (now the treatment

of systems containing millions of electrons is possible10),
and applied it to a range of geometries: starting from the
simple spherical symmetry (spherical clusters, nanoshells)
to systems without any symmetry11 and used theories from
the random phase approximations (RPA) to time-dependent
density functional theory (TDDFT).

Our paper deals with a situation where a system has
dimensions prohibitively large for atomistic approach, but still
is treatable on the quantum level within the jellium model. For
frequencies of external fields ω exceeding the single-particle
gap Eg (ω � Eg) the semiclassical approximation becomes
well justified and allows one to write the frequency-dependent
nonlocal dielectric function solely in terms of the electron
density.12 This in turn allows one to formulate an integral
equation for the optical response as was demonstrated for
a number of relevant geometries by Mukhopadhyay and
Lundqvist.13 In comparison with RPA or TDDFT this semi-
classical approximation (SCA) is substantially simpler as it
is free from summations over the electronic states. Recent
comparison of the two approaches reveals a remarkable
agreement between them.10 This is mostly expressed in the
energy positions of collective resonances. Quantum effects
such as discreteness of the electronic structure are manifested
as small deviations at the resonances’ wings. In the case of
abruptly varying density (expressible as a combination of the
step functions) the SCA integral equation can be reduced
to an algebraic one. Analytical solutions in this case are
in agreement with the classical Mie theory using the Drude
dielectric function.

In view of its simplicity and accuracy SCA is potentially
a practical tool for nanoplasmonics. However, its use was
hindered by the difficulties of solving the integral equation and
was considered to be a formidable task.14 In fact, conventional
methods require discretization of the integral equation and
solution of the resulting system of linear equations. The
method unfavorably scales as O(N3) with the number of
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mesh points and is, thus, not practical for large systems,
where one necessarily uses very fine meshes to describe
nonsmooth electron densities at the interfaces. In the present
work we go one step further toward an analytic solution
of the problem for systems with symmetries. We show that
the SCA integral equation can be reduced to a system of
two coupled differential equations. Although in general their
solution cannot be obtained analytically it still presents a huge
computation saving as the problem can be solved with O(N )
complexity.

The work is organized as follows. In Sec. II we give very
general derivation of the SCA integral equation without impos-
ing any restriction on the locality of light-matter interaction.
Equations are written in the form to demonstrate parallels
between the spherical and axial symmetry. In Sec. III we
discuss methods of solutions. To illustrate our approach we
compute the optical response of the Na−

2869 cluster in Sec. IV.
The discussion in this section is also concerned with another
important aspect of the problem: the validity of the jellium
model as such. It is not uncommon that the jellium model
is used to (i) discuss noble metal systems where d-electrons
cannot be considered as delocalized and (ii) discuss quantum
effects such as spill out of the electron density which cannot
be accessed without the knowledge of the true ionic potential.
Thus this section is devoted to the verification of these issues.

We use atomic units, i.e., h̄ = e = me = 4πε0 = 1 through-
out. The Appendixes contain mathematical details that make
the exposition in Secs. II and III self-contained.

II. DIELECTRIC RESPONSE

The key quantity for our discussion is the dielectric
function. In the random phase approximation (RPA) it is given
by [cf. Eq. (5.19) of Ref. 15]

ε(r,r′; ω) = δ(r − r′) −
∫

v(r − r1)χ (0)(r1,r′; ω)dr1, (1)

where v(r − r1) is the Coulomb potential and δ(r − r′) ≡
δ(x − x ′)δ(y − y ′)δ(z − z′).

The summation over the spin indices yields a prefactor 2 in
front of the noninteracting density-density response function
[known as Lindhard function for the homogeneous electron
gas in three dimensions (3D)]:

χ (0)(r,r′; ω) = 2
∑
i,j

fi − fj

ω + Ei − Ej + iη

×ψi(r)ψ∗
j (r)ψj (r′)ψ∗

i (r′), (2)

where f is the Fermi function and i, j refer to collections of
quantum numbers that uniquely characterize electronic states
of the system. The infinitesimally small positive number η

shifts the poles from the real axis and ensures, thus, the
causality of the response function. In what follows we will
assume it can be incorporated in the ω variable. Likewise, in
the random phase approximation the density-density response
function can be obtained as

χ (r,r′; ω) = χ (0)(r,r′; ω) +
∫

dr1

∫
dr2 χ (r,r1; ω)

×v(r1 − r2)χ (0)(r2,r′; ω) (3)

or

χ (0)(r,r′; ω) =
∫

dr1 χ (r,r1; ω)ε(r1,r′; ω). (4)

For time-reversal invariant systems the density-density re-
sponse functions are symmetric χ (r,r′; ω) = χ (r′,r; ω) and
χ (0)(r,r′; ω) = χ (0)(r′,r; ω) (cf. Sec. 3.2.4 of Ref. 15).

When for the light-matter interaction the multipole expan-
sion is adopted the �-pole frequency-dependent polarizability
is defined as

α�m(ω) = −
∫

dr
∫

dr′ Q∗
�m(r)χ (r,r′; ω)Q�m(r′),

where the multipole electric moments of the electromagnetic
field are defined as (Sec. 46 of Ref. 16)

Q�m(r) =
√

4π

2� + 1
r�Y�m

(r
r

)
.

The density-density response function χ (r,r′; ω) is a complex
two-particle quantity. If one is only interested in the optical
response it is advantageous to work with a simpler function,

δn�m(r′; ω) = −
∫

dr Q∗
�m(r)χ (r,r′; ω),

having a meaning of the induced density (position-dependent).
Because this is a function of only one spatial variable the
equations simplify considerably. They can be obtained by
integrating Eq. (4) over r. Symmetry considerations can lead
to further simplifications: it is often possible to reduce the
integration over the intermediate coordinate r1 to a one-
dimensional integral. This is detailed in the Appendixes for
spherical and cylindrical symmetries.

Let us now introduce our basic approximation. SCA implies
a high frequency condition |Ei − Ej | � ω. This allows us to
approximate the denominator in Eq. (2) as

fi − fj

ω + Ei − Ej

≈ fi − fj

ω

(
1 − Ei − Ej

ω

)
. (5)

By following Ref. 12 we obtain the expression for the nonlocal
dielectric function

ε(r,r′; ω) =
[

1 − 4π

ω2
n(r)

]
δ(r − r′)

+ 1

ω2
∇r′v(r − r′) · ∇n(r′). (6)

A simple algebraic property of the matrix inverse and Eq. (4)
may lead to the impression that the dielectric function should in
general be symmetric. The explicit form (6) seems to contradict
this statement, however. In fact, such a peculiar property of
the dielectric function was also observed for other geometries.
The contradiction can be resolved by observing that, on very
general ground, χ (r,r′; ω) is not an invertible matrix (as
discussed in, e.g., the optimized effective potential method17

where this is one of the major problems). For singular matrices
the inverse can still be defined, however not unambiguously.
Thus we arrive at Eq. (6) by making a reasonable physical
approximation; however, we do not impose additional con-
straints (such as in the Moore-Penrose theory of pseudoinverse
matrices) to make ε(r,r′; ω) symmetric.
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III. SOLUTION OF GENERIC INTEGRAL EQUATION

The examples discussed in Appendix A demonstrate that
finding the optical response for the relevant geometries within
SCA can be reduced to the solution of the following integral
equation:

α(r; ω) = α(0)(r; ω)

[
1 −

∫ ∞

0
dr ′G(r,r ′)α(r ′; ω)

]
, (7)

where α(0)(r; ω) is a known function of the density. The
reduction to this form might require an appropriate scaling of
the unknown function α(r; ω) [cf. Eqs. (B6) and (B11)]. The
ω parameter is in general a complex number as it includes also
the small broadening iη. Therefore, the response functions
are also complex. Furthermore, it is important to notice the
structure of the Green’s function

G(r,r ′) = f (r)g(r ′)θ (r − r ′) − hθ (r ′ − r), (8)

where f (r) and g(r ′) are typically given by the power
functions. Equation (7) belongs to the class of the Fredhoml
integral equations of the second kind.18 The analytical solution
of our particular form is not known and one has to resort to
numerical methods. A standard approach, also broadly used for
the computations of the polarizabilities,10,14 is the quadrature
method. Here one proceeds by using some quadrature rules for
the integral, discretizing the kernel, and by posing the problem
as a system of linear algebraic equations. The advantage of this
approach is its universality, however, it is obliterated by the
high computational cost. A mesh containing N points leads
to a system of N linear equations which can only be solved
at O(N3) cost. A further disadvantage of the method is in
the difficulty to apply an iterative refinement procedure: it is
often necessary to obtain the solutions for a large number of
ω values. For finite η the response functions are continuous
functions of the frequencies. Thus, one may want to use a
known solution at ω = ωi to find a solution for a neighboring
point ω = ωi+1. The implementation of this approach within
the quadrature approach requires the use of sophisticated
methods, and also may suffer from instabilities and cannot be
implemented within standard numerical libraries. Therefore,
we propose a method that is free from these deficiencies: (i) it
scales linearly with the number of mesh points, (ii) the iterative
refinement can be implemented straightforwardly, and (iii) the
method is numerically stable.

Let us write Eq. (7) in the form

α(r; ω) = α(0)(r; ω)[1 + ha(ω)]

−α(0)(r; ω)
∫ r

0
dr ′[f (r)g(r ′) + h]α(r ′; ω). (9)

If a(ω) = ∫ ∞
0 α(r; ω)dr were a known function Eq. (9) would

belong to the type of the Volterra integral equations of the
second kind with a degenerate kernel18 which admits an
analytic solution. Let us assume that on the nth iteration step
an approximate value a(n) has already been known. We solve
the integral equation (9) in a standard way by introducing the

two auxiliary functions:

w1(r,ω) =
∫ r

0
dr ′g(r ′)α(r ′; ω), (10a)

w2(r,ω) =
∫ r

0
dr ′α(r ′; ω). (10b)

Then the unknown function is given by

α(r; ω) = α(0)(r; ω)[1 + ha(n)(ω)

− f (r)w1(r,ω) − hw2(r,ω)] (11)

and the improved approximation to a(ω) by

a(n+1)(ω) = lim
r→∞ w2(r,ω). (12)

Two auxiliary functions can be found as solutions to the system
of the ordinary differential equations:

w′
1(r,ω) = α(0)(r; ω)g(r)

× [1 + ha(n)(ω) − f (r)w1(r,ω) − hw2(r,ω)],

(13a)
w′

2(r,ω) = α(0)(r; ω)

× [1 + ha(n)(ω) − f (r)w1(r,ω) − hw2(r,ω)].

(13b)

These relations are derived by differentiating Eq. (10) and
using Eq. (11). To solve Eq. (13) with the initial conditions
wi(r,ω) = 0 the standard fourth-order Runge-Kutta method
can be used. This turned out to be a good compromise between
the speed and the accuracy. Let us focus now on the second
component of our approach: the iterative update of a(ω). To
explicitly show the functional dependence of w2(r,ω) on a(ω)
it can be written as

a = lim
r→∞ w2[a](r,ω). (14)

This relation can be viewed as a nonlinear algebraic equation
for the complex a(ω). In general, the brute-force update (12)
does not achieve convergence; with only one starting point
it is successful under special conditions only. Therefore, we
use here a simple and an efficient method for finding the
complex roots based on a quadratic interpolation with three
distinct points needed to start the iteration. This approach is
known as the Müller’s method. The convergence can be greatly
accelerated if already known a(ωi) is used to initialize the
computation of a(ωi+1):

a(1)(ωi+1) = a(ωi), a(2,3)(ωi+1) = (1 ± λ)a(ωi),

where λ is a small parameter (typically λ = 0.1). Our numeri-
cal tests indicate an excellent stability of the method. Typically
one ω point is converged with an accuracy of 10−12 within 10 it-
erations and the whole calculation linearly scales with the num-
ber of mesh points. This makes it a perfect candidate for the
investigation of the optical properties of complex 3D objects
not necessarily possessing a high symmetry. To the best of our
knowledge, a classical electrodynamics finite element method
had no alternatives in this case. A complete numerical solution
of the 2D problem with an axial symmetry will be presented
elsewhere. Here, we demonstrate the usability of our approach
by applying it to a spherically symmetric metal cluster.
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IV. OPTICAL ABSORPTION OF A SODIUM CLUSTER

We apply our method to the Na−
2869 cluster: a system which

simultaneously possesses a magic structural number of the
atoms and completely filled electronic shells. As discussed by
Martin (Ref. 19) for a small number of atoms the stability
of the sodium cluster is determined by the completion of its
electronic shells. The simplest way to classify the electronic
states is to name them according to the states of the spherical
potential well,20 i.e., by pairs of a principal and an angular
momentum quantum number (n,�). For a larger number of
atoms the geometric effects dominate. The system’s stability
is determined by the completion of the concentric atomic
shells. Several structural orderings are possible and it is
experimentally known that the sodium clusters are organized
according to an icosahedral symmetry: a central atom is
surrounded by 12 neighboring atoms at the corners of the
icosahedron, this 13-atom core is covered by a second layer
of 42 atoms, forming again a perfect icosahedron, and so on.
In general, for an icosahedron composed of K shells the total
number of atoms is given by

nK = K(10K2 + 11)

3
− 5K2 − 1.

In addition to these nice properties our 10-shell system
[Fig. 1(a), n10 = 2869] possesses complete electronic shells
in the configuration [Fig. 1(c)] where the angular momentum
states up to � = 19 are filled accommodating, thus, 2870
electrons. Let us compare (a) the geometric, (b) the ground
state electronic, and (c) the excited states optical properties for
various scenarios.
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FIG. 1. (Color online) (a) Geometrical structure of 10-shell
icosahedral Na−

2869 cluster. Positions of atoms were generated by
a cluster coordinate generator.21 (b) Radial distribution function
of the ionic density computed with intershell spacing fixed at the
nearest neighbor distance (interval between thin vertical lines) of
the bulk lattice (as = ann = √

3/2ab). (c) Electronic configuration of
the system. Each square denotes an occupied (n,�) state.

(a) Geometric properties. The standard jellium model
assumes that the ionic density is homogeneously distributed
within the volume of a sphere and abruptly drops to zero at
its boundaries.20 The electronic properties are then determined
by a single parameter: the ionic density which is selected to
match the bulk value (for Na rs = 3.96) and, hence, is related
to the bulk lattice constant (for Na ab = 4.230 Å) and to the
number of valence electrons per unit cell. For our comparative
study we fix the averaged ionic density and adjust all the other
parameters.

The icosahedral packing observed in clusters is more dense
than in the regular bulk lattices (bcc for Na). To match the
bulk value of the density the intershell distance (as) has to be
expanded by 4.7% as compared to the bulk nearest neighbor
distance (ann). This value we obtain by computing the averaged
ionic density based on the radial distribution function, where
we set the edge of the density cloud at the last inflection point
of the function. The radial distribution n(i)(r) was computed
applying the Gaussian broadening with the width σ ∼ 1 Å to
the idealized atomic positions ra ,

n(i)(r) =
∫

d�

Na∑
a=1

(
1√

2πσ

)3

exp

(
−|r − ra|2

2σ 2

)
.

For the angular integration we use the Fibonacci grids intro-
duced by Hannay and Nye22 (see also Ref. 5). As anticipated,
the ionic density exhibits an oscillatory behavior [Fig. 1(b)].
There is a small variation in the period of oscillation around
the average value of 0.75ab.

(b) Ground state electronic properties. Let us assess the
influence of the ionic density oscillations on the electronic
properties. We compare here the electronic distribution (Fig. 2)
resulting from the self-consistent local density approximation
(LDA) calculations based on the jellium model for the ionic
density and on the realistic ionic density derived by smearing
out the positive charges at idealized icosahedral positions. Our
LDA calculations use the same exchange-correlation potential
and the methodology as in Ref. 20. The radial Kohn-Sham
(or Schrödinger) equations are solved by the renormalized
Numerov method.23 At the later stages of the self-consistent
calculations we used a modification of the Pulay method24 to
accelerate the convergence.

Our calculations reveal interesting features of the jellium
model approach. We find that the electronic density reproduces
closely the oscillations of the positive background. The
oscillations are in-phase, their magnitude is damped compared
to the ionic distribution, and they are also reflected in
the Kohn-Sham potential. In the next paragraph we will argue
that they are also manifested in the optical response. In the
asymptotic region the electron and the ionic densities are
almost indistinguishable. We also notice that the spill-off
region is significantly extended compared to the standard
jellium model. This is in the first place a geometric not an
electronic effect which originates from the deviation of the
cluster’s shape from the spherical or, in other words, from
the reduced coordination number of the surface atoms. The
Kohn-Sham potential for the system with a realistic ionic
density is shallower compared to the standard jellium model.
Consequently, the work function in the latter case is increased
by roughly 1 eV.
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FIG. 2. (Color online) Electronic structure of the Na−
2869 cluster: solid line denotes the self-consistent Kohn-Sham potential, the electronic

states for � = 0 shown as thin dashed lines; the filled area denotes the converged electronic density; the long-dashed line shows the ionic
density; the dotted line marks the ideal jellium background. The four panels correspond to different approximations to the ionic density.

(c) Optical properties. Variation of the electronic density
has a profound impact on the optical response (Fig. 3). The
optical spectrum in all four scenarios is characterized by
a major surface plasmon resonance at around the classical
value ωs = ωp/

√
3 and some features at the bulk plasmon

frequency ωp. Such “artificial features” were also observed in

FIG. 3. (Color online) Optical response of the Na−
2869 cluster

obtained by solving Eq. (7) with the Green’s function (B5). The
polarizability is only weakly dependent on the broadening parameter
η (set to 0.001 a.u. here). We do not present here the spectra in the
small energy range as SCA loses its validity there [cf. Eq. (5)]. The
solid line: the standard jellium model; the dotted line: as = 0.95ann;
the short dashed line: as = ann; the long dashed line: as = 1.05ann.

metallic shell systems. For our system they are only visible
when plotted on the log scale. We performed a sequence of
calculations by varying the broadening parameter and found
only a tiny influence of the spectrum. This signifies the intrinsic
broadening of the optical absorption peaks in SCA. Contrary
to a fully quantum approach where finite systems necessarily
possess electronic excitations of the discrete spectrum (albeit
very densely spaced) the response function in SCA has branch
cuts rather than poles. This can be traced back to a specific form
of the free term α(0)(r; ω) in the SCA integral equation having
a branch cut in the complex ω plane. Its range is determined
by the availability and the continuity of the electron density
ω2

p(r) = 4πn(r). It is then obvious that the realistic ionic
density leads to a variation of the electron density in a wider
range and as a consequence to broader plasmonic resonances.

The broadening of the excited states in the optical exper-
iments is associated with different factors: the temperature,
disorder, the electronic correlations. However, to the best of
our knowledge, this phenomenon was never put in such a tight
relation with the geometric ordering.

V. CONCLUSIONS

We proposed an approach for the calculation of the
multipole optical response in the semiclassical approximation.
The method linearly scales with the system size and can be
extended to systems with lower symmetries. As an illustration
we applied our approach to study the collective electronic
excitations in the icosahedrally ordered Na−

2869 cluster. We
investigated the influence of the ionic structure on the ground
state electronic properties and on the properties of excited
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Y. PAVLYUKH, J. BERAKDAR, AND K. KÖKSAL PHYSICAL REVIEW B 85, 195418 (2012)

states. We found a significant broadening of the plasmon
resonances and demonstrated that it is enhanced when the
positive background is treated more realistically.
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APPENDIX A: INTEGRATION OF χ (0)

The term proportional to 1/ω in the expansion of χ (0)

vanishes in view of the completeness of the electron wave
functions: ∑

i

ψ∗
i (r1)ψi(r2) = δ(r1 − r2). (A1)

Therefore, we consider the remaining part that is proportional
to 1/ω2:

χ (0)(r,r′; ω) ≈ − 2

ω2

∑
i,j

(Ei − Ej )(fi − fj )

×ψi(r)ψ∗
j (r)ψj (r′)ψ∗

i (r′). (A2)

Let us evaluate the integral of the generic type,

�(r′) =
∫

dr φ(r)χ (0)(r,r′; ω). (A3)

In view of the Schrödinger equation we have∫
dr φ(r)(Ei − Ej )ψi(r)ψ∗

j (r) = −1

2

∫
dr φ(r)∇ · ξ ij (r),

where

ξ ij (r) = ψi(r)∇ψ∗
j (r) − ψ∗

j (r)∇ψi(r).

Utilizing the Gauss theorem and the antisymmetry of ξ ij (r)
with respect to an exchange of the indices in the case of real
functions, we obtain

�(r′) = − 2

ω2

∑
i

fi

∑
j

ψj (r′)ψ∗
i (r′)

∫
dr ξ ij (r) · ∇φ(r).

Summation over j is performed using the completeness
relation (A1), while the summation over i yields the electron
density:

2
∑

i

fiψ
∗
i (r)ψi(r) = n(r). (A4)

It is useful to rewrite ξ ij (r) in the form

ξ ij (r) = ∇(ψiψj )(r) − 2ψj (r)∇ψi(r)

and to use the Green’s theorem to integrate the first term:

∑
i

fi

∑
j

ψi(r′)ψj (r′)
∫

dr ∇(ψiψj )(r) · ∇φ(r)

=
∑

i

fi ψi(r′)
∫

dr ψi(r)δ(r − r′)∇2φ(r)

= 1

2
n(r′)∇2φ(r′). (A5)

The second term integrates as follows:

2
∑

i

fi

∑
j

ψi(r′)ψj (r′)
∫

dr ψj (r)∇ψi(r) · ∇φ(r)

= 2
∑

i

fiψi(r′)
∫

dr δ(r − r′)∇ψi(r) · ∇φ(r)

= 1

2
∇n(r′) · ∇φ(r′). (A6)

The following simple expression is then obtained:

�(r′) = 1

ω2
[∇n(r′) · ∇φ(r′) − n(r′)∇2φ(r′)]. (A7)

By using φ(r1) = v(r − r1), ∇1φ(r1) = −∇1v(r − r1), and
∇2

1φ(r1) = ∇2
1v(r − r1) = −4πδ(r − r1) in Eq. (A7) we

prove the semiclassical expression for the dielectric func-
tion (6). In the following section we apply Eq. (A7) to derive
the equations for the multipole polarizabilities.

APPENDIX B: INTEGRAL EQUATIONS
FOR THE MULTIPOLE POLARIZABILITIES

In the main text we demonstrated how the �-pole polar-
izability can be obtained from the integral equation for the
induced density. Here, we explicitly derive these equations for
the spherical and the axial symmetry.

(d) Spherical symmetry [n(r) = n(r)]. The response func-
tions are invariant under the rotations of the system as a whole.
Thus they can be expanded as

χ (r,r′; ω) =
∑
l,μ

χlμ(r,r ′; ω)Y ∗
lμ(�)Ylμ(�′).

Hence the induced density can be written in a simpler form:

δn�m(r′; ω) =
√

4π

2� + 1
δn�m(r ′; ω)Y�m(�′).

The integral equation for δn�m(r ′; ω) follows from Eq. (4). The
left-hand side (LHS) requires the evaluation of

δn
(0)
�m(r ′; ω) = − 4π

2� + 1

∫
d�′Y ∗

�m(�′)

×
∫

dr r�Y�m(�)χ (0)(r,r′; ω). (B1)

Thus the final result (A7) of the previous section can be used
for the integration over r. Because of the symmetry of the
density it is sufficient to take only the radial component of the
gradient

∇ = er

∂

∂r
+ 1

r
∇�

in the first term of Eq. (A7). Here er ≡ r/r and ∇� acts only
on the angular variables. The second term of Eq. (A7) vanishes
because of the form of the Laplacian in spherical coordinates:

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
− 1

r2
L2,

where L is the operator of the angular momentum. After the
angular integration we obtain

δn
(0)
�m(r; ω) = − 4π

2� + 1

�

ω2
r�−1 dn

dr
. (B2)
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The integral kernel from the right-hand side (RHS) of Eq. (4)
requires the evaluation of

K�(r1,r
′) =

∫
d�1Y�m(�1)

×
∫

d�′∇r′v(r1 − r′) · ∇n(r′)Y ∗
�m(�′). (B3)

It can be integrated using the spherical harmonics expansion
of the Coulomb potential [see Sec. 3.6 of Jackson (Ref. 25)],

v(r − r′) = 1

|r − r′| =
∑

l

l∑
μ=−l

4π

2l + 1

rl
<

rl+1
>

Y ∗
lμ(�)Ylμ(�′),

where r< (r>) is smaller (larger) of r and r ′. The gradient of
spherical harmonics need not to be considered in view of the
symmetry of the density; the angular integration can be done
beforehand and we obtain for Eq. (B3)

K�(r1,r
′) = 4π

2� + 1

dn

dr ′
∂

∂r ′

(
rl
<

rl+1
>

)

= − 4π

2� + 1

dn

dr ′
r ′�−1

r�+1
1

G
sph
� (r ′,r1), (B4)

with the spherical �-pole Green’s function defined as

G
sph
� (r,r ′) = (�+ 1)θ (r − r ′)

(
r ′

r

)2�+1

− �θ (r ′ − r). (B5)

Using Eqs. (B2) and (B4) we obtain

α
sph
� (r; ω) = α

(0,sph)
� (r; ω)

×
[
� −

∫ ∞

0
dr ′

(
1

r ′

)�−1

G
sph
� (r,r ′)αsph

� (r ′; ω)

]
,

(B6)

with α
sph
� (r; ω) = δn�0(r; ω) and

α
(0,sph)
� (r; ω) = − 4π

2� + 1

r�−1dn(r)/dr

ω2 − ω2
p(r)

,

where we introduced the local plasmon frequency in analogy
to the expression for homogenous systems ω2

p(r) = 4πn(r).
In the case of the dipolar response our result (B6) coincides
with Eq. (5) of Prodan and Nordlander (Ref. 10).

(e) Axial symmetry [n(r) = n(ρ)]. Unlike in the spherical
case the orientation of the coordinate system is important. We
consider an electromagnetic wave with a normal incidence on
the cylinder’s surface. It is possible to obtain the equations
for the general �-pole response. However, only in the dipolar
(�,m) = (1,0) case (to be considered here) can they be written
in a simple form. This can be traced back to the fact that only
for � = 1 the multipole electric moments are the invariant
under the system’s symmetry.

We proceed by expanding the response functions as

χ (r,r′; ω) =
∑
m

χm(ρ,ρ ′; ω)eim(ϕ′−ϕ).

This reflects the axial symmetry of the system which allows
us to represent the induced density as

δn10(r′; ω) = δn10(ρ ′; ω) cos(ϕ′).

The integral equation for δn10(ρ ′; ω) follows from Eq. (4). The
LHS requires the evaluation of

δn
(0)
10 (ρ ′; ω) = −

∫ 2π

0

dϕ′

π

∫
dr r cos(ϕ)

×χ (0)(r,r′; ω) cos(ϕ′), (B7)

where we expressed the spherical harmonics in terms of the
Legendre polynomials:

Y10(�) =
√

3

4π
P1(cos ϕ) =

√
3

4π
cos ϕ.

Only the radial components of the gradient contribute. After
the integration we obtain

δn
(0)
10 (ρ ′; ω) = − 1

ω2

dn(ρ)

dρ
. (B8)

The integral kernel from the RHS of Eq. (4) requires the
evaluation of

K1(ρ1,ρ
′) =

∫ ∞

−∞
dz1

∫ 2π

0
dϕ1 cos(ϕ1)

×
∫ 2π

0

dϕ′

π
∇r′v(r1 − r′) · ∇n(r′) cos(ϕ′).

(B9)

We use here the double summation expansion of the Coulomb
potential in the cylindrical coordinates (Ref. 26 and problem
3.16 in Ref. 25):

v(r − r′) =
∞∑

m=−∞
eim(ϕ−ϕ′)

∫ ∞

0
dk Jm(kρ)Jm(kρ ′)e−k(z>−z<),

where Jm is the order m Bessel function of the first kind and
z< (z>) is smaller (larger) of z and z′. The integration over the
angles can be done beforehand and by using J−m(x) = Jm(x)
which leads to

K1(ρ1,ρ
′) = 2π

∫
dz1e

−k(z>−z<)

×
∫ ∞

0
dk

d

dρ ′ [J1(kρ1)J1(kρ ′)]
dn

dρ ′ .

The integration over z1 is a trivial matter and by using
a differentiation formula for the Bessel functions J ′

m(x) =
Jm−1(x) − Jm+1(x) we obtain

K1(ρ1,ρ
′) = 2π

dn

dρ ′

∫ ∞

0
dk J1(kρ1)[J0(kρ ′) − J2(kρ ′)].

The integration using Eq. 6.512(3) of Gradsteyn and Ryzhik27

leads to

K1(ρ1,ρ
′) = −2π

ρ1

dn

dρ ′

[ (
ρ1

ρ ′

)2

θ (ρ ′ − ρ1) − θ (ρ1 − ρ ′)
]

= −2π

ρ1

dn

dρ ′ G
cyl
1 (ρ ′,ρ1). (B10)
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Using Eqs. (B8) and (B10) we obtain

α
cyl
1 (ρ; ω) = α

(0,cyl)
1 (ρ; ω)

×
[

1 − 2
∫ ∞

0
dρ ′Gcyl

1 (ρ,ρ ′)αcyl
1 (ρ ′; ω)

]
,

(B11)

where α
cyl
1 (ρ; ω) = πδn10(ρ; ω) and

α
(0,cyl)
1 (ρ; ω) = − π

ω2 − ω2
p(ρ)

dn

dρ
,

in an agreement with the expression given by Vasvári.14
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