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We show, by way of tight-binding and first-principles calculations, that a one-to-one correspondence between
an electron’s crystal momentum k and nonzero orbital angular momentum (OAM) is a generic feature of surface
bands. The OAM forms a chiral structure in momentum space much as its spin counterpart in Rashba model does,
as a consequence of the inherent inversion symmetry breaking at the surface but not of spin-orbit interaction.
This is the orbital counterpart of conventional Rashba effect and may be called the “orbital Rashba effect.” The
circular dichroism (CD) angle-resolved photoemission (ARPES) method is an efficient way to detect this new
order, and we derive formulas explicitly relating the CD-ARPES signal to the existence of OAM in the band
structure. The cases of degenerate p- and d-orbital bands are considered.
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I. INTRODUCTION

Rashba effect,1 in the usual sense employed in surface
science, refers to the breaking of spin degeneracy due to
the inversion symmetry breaking (ISB) at the surface and
the consequent formation of chiral spin angular momentum
(SAM) structure in momentum space. How the loss of
space symmetry leads to the breaking of spin degeneracy is
customarily understood in the relativistic picture of a moving
electron with momentum k in the xy plane. In its rest frame, the
moving electron sees the perpendicular electric field E = E ẑ as
the magnetic field B = −(v/c2) × E = −(h̄k/mc2) × E. The
Zeeman energy, −μBσ · B (μB = eh̄/2m = Bohr magneton),
for the electron then reads(

h̄

mc

)2
e

2
σ · k × E = (aBαf )2 e

2
σ · k × E. (1.1)

Bohr radius and fine structure constant are introduced as aB

and αf , respectively. On a typical surface its strength may
be estimated as ∼α2

f (aBk)(eEaB), with aBk � 1 and eEaB

of the order of the surface work function, eV. The estimated
Zeeman energy (Rashba-splitting energy) is therefore α2

f times
the work function, admittedly a tiny splitting.

Experiments show a contrasting picture. Surface energy
splitting due to the putative Rashba effect has been experi-
mentally observed on the surface of several simple elements,
such as Au(111) (Refs. 2–5), Bi (Ref. 6), Sb (Ref. 7), and some
alloys as well,8 all of which produced energy scales in excess of
100 meV. A lot of theoretical effort in the last decade in surface
science has been to bridge the discrepancy in the energy scales
between experiments and the naive Rashba theory.9

On the conceptual side, the prototype Rashba model
assumes a free electron model even though typical surface

systems where Rashba splitting has been observed consist of
multiple p orbitals. Besides, crystal field splitting is minimal
with simple elements like Au, Bi, and Sb, so all three atomic p

orbitals will be nearly degenerate in their on-site energies.
Such orbital degeneracy naturally opens up the possibility
of the internal degrees of freedom of the orbital system,
that is, orbital angular momentum (OAM), being an active
participant in the determination of surface band structure. The
main theme of this paper is to exploit this point in relation to
the emergence of chiral OAM structure. It will be shown that
electrostatic interaction leads to the momentum (k)-dependent
lifting of the orbital degeneracy, in a way that gives rise to
chiral OAM structure and what may be termed the “orbital
Rashba effect.” For strongly spin-orbit-coupled systems the
chiral OAM gives way to chiral structure of the total angular
momentum,10 but with the basic energetics still dictated by
the same electrostatics consideration. We emphasize that the
phenomenon of chiral OAM can take place in the absence of
spin-orbit interaction (SOI), as the only symmetry requirement
for its existence is the loss of inversion symmetry. The
mechanism by which the chiral SAM structure (conventional
Rashba effect) arises on top of the pre-existing chiral OAM
(our orbital Rashba effect) as the SOI is added is explained.

An important and essential ingredient of our proposal
is the detection scheme by which one can unambiguously
identify the surface bands that carry OAM. Spin-resolved
angle-resolved photoemission (SARPES) is often employed to
confirm the predicted chiral spin polarization of the Rashba-
split bands.11,12 Here we show that a similar criterion exists
with the dichroism experiment, in which left- and right-
circularly polarized (LCP and RCP) lights are employed in the
photoemission experiments. The dichroism signal, defined as
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the difference of the photoelectron intensity from the k-vector
position in momentum space with the incident light being LCP
or RCP, is shown to be proportional to the average OAM 〈L〉 of
the quasiparticle state at that momentum. Hence, the nonzero
signal in the circular dichroism ARPES (CD-ARPES) is a di-
rect proof of nonzero OAM in the band structure being probed.

This paper is organized as follows. In Sec. II the electro-
statics view of both spin and orbital Rashba splitting is sum-
marized. Following it, we present a microscopic tight-binding
calculation supporting the general electrostatics-driven picture
in Sec. III. A model first-principles calculation is made for
a single layer of Bi atoms where a complete agreement in
the band-dependent OAM structure between first-principles
LDA calculation and tight-binding model result is obtained.
Analysis of dichroism for OAM-carrying bands is given in
Sec. IV where some CD-ARPES formulas for p- and d-orbital
systems are presented. A brief summary is given in Sec. V.

II. ELECTROSTATIC ENERGY PERSPECTIVE

The tiny energy splitting expected from the relativistic
free-electron argument and the contrasting observation of a
significant Rashba-splitting energy of a few hundred meV
on actual surfaces argue in favor of a completely different
mechanism at work. A feature of the degenerate orbital system
is that it allows the introduction of an orientation vector n̂ char-
acterizing the degeneracy manifold. One can show that Bloch
states formed from Wannier states of different n̂ generally carry
different dipolar moments. In the presence of the electrostatic
field normal to the surface, such dipolar moment tends to be
oriented along the normal to save electrostatic energy. This, in
turn, leads to the momentum-dependent selection of preferred
n̂ direction of the quasiparticle state. We show that the resultant
energy splitting is exactly of the Rashba form, ∼n̂ × k · ẑ.

First we need to define the internal quantum number n̂
of the state in some fashion. In a single-band model, Bloch
eigenstate is derived from the Wannier state as (N is the
number of lattice sites)

|k〉 = 1√
N

∑
i

eik·ri |i〉, (2.1)

where φ(r − ri) = 〈r|i〉 would be a featureless, localized
wave function centered at the atomic site ri . The situation
changes dramatically in a degenerate, multiorbital system
because the degenerate Wannier orbitals can be mixed in a
coherent fashion. For illustration we choose J = 1/2 doublet
where the two Wannier states are10

|u〉 = 1√
3

(|px↓〉+i|py↓〉+|pz↑〉)= 1√
3

(|0 ↑〉−
√

2|1↓〉),
(2.2)

|d〉 = 1√
3

(|px↑〉−i|py↑〉−|pz↓〉)= 1√
3

(
√

2|1̄↑〉−|0↓〉),

expressed in the p-orbital and angular-momentum bases, re-
spectively. One can easily check that J = L + (1/2)σ satisfies
all the standard spin- 1

2 algebra in this restricted Hilbert space:

J z|u〉 = 1
2 |u〉, J z|d〉 = − 1

2 |d〉,
J+|u〉 = 0, J+|d〉 = |u〉, (2.3)

J−|u〉 = |d〉, J−|d〉 = 0.

A coherent state can be formed in the standard fashion:

|n̂〉 = cos
θ

2
|u〉 + eiφ sin

θ

2
|d〉, J · n̂|n̂〉 = 1

2
|n̂〉, (2.4)

where n̂ = (sin θ cos φ, sin θ sin φ, cos θ ). With such a
coherent Wannier state |n̂,i〉 localized at each site i, a Bloch
state can be constructed as

|n̂,k〉 = 1√
N

∑
i

eik·ri |n̂,i〉. (2.5)

As long as the underlying Hamiltonian preserves the p-orbital
degeneracy, the energy of the Bloch state will be invariant
with respect to the orientation of n̂. As the following exercise
shows, however, the surface-normal electric field breaks this
degeneracy to give rise to n̂ dependence in the energy.

In first-quantized form the Bloch wave function labeled by
two quantum numbers k and n̂ becomes

ψ n̂,k(r) =
∑

i

eik·ri φ n̂(r − ri). (2.6)

Boldface is used to emphasize the spinor nature of the wave
function, for example,

φλ,↑(r) =
(

φλ(r)

0

)
, φλ,↓(r) =

(
0

φλ(r)

)
. (2.7)

Each φλ(r − ri) ∼ (r − ri)λf (|r − ri |) is the λth orbital Wan-
nier function, with λ = x,y,z. The density of the Bloch wave
function is

ψ
†
n̂,k(r)ψ n̂,k(r) =

∑
i

φ
†
n̂(r − ri)φ n̂(r − ri)

+
∑
i �=j

eik·(ri−rj )φ
†
n̂(r − rj )φ n̂(r − ri).

(2.8)

The first term is the sum of the local densities of individual
Wannier orbitals, which turns out to be isotropic and inde-
pendent of n̂. The second part, on the other hand, depends
explicitly on n̂ and carries nonzero dipole moment. The
electrostatic energy due to surface electric field E = E ẑ can
be written as Ees(n̂,k) = −eE

∫
d3rzψ†

n̂,k(r)ψ n̂,k(r) for each
Bloch state. Upon detailed calculation one finds the energy

Ees(n̂,k) = η(eEa)
∑
i �=j

sin(k · rij)(n̂×rij ·ẑ)e− 1
4a2 (ri−rj )2

. (2.9)

In order to arrive at this formula we assumed a Gaussian
envelope φλ(r) ∼ xλe

−r2/2a2
and the atomic layer in the xy

plane with zi = 0. With a more general prescription φλ(r) ∼
xλf (|r|) we obtain some other fast-decaying envelope function
replacing the Gaussian in the above formula. The numerical
constant η of order unity can be fixed as well with an explicit
envelope function f (|r|).

The above sum can be brought to a transparent form if we
restrict it to the nearest-neighbor sites. For two-dimensional
square lattice they are rij = ax̂ and aŷ, and

Ees(n̂,k) ∼ (eEa)[nx sin(kya)−ny sin(kxa)]

∼ (eEa2)n̂ × k·ẑ, (2.10)

the second line following from the first in the small-k limit.
To save electrostatic energy, n̂ = 〈k|J |k〉 needs to be oriented
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along k × ẑ, which will result in the chiral angular momentum
pattern n̂ ‖ k × ẑ in the Brillouin zone close to the � point.
In an effective spin- 1

2 system considered now, only two
orientations of n̂, parallel and antiparallel to k × ẑ, will be
allowed. They form the upper and lower branches of the
Rashba-split bands. In the strong-SOI band, it is therefore the
total spin n̂ which should behave as anticipated in the original
Rashba picture. Being electrostatic in origin, however, the real
driving force for Rashba splitting is not the electron’s spin, but
rather its orbital dipole moment.10

It is not surprising then that Rashba-like splitting can occur
even in the complete absence of SOI. Indeed, the above simple
energetic argument rests only on the ISB effect arising from
the surface-normal electric field. To check this idea we assume
spinless p-orbital system where the coherent state is formed
in terms of |1〉,|0〉,|1〉 ≡ |−1〉 basis states as

|n̂〉 = e−iφ cos2 θ

2
|1〉 +

√
2 cos

θ

2
sin

θ

2
|0〉 + eiφ sin2 θ

2
|1〉.
(2.11)

This state satisfies the coherent-state condition L · n̂|n̂〉 = |n̂〉.
Repeating the same steps as before, we obtain the dipolar
energy of the Bloch state that depends on n̂ in exactly the
same way as Eq. (2.10). In this extreme, it is the OAM, not
SAM, that forms a chiral pattern in the momentum space.

Although we do not extend the calculation any further,
it is clear that the dipolar energy Ees(n̂,k) ∼ W n̂ × k · ẑ is a
generic result, with W ∼ eEa of the order of the work function,
for surfaces subject to ISB. For one thing it is the only scalar
quantity involving three vectors n̂, k, and ẑ and preserves
time-reversal symmetry but breaks inversion. When SOI is
very weak, the role of n̂ is taken up by the OAM L. For strong
SOI, it is replaced by the total angular momentum J . In both
instances the orbital degeneracy is an important ingredient
in forming the degenerate manifold of states spanned by
orientations of n̂. The breaking of such degeneracy due to
the surface potential gradient then results in the Rashba-type
energy splitting. In the following sections we largely focus on
cases of weak SOI where chiral OAM effect dominates and
provide further microscopic justifications for its existence, as
well as a theory for its detection.

III. p-ORBITAL SURFACE

A generic tight-binding Hamiltonian consisting of px , py ,
and pz orbitals can be constructed with the aid of Slater-Koster
parameters,

(px |px) = −V1 cos2 θ0 + V2 sin2 θ0,

(py |py) = −V1 sin2 θ0 + V2 cos2 θ0,
(3.1)

(px |py) = (V2 − V1) cos θ0 sin θ0 = (py |px),

(pz|pz) = V2.

We choose the convention

(cos θ0, sin θ0) = (x0,y0)/
√

x2
0 + y2

0 (3.2)

for the relative vector r0 = (x0,y0) of the two Wannier orbitals.
The symbol (pi |pj ) refers to the matrix element 〈pi |H |pj 〉
between adjacent p orbitals, with the pi orbital at the origin and

pj at r0. Surface character is implicitly introduced by assuming
a Hamiltonian that breaks inversion symmetry, which therefore
allows the following matrix elements:

(pz|px) = 3
2γ cos θ0 = −(px |pz),

(3.3)
(pz|py) = 3

2γ sin θ0 = −(py |pz).

Nonzero γ is an indicator of the ISB. To the tight-binding
model we include the local spin-orbit Hamiltonian, HSO =
(α/2)

∑
i Li · σ i to complete the construction of the model.

A similar Hamiltonian was studied previously.13 We analyze
two extreme situations in the two sections below, one where
SOI is dominant (α � γ ) and the other where ISB prevails
(γ � α). Most of the results in Sec. III A are already reported
in Ref. 10. They are included here for completeness and to
define the notations to be used through the rest of the paper.

A. SOI over ISB

In the limit where SOI interaction dominates over the
energy scales arising from ISB, J = 3/2 atomic states can
be regarded as completely decoupled from those spanned by
J = 1/2 manifold. When restricted to the J = 1/2 subspace,
the tight-binding Hamiltonian, on a square lattice of unit
spacing, becomes

H = −2
∑

k

C
†
k

(
t(cx +cy) γ (sy +isx)

γ (sy −isx) t(cx +cy)

)
Ck, (3.4)

with t = (V1 − 3V2)/3, and shorthand notations are cx(y) =
cos kx(y), sx(y) = sin kx(y). The effect of SOI is already incor-
porated through the J = 1/2 eigenstates forming the basis
states. Ck refers to the Fourier transform

Ck =
(

uk

dk

)
= 1√

N

∑
i

e−ik·ri

(
ui

di

)
. (3.5)

Here ui and di are the annihilation operators for the |u〉 and
|d〉 Wannier states introduced in Eq. (2.2). Note that the off-
diagonal elements are entirely due to ISB.

Defining eiφk = (−sy + isx)/
√

s2
x + s2

y , the eigenstates are

|k,±〉 = 1√
2

(|uk〉 ± eiφk |dk〉) (3.6)

for the upper and lower bands with energy −2t(cx +
cy)±2γ (s2

x + s2
y )1/2, respectively. Near the � point the two

energy bands are split as tk2 ± 2γ |k| in accordance with the
phenomenological Rashba theory. Average SAM and OAM
for |k,±〉 are given by the expectation values of

σ = 1

N

∑
i

σ i , L = 1

N

∑
i

Li . (3.7)

Here σ i and Li are the spin and OAM operators acting
on the particular atomic site ri . It is easily shown that
〈k,±|σ z|k,±〉 = 〈k,±|Lz|k,±〉 = 0, while

〈k,±|σ+|k,±〉 = ± 1
6e−iφk ,

(3.8)
〈k,±|L+|k,±〉 = ∓ 2

3e−iφk ,

L+ = Lx + iLy , σ+ = σx + iσ y . The upper Rashba-split
band carries SAM/OAM which are opposite to those carried
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by the lower band. Within each band, SAM and OAM are
oppositely oriented as a result of the strong SOI that favors
antiparallel alignment of L and σ . The electrostatics argument
of the previous section helps clarify that the magnitude of γ is
of the order of the work function.

B. ISB over SOI

It is useful to consider α = 0 band structure as a zeroth-
order solution and include effects of α perturbatively when SOI
strength α is much smaller than the ISB parameter γ . We find
that the α = 0, γ �= 0 band already supports the chiral OAM
structure. The perturbative influence of SOI is to spin split each
OAM-carrying band according to the conventional Rashba
scheme. The result is a pair of bands having the common OAM
orientation, with opposite SAM orientations in each band.

Spin states are degenerate for α = 0, and we obtain spinless
3 × 3 Hamiltonian on a square lattice,

H =
∑

k

C†
k

⎛
⎜⎝

2(V2cy −V1cx) 0 −3γ isx

0 2(V2cx −V1cy) −3γ isy

3γ isx 3γ isy 2V2(cx +cy)

⎞
⎟⎠Ck,

(3.9)

where, in obvious notation,

Ck =

⎛
⎜⎝

px,k

py,k

pz,k

⎞
⎟⎠ = 1√

N

∑
i

e−ik·ri

⎛
⎝px,i

py,i

pz,i

⎞
⎠. (3.10)

Each pλ,i (λ = x,y,z) expresses an annihilation operator for
the λ orbital at site i. It proves useful to study the linearized
Hamiltonian, valid near the � point, and return to the full
problem numerically. For the linearized Hamiltonian,

H =
∑

k

C†
k

⎛
⎜⎝

2(V2−V1) 0 −3γ ikx

0 2(V2−V1) −3γ iky

3γ ikx 3γ iky 4V2

⎞
⎟⎠Ck, (3.11)

the eigenstates and energies can be obtained in closed form.
Using the degeneracy of px and py orbitals, the three γ = 0
eigenstates can be organized as

|I〉 = ky

k
|px〉 − kx

k
|py〉,

|II〉 = kx

k
|px〉 + ky

k
|py〉, (3.12)

|III〉 = |pz〉,
where k = |k|. The γ terms in Eq. (3.11) mix states |II〉 with
|III〉, leaving the state |I〉 decoupled from the rest. The influence
of γ is summarized as a 2 × 2 Hamiltonian,

H = (c†II c
†
III)

(
2(V2−V1) −3iγ k

3iγ k 4V2

)(
cII

cIII

)
, (3.13)

where c
†
II,(cII),c

†
III,(cIII) denote the creation (annihilation)

operator of the states |II〉,|III〉. It assumes the massive Dirac
Hamiltonian where the mass term is a consequence of different
hopping amplitudes among the in-plane (px and py) and

out-of-plane (pz) orbitals. To arrive at the Dirac form, however,
the basis states themselves are chosen to corotate with the k
orientation as prescribed in Eq. (3.12). It differs significantly
from the conventional way of writing down the Rashba
Hamiltonian, which is done in the fixed spin-up and spin-down
basis states. There is a potentially intriguing issue of the
Berry phase related to the chiral orbital structure and its
physical manifestation, which we hope to pursue in a future
presentation.

Finally, the eigenstates and their energies of the linearized
Hamiltonian are obtained, 
 = V1 + V2,

|k,1〉 = |I〉,
|k,2〉 = |II〉 − 3iγ k

2

|III〉,

|k,3〉 = |III〉 − 3iγ k

2

|II〉,

E1(k) = −2V1 + 2V2,
(3.14)

E2(k) = −2V1 + 2V2 − 9γ 2k2

2

,

E3(k) = 4V2 + 9γ 2k2

2

.

Two of the bands carry nonzero OAM,

〈k,2|L+|k,2〉= 3iγ



(kx + iky)=−〈k,3|L+|k,3〉. (3.15)

The remaining band has 〈k,1|L+|k,1〉 = 0 and the net OAM is
zero:

∑3
n=1〈k,n|L|k,n〉 = 0. OAM obtained from numerical

diagonalization of the full Hamiltonian (3.9) is shown in Fig. 1.
The net OAM is exactly zero everywhere in the Brillouin zone.

FIG. 1. (Color online) (a) Band structure obtained from the
Hamiltonian (3.11) with the parameter (V1,V2,γ,α) = (1,0.1,1,0).
(b)–(d) Calculated OAM in the Brillouin zone [−π,π ] × [−π,π ]
for each band. E1,k through E3,k denoting the different bands are
indicated with arrows in (a) and their corresponding OAM are shown
in (b) through (d), respectively. The total OAM summed over all
bands is zero for each k in the Brillouin zone.
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As the above perturbative and numerical results indicate,
the presence of OAM is tied to nonzero γ , or ISB. The amount
of OAM grows with γ , as shown in Eq. (3.15). This is in
contrast to the spin Rashba model which displays perfect
spin polarization irrespective of the strength of the Rashba
parameter. The difference between the continuous growth
of chiral OAM with the ISB parameter γ and the sudden
emergence of chiral SAM can be understood as follows.
Even the non-Rashba-split bands already have perfectly spin-
polarized quasiparticle state. It is the energy degeneracy of the
oppositely oriented spin states which mask their spin-polarized
nature. Now, the ISB removes the energy degeneracy in such
a way that spin orientations of opposite chiralities occur at
different energies. In the spin-Rashba case it is the energy
difference of spin-split bands that scales with γ . On the
contrary, chiral OAM is endowed upon nondegenerate bands,
such as E2(k) and E3(k) in Eq. (3.14). The initial OAM value
for each band is strictly zero for inversion symmetric case.
Upon imposing γ �= 0, OAM grows in proportion to it.

Let us insert SOI Hso = (α/2)
∑

i Li · σ i as a perturbation
now. For each band obtained above, Hso couples states of the
same momentum k but different spins (we ignore interband
coupling induced by Hso). The matrix elements arising from
Hso are

〈k,1; σ ′|Hso|k,1; σ 〉 = 0,

〈k,2; σ ′|Hso|k,2; σ 〉 = −3αγ

2


(
0 ky +ikx

ky −ikx 0

)
, (3.16)

〈k,3; σ ′|Hso|k,3; σ 〉 = +3αγ

2


(
0 ky +ikx

ky −ikx 0

)
.

One recovers exactly the Rashba-type spin splitting as induced
by SOI. Combined with the previous conclusions on OAM, we
arrive at the following picture. The OAM-carrying band has,
say, a CCW (counterclockwise) sense of OAM near the �

point. The two spin-split bands in turn have one CCW and
one CW (clockwise) rotation of spins. Each band is therefore
characterized by a pair of rotations for OAM and SAM,
which reads (CCW, CCW) and (CCW, CW), respectively.
For the other OAM-carrying band the assignments would
be (CW, CCW) and (CW, CW). For the non-OAM-carrying
band there is no splitting of levels by Hso and hence no
spin-Rashba splitting. This calculation thus points out that
the presence of OAM is a prerequisite in the further splitting
of spin degeneracy induced by SOI. To obtain Rashba spin
splitting in the orbital-quenched band (such as graphene) is still
possible, but its magnitude will have to be derived from a truly
relativistic argument which, as we saw in the Introduction,
gives a prohibitively small number.

C. Triangular lattice

Several elements with partially filled p orbitals showing
the Rashba phenomena have the fcc crystal structure and have
the triangular-lattice surface along the [111] direction.2,6,14

We show that the previous chiral OAM structure found in the
square lattice also exists in the triangular lattice. In the same
basis used to define the square lattice model Ck [Eq. (3.10)],

we find for the triangular lattice the small-k Hamiltonian

Hk =

⎛
⎜⎝

αk2
x + βk2

y (α − β)kxky −i 3
2γ kx

(α − β)kxky αk2
y + βk2

x −i 3
2γ ky

i 3
2γ kx i 3

2γ ky 4(α − β) − 3
2V2k

2

⎞
⎟⎠.

(3.17)

Here, α = 3(3V1 − V2)/8, β = 3(V1 − 3V2)/8, and k2 = k2
x +

k2
y . The lattice constant is taken to be unity. To diagonalize Hk,

as before, it is convenient to choose a new set of basis vectors,

|I〉 = (ky/k)|px〉 − (kx/k)|py〉,
|II〉 = (kx/k)|px〉 + (ky/k)|py〉, (3.18)

|III〉 = e−iφk |pz〉,
k = |k|, eiφk = (kx + iky)/k. The state |I〉 remains decoupled
at energy E1,k = 3V2 − 3V1 + 3(V1 − 3V2)k2/8, while |II〉
and |III〉 combine to form eigenstates which, to leading order
of γ /
, 
 = V1 + V2, are

|k,2〉 � |II〉 − iγ (kx − iky)

2

|III〉,

(3.19)

|k,3〉 � |III〉 − iγ (kx + iky)

2

|II〉,

with energies

E2,k � 3(V2 − V1) + 3[(3V1 − V2)/8 − γ 2/4
]k2,
(3.20)

E3,k � 6V2 + (3γ 2/4
 − 3V2/2)k2.

As in the square lattice case, two of the bands obtained above
carry nonzero, chiral OAM:

〈k,2|L+|k,2〉= iγ



(kx +iky)=−〈k,3|L+|k,3〉. (3.21)

The two OAM-carrying states |II,k〉 and |III,k〉 obey a reduced
2 × 2 Hamiltonian,

HOAM = −4βI2×2 + M−1k2 + 3
2 ẑ · (γ k × τ − 
τ ), (3.22)

with

M−1 =
(

α 0

0 −3V2/2

)

the effective mass tensor and τ the pseudospin matrix.

D. Comparison to LDA

A check on the existence of chiral OAM is performed
by employing the first-principles local-density approximation
(LDA) calculation for a Bi single layer forming a triangular
lattice. The choice is inspired by Bi being a prototypical
p-orbital band material. An external electric field of 3 V/Å
perpendicular to the layer was imposed by hand to mimic the
surface potential gradient without having the complication of
dealing with the bulk states. We also performed calculations
for the physically more realistic case of a Bi bilayer14 with
a perpendicular electric field, with results that are entirely
in accord with the statements made below for the single-
layer case regarding the emergence of chiral OAM. For the
density-functional theory (DFT) calculations within the LDA,
we used the DFT code, OPENMX,15 based on the linear-
combination-of-pseudo-atomic-orbitals (LCPAO) method.16
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FIG. 2. (Color online) OAM and CD from first-principles and
tight-binding calculations of Bi monolayer without SOI. (a) LDA
band structure for Bi monolayer with SOI turned off. A perpendicular
electric field of 3 V/Å was imposed externally. Three dashed
curves represent the tight-binding energy dispersions around the �

point. (b)–(d) OAM vectors (green arrows) and NCD signals (color
backgrounds) for the three bands, E1 (b), E2 (c), and E3 (d), over the
whole Brillouin zone are marked by solid hexagons. The largest OAM
has a magnitude ≈1h̄ for bands E2 and E3. NCD is calculated with
kF,z = 2.27 Å−1. (e),(f) NCD calculated with kF,z = 0 in Eq. (4.8)
for E2 (e) and E3 (f) bands. The opposite color assignments between
(c) and (e) is a consequence of photon energy dependence of the
scattering intensity.

LCPAO coefficients at the specific k points were used to
calculate the OAM. To emphasize the relevance of ISB we
again chose to investigate the spin-degenerate case by turning
off SOI in the LDA calculation. The resulting electronic
structure for a spinless case consisting of three p-orbital-
derived bands is shown in Fig. 2(a). As the external electric
field is turned on, a level repulsion between the middle [E2

in Fig. 2(a)] and the bottom [E3 in Fig. 1(a)] bands occurs
as indicated by circles in Fig. 2(a). These two bands exhibit
the chiral OAM patterns with the maximum OAM vector
|〈L〉| ≈ 0.96h̄, as shown in Figs. 2(c) and 2(d), while the third
one, shown in Fig. 2(b), carries much less OAM around the
� point. The OAM chiralities of the two bands are opposite,
in accordance with the previous TB analysis. An excellent
fit of the LDA band structure near the � point was possible
with the TB parameters V1 = −0.725 eV, V2 = −0.11 eV, and
γ = 0.2623 eV [Fig. 2(a)]. The OAM magnitude is seen to
decrease continuously upon approaching the � point in the
LDA calculation [Fig. 2(c) and 2(d)], as predicted by the TB
calculation [Eq. (3.15)]. It reaches a maximum value around
the k points, where the level repulsion is the greatest [blue
circles in Fig. 2(a)].

IV. CIRCULAR DICHROISM

In the previous sections, emergence of OAM was predicted
to be a general occurrence in surface bands due to the
lack of inversion symmetry. In this section we argue that
such OAM structure can be probed readily with the current
ARPES technique, provided one uses two opposite circular
polarizations of incoming lights to measure the photoelectron
intensity.

Circular dichroism (CD) refers to phenomena in which the
physical response of a system to probing light depends sys-
tematically on the light polarization being LCP or RCP.17–19 In
ARPES, CD manifests itself as different scattering intensities
of the photoelectrons depending on the helicity of incident light
being RCP or LCP. The CD-ARPES signal can be quantified
through the normalized CD (NCD) defined as

D(k) =
∑

σ

[
IRCP
σ (k) − ILCP

σ (k)
]

∑
σ

[
IRCP
σ (k) + ILCP

σ (k)
] . (4.1)

The sum over the final state spin σ reflects the spin-integrated
nature of the detection scheme. The spin index is restored in
the following derivation of the NCD formula.

The initial state |I〉 is the Bloch state of momentum
k constructed as |k,m〉 = N−1/2 ∑

i e
ik·ri |i,m〉. In turn, the

Wannier state |i,m〉 at site ri is given by

|i,m〉 =
∑
λ,σ

mλ,σ (k)|i,λ,σ 〉, (4.2)

as a linear combination of constituent atomic orbitals labeled
by λ, and spin σ , with k-dependent coefficients mλ,σ (k). Plane-
wave forms are assumed for the final state20: ψF ∼ eikF ·r.

The transition amplitude into the final state of spin σ is
evaluated as

〈F,σ |p · A|I〉 ∼ 〈F,σ |r · A|I〉 ∼
∑
i,λ

mλ,σ (k)〈F|r · A|i,λ〉eik·ri .

(4.3)

Given the localized nature of the Wannier state, it is useful to
rewrite r · A = (r − ri) · A + ri · A. One immediately finds
that 〈F|ri · A|I〉 = (ri · A)〈F|I〉 is zero from the presumed
orthogonality of the initial and the final states. To proceed
further, we treat the cases of p-orbital and d-orbital bands
separately as they require somewhat different strategies for
evaluation of the NCD formula. For p orbitals the Wannier
states are assigned the hydrogenic wave function 〈r|i,λ〉 ∼
(r − ri)λf (|r − ri |) (λ = x,y,z), and with these we find that
the transition amplitude becomes

〈F,σ |r · A|I〉

∝
∑

i

ei(k−kF )·ri

(∑
λ

mλ,σ (k)
∫

e−ikF ·r[r · A]xλf (|r|)
)

∝
∑

λ

mλ,σ (k)
∫

e−ikF ·r[r · A] xλf (|r|). (4.4)

The sum
∑

i e
i(k−kF )·ri = δ(k‖

F − k + G) simply yields in-
plane momentum conservation up to the reciprocal lattice
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vector G and is dropped in the last line. Making use of the
fact that f (|r|) depends only on the radial distance, one can
rewrite the second line of Eq. (4.4) as

−Aαmβ,σ ∂α∂β

∫
e−ikF ·rf (|r|)d3r = −A · ∇kF

gσ (kF ), (4.5)

where we have introduced

f (|kF |) =
∫

e−ikF ·rf (|r|)d3r,
(4.6)

gσ (kF ) = mσ · ∇kF
f (|kF |),

and mσ = (mx,σ ,my,σ ,mz,σ ). The set of coefficients mσ

introduced in the p-orbital Bloch state can be used to calculate
its OAM 〈L〉. A simple result is obtained:

〈k,m|L|k,m〉 ≡ 〈L〉 = i
∑

σ

mσ (k) × m∗
σ (k). (4.7)

Of great importance is the fact that nonzero OAM is possible
even with spin degeneracy, mσ = m, where one would obtain
〈L〉 = 2im × m∗. It is commonly perceived that complex
coefficients mσ �= m∗

σ are associated with the SOI. Our theory
of the previous sections shows, on the other hand, that only
ISB is required to generate complex coefficients in forming
the Bloch state, which then gives rise to nonzero OAM.

We can now proceed to show that NCD is fundamentally
related to 〈L〉. Equations (4.4) and (4.6) allow the NCD
formula (4.1) to be recast in the compact, suggestive form:

D(k)= (A × A∗) · ∑
σ ∇gσ × ∇g∗

σ∑
σ [(A·∇gσ )(A∗ ·∇g∗

σ )+(A∗ ·∇gσ )(A·∇g∗
σ )]

.

(4.8)

Gradients in the above are with respect to kF . The vector
potentials are A = (ε1 + iε2)/

√
2 for RCP and A∗ for LCP,

with A × A∗ = −iε1 × ε2 = −ik̂ph giving the incident pho-
ton direction. The remaining task is to evaluate the quantity∑

σ ∇gσ × ∇g∗
σ which governs the CD response of the given

initial state. The denominator, by definition, is always positive
and plays a minor role in characterizing the OAM structure.

For p orbitals, inserting gσ = mσ · ∇f gives∑
σ

∇gσ × ∇g∗
σ

= 1

2
εαβγ

(∑
σ

mσ × m∗
σ

)
α

∇∂βf × ∇∂γ f

= − i

2
εαβγ 〈Lα〉∇∂βf × ∇∂γ f, (4.9)

where Eq. (4.7) has been adopted in the final line. Clearly, this
is proportional to the components of OAM in the initial state.
The remaining “form factor” ∇∂βf × ∇∂γ f depends on kF ,
which in turn depends on the incoming photon energy. Both
〈L〉 and the form factors can be obtained by faithful LDA
calculations of the wave functions. Analytically, a reasonable
choice of f (r) ∼ e−r/a would yield f (kF ) ∼ 1/(1 + k2

F a2)2

and all the form factors can be worked out. The central feature
of our NCD formula, of course, is its proportionality to OAM
carried by the initial state.

Next we turn to the case of degenerate d-orbital bands.
Now gσ = (mσ · D)f involves the inner product between
the five-dimensional coefficients mσ and the corresponding
differential operators Dα matching the given orbital basis.
Explicitly, they are Dxy = ∂x∂y and its two permutations,
D3z2−r2 = (2∂2

z − ∂2
x − ∂2

y )/2
√

3 and Dx2−y2 = (∂x2 − ∂y2 )/2.
Although the dichroism formula (4.8) in its general form still
applies to the d-orbital case, we are no longer able to transform
its numerator to a simple shape like Eq. (4.9).

At this point, however, recall that in realistic ARPES
experiment the incident photons carry energies of several tens
of eV, delivering, however, at most an eV of energy to the
occupied electrons.20 After subtracting what amounts to the
surface potential energy barrier, there is still a lot of energy
imparted to the final photoelectron, whose energy is typically
in excess of 10 eV. Due to in-plane momentum conservation
(ignoring higher-order scattering), the in-plane component
of photoelectron momentum can carry only a small fraction
of this energy, which means most of the kinetic energy is
contained in the z component, (kF,z)2/2m. As a result, the
typical situation in ARPES experiment is the one in which
kF,z dominates over the planar components, and kF,za is rather
larger than unity, a being the typical radius of the orbital wave
function. In computing gσ = (mσ · D)f , therefore, the orbitals
containing at least one power of z will be dominant over those
that contain none, due to extra powers of kF,za produced by the
differentiation. Such reasoning reduces the number of relevant
orbitals from five to three, that is, dzx , dyz, and d3z2−r2 . This
is irrespective of particular crystal-field symmetries of the d

orbitals and is rather dictated by the experimental conditions
of ARPES. We also introduce the notion of “partial OAM,”
which is obtained by assuming only the three, labeled 1 ≡ zx,
2 ≡ yz, and 3 ≡ 3z2 − r2, out of the five d orbitals contribute
to the wave function:

〈Lx〉′ =
√

3i
∑

σ

(myz,σ m∗
3z2−r2,σ − m∗

yz,σ m3z2−r2,σ ),

〈Ly〉′ =
√

3i
∑

σ

(m3z2−r2,σm∗
zx,σ − m∗

3z2−r2,σ mzx,σ ), (4.10)

〈Lz〉′ = i
∑

σ

(mzx,σ m∗
yz,σ − m∗

zx,σ myz,σ ).

The prime is a reminder that contributions to OAM from dxy

and dx2−y2 are being ignored. For completeness we give the
full expression for OAM in the d-orbital band which reads

〈Lx〉 = 〈Lx〉′ + i
∑

σ

[mxy,σ m∗
zx,σ − m∗

xy,σ mzx,σ

+myz,σ m∗
x2−y2,σ − m∗

yz,σ mx2−y2,σ ],

〈Ly〉 = 〈Ly〉′ + i
∑

σ

[myz,σ m∗
xy,σ − m∗

yz,σ mxy,σ

+mzx,σ m∗
x2−y2,σ − m∗

zx,σ mx2−y2,σ ],

〈Lz〉 = 〈Lz〉′ + 2i
∑

σ

[mx2−y2,σm∗
xy,σ − m∗

x2−y2,σmxy,σ ].

(4.11)

Following the same calculation procedure as in the p-orbital
case, we find the CD formula for d orbitals valid for kF,za � 1,

195401-7



PARK, KIM, RHIM, AND HAN PHYSICAL REVIEW B 85, 195401 (2012)

assuming f (r) ∼ e−r/a ,

Dd (k) = k̂ph · (2〈Lx〉′x̂ + 2〈Ly〉′ŷ − 〈Lz〉′ẑ)∑
σ [Axm1,σ + Aym2,σ − 2

√
3Azm3,σ ][(Ax)∗m∗

1,σ + (Ay)∗m∗
2,σ − 2

√
3(Az)∗m∗

3,σ ] + (A ↔ A∗)
. (4.12)

On a technical note, the form factors are expanded in powers of (kF a)−2, so that even a moderate factor like kF a ∼ 2 is adequate
to justify the large-kF a formula above. The OAM shown in the numerator refers to those in partial OAM. Again, nontrivial
CD-ARPES signal is predicated on the existence of OAM. In the same limit, kF,za � 1, the p-orbital formula simplifies to

Dp(k) = 5k̂ph · 〈L〉−6(k̂ph · k̂F )(k̂F · 〈L〉)∑
σ [6(k̂F · A)(k̂F · mσ ) − (mσ · A)][6(k̂F · A∗)(k̂F · m∗

σ ) − (m∗
σ · A∗)] + (A ↔ A∗)

. (4.13)

The case of t2g bands involving the three orbitals, mσ =
(myz,σ ,mzx,σ ,mxy,σ ), can be worked out as well. Referring
to the general OAM expression in Eq. (4.11), OAM in the
t2g band reads 〈L〉 = −i

∑
σ mσ × m∗

σ . [Note the opposite
sign compared to the p orbital result in Eq. (4.7).] The factor∑

σ ∇gσ × ∇g∗
σ in Eq. (4.8) becomes

1

2
εαβγ

( ∑
σ

mσ × m∗
σ

)
α

∇Dβf × ∇Dγ f

= i

2
εαβγ 〈Lα〉∇Dβf × ∇Dγ f, (4.14)

where D = (Dyz,Dzx,Dxy). Again, nontrivial OAM is respon-
sible for NCD for t2g bands. The actual task of evaluating the
form factors leads to cumbersome expressions which we omit.
For practical applications, it is better to evaluate form factors
such as ∇Dβf × ∇Dγ f in the above numerically using
LDA-obtained wave functions and their Fourier transforms.

We illustrate how the various formulas derived in this
section can be adopted in the LDA calculation to yield NCD
for realistic materials. The OAM of the Bi bands shown in
Fig. 2(a), for instance, can be used to obtain D(k) according
to Eqs. (4.8) and (4.9). Employing the exponential function
f (r) ∼ e−r/a with the radius a = 1.6 Å to evaluate the form
factors, Figs. 2(b)–2(d) show D(k) overlaid with local OAM
when kF = 2.27 Å−1 is used (kF a ∼ 3.6). In-plane component
of kF is chosen to match the quasiparticle momentum k. The
z component of kF is then uniquely fixed. The next set of
figures in (e) and (f) is obtained with kF = 0 Å−1 (kF a = 0)
for E2 and E3 bands. Incident photon direction is chosen
k̂ph = (cos 60◦,0,− sin 60◦) in both sets. The photon energy
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FIG. 3. (Color online) (a) First-principles electronic band struc-
ture of Cu(111) 30-layer slab. Red dashed lines indicate the two
surface bands. (b) Calculated OAM and CD corresponding to outer
energy surface bands. Inner surface band shows basically the same
OAM and CD patterns. Maximum OAM vector is ∼0.07h̄.

dependence of the NCD is obvious by comparing the two sets
in Fig. 2. LDA calculation for light-element d-orbital bands of
Cu are shown in Fig. 3. In this calculation the ISB electric field
is generated spontaneously through self-consistent electronic
structure calculation and not imposed externally as in the
Bi monolayer case. Despite these differences we found a
clear, chiral OAM pattern around the � point as shown in
Fig. 3(b). Even though the makeup of the surface bands
receives substantial contributions from both p and d orbitals,
OAM arises predominantly from the d-orbital components;
hence, we used the d-orbital formula in Eq. (4.12) to obtain
3(b). A recent CD-ARPES experiment on a Cu surface is
consistent with our prediction,21 where a similar CD result on
a Au surface is also reported. We comment that a potential
modification of the NCD formula may be necessary for heavy
elements due to significant SOI in the Hamiltonian and the
consequent modification of the current (momentum) operator
coupling to A (Ref. 22). Our present results are, however,
free from such complications as we exclusively focus on
spin-degenerate band structures. Nontrivial OAM and NCD
features are only due to the degenerate multiple-orbital nature
of the eigenstates.

V. SUMMARY

The general notion of “orbital Rashba effect” is presented
in this paper. As a direct counterpart of the well-known
spin Rashba effect, the orbital version arises in the presence
of ISB as commonly occurs in typical surface bands and,
as in the recent case of BiTeI,23 in the bulk band of non-
centrosymmetric crystals as well. Careful arguments are given
as to why, in reality, the orbital Rashba effect is the more
generic phenomenon associated with ISB and how the spin
Rashba splitting follows on top of the pre-existing chiral orbital
structure as a consequence of added SOI. We have further
presented some formulas for CD-ARPES experiment which
clearly indicate that CD-ARPES is but a direct probe of the
existence of OAM, much as the spin-ARPES is the direct
probe of spin polarization in the band structure. We believe
both the general ideas of chiral orbital Rashba effect and its
detection scheme through CD-ARPES is a widespread feature
of metallic surfaces, interfaces, and non-centrosymmetric
bulk bands. A related emergence of chiral OAM in a time-
reversal symmetry-broken magnetic metallic surface is being
investigated.

195401-8



ORBITAL RASHBA EFFECT AND ITS DETECTION BY . . . PHYSICAL REVIEW B 85, 195401 (2012)

Before closing, we note the past extensive research in
magnetic CD, as well as magnetic linear dichroism phenomena
on magnetic surfaces.19,24 The CD phenomena and its obser-
vation through CD-ARPES as discussed in this paper is a
consequence of inversion symmetry alone, while for magnetic
surfaces time-reversal symmetry is also violated. A related
paper25 pointed out the spin polarization of the photoelectrons
coming off the nonmagnetic surface by the polarized incident
photon. We, on the other hand, discuss the spin-integrated

scattering intensity coming off the nonmagnetic surface. It
is to be emphasized that our findings are unrelated to spin
polarization effects.
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6Christian R. Ast and Hartmut Höchst, Phys. Rev. Lett. 87, 177602
(2001); Yu. M. Koroteev, G. Bihlmayer, J. E. Gayone, E. V.
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