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How branching can change the conductance of ballistic semiconductor devices
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We demonstrate that branching of the electron flow in semiconductor nanostructures can strongly affect
macroscopic transport quantities and can significantly change their dependence on external parameters compared
to the ideal ballistic case, even when the system size is much smaller than the mean free path. In a corner-
shaped ballistic device based on a GaAs/AlGaAs two-dimensional electron gas, we observe a splitting of the
commensurability peaks in the magnetoresistance curve. We show that a model which includes a random disorder
potential of the two-dimensional electron gas can account for the random splitting of the peaks that result from the
collimation of the electron beam. The shape of the splitting depends on the particular realization of the disorder
potential. At the same time, magnetic focusing peaks are largely unaffected by the disorder potential.
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I. INTRODUCTION

Transport of two-dimensional electrons in state-of-the-
art modulation-doped semiconductor heterostructures suffers
mainly from small-angle scattering off charge fluctuations in
the donor layer, which is separated from the two-dimensional
electron system by a spacer layer.1–3 The amplitude of the
disorder is only a few percent of the Fermi energy, and the
electron mean free path can exceed hundreds of microns.4,5

Under these circumstances, transport through nanostructures
much smaller than the mean free path is assumed ballistic,
i.e., individual electrons follow almost perfectly the paths
prescribed by Newton’s law under the external applied forces
and the forces associated with the nanostructure’s confinement
potential. Impurity scattering is thought to be negligible.
Nevertheless, experiments, which used spatially resolved
recordings of the change in conductance induced by a charged
tip of a scanning probe microscope, showed that the current
density emerging from a quantum point contact was branched
as a result of small-angle scattering only.6–8 The reported
conductance changes in these and further experiments using
the same measurement techniques were much smaller than
the conductance quantum e2/h. At the same time, many
experiments have been interpreted in terms of purely ballistic
effects, e.g., focusing by electrostatic9 and magnetic10 fields
or wall geometries11 even in semiconductor materials with
shorter mean free paths. It could thus seem that branching has
little impact on macroscopic transport quantities and hence is
of no relevance for most transport experiments.

In this paper, however, we use a novel magnetic focusing
device to demonstrate both experimentally and theoretically
that the macroscopic transport quantities of nanostructures can
in fact be strongly influenced by branching. This poses the
question of how ballistic transport effects observed in many
supposedly ballistic experiments actually are. To illustrate
this, let us examine the two sections of magnetoresistance
curves from two different samples fabricated to the exact same
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FIG. 1. (Color) The first magnetoresistance peaks recorded for
two mesoscopic devices fabricated from the same heterostruc-
ture. The inset shows the scanning electron microscope picture
of the novel magnetic focusing device. B0 is the magnetic field at
which the cyclotron radius is commensurate with the wall length of
the device.

specifications shown in Fig. 1 (details will be given below). In
an ideal (i.e., ballistic) sample patterned in this specific layout
(depicted in the inset), electrons emitted from point contact C1

are deflected by a magnetic field and for a certain value B = B0

will be directed toward the second point contact C2. Therefore,
one expects to observe a single peak in an appropriate transport
quantity at B/B0 = 1. Sample 1 shows exactly this behavior.
Sample 2, however, shows an unexpected splitting of the peak.
So far, many experimentalists would argue that sample 2 is
a defective sample, where an unfavorably located impurity
spoils the measurement, and thus that the sample should be
discarded. We show, however, that curves 1 and 2 are both
fully compatible with exactly the same amount of impurity
scattering and that it cannot be argued that sample 1 is in
any way better than sample 2. On the contrary, even though
both samples are actually extremely clean devices, it is a
rather fortunate coincidence that curve 1 agrees well with the
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expectations for an ideal system. In addition, our new magnetic
focusing device allows us to explain why these consequences
of branching have not been seen in previous magnetic focusing
geometries.

II. CAUSTIC FORMATION BY DISORDER
AND A MAGNETIC FIELD

A. Branching of an initial plane wave

We begin the detailed presentation of our results by an
illustrative explanation of the mechanism of branch formation,
as depicted in Figs. 2(a) and 2(b). An initially homogeneous
particle flow or plane-wave front (restricted source in mo-
mentum space) is propagated along the x direction through a
two-dimensional disorder potential. A color rendition (from
green to white) of the disorder potential is plotted in the
background of panel (a). For the sake of simplicity, only the
electrostatic force exerted by the disorder potential in the y

direction is considered. The force in the x direction is ignored,
so that the longitudinal velocity vx stays constant and the
wave front remains a vertical line in coordinate space. This
model makes the principles of branching particularly easy to
understand and yet captures all of its important features.12

Later on, an extension of the model will also allow us to
study the statistics of the formation of branches in a magnetic
field analytically. The particle or flow density ρ is shown in
Fig. 2(a) using a gray scale. While ρ is initially homogeneous
or independent of y, it develops features at later times as
illustrated in panel (b), where ρ(y) is plotted at selected times.
At a time between t4 and t5, a strong peak develops in ρ. This
heralds the first branch. In the phase space (y,vy), the wave

FIG. 2. (Color) Branching of a plane-wave front propagating in
the x direction. (a) The electron wave flow intensity approximated
by classical ray dynamics is plotted in gray scale as the plane wave
propagates along the x direction in the disorder landscape shown as
a green/white color rendition in the background. The force in the x

direction is ignored (quasi-2D). The wave front remains a vertical line
in coordinate space. Vertical lines mark the position of the plane-wave
front at times t1,t2,. . .,t9. The bottom panel displays the wave fronts
at these times in phase space (y,vy). Caustics are identified at the
turning points (purple dots). (b) Flow density ρ as a function of y at
times t4 and t7 [vertical cross sections of the flow density plot in (a)].
Also shown at the bottom are the corresponding wave fronts in phase
space. The flow density peaks at the caustics.

front develops a pair of initially coalescing turning points,
which subsequently separate [panel (a), bottom]. Here, the
classical ray density in coordinate space diverges and also
the quantum-mechanical wave intensity would peak nearby.
In between the turning points, the wave front folds in phase
space and covers the same spatial coordinate three times. As
a result, the local density is enhanced. The path traced by a
turning point constitutes a fold line or caustic. A branch is
referred to as the spatial region in between two such random
caustics.

B. Branching and magnetic focusing with a point source

Figure 3(a) illustrates another instance of caustic formation
and branching when particles are emitted from a point source
(restricted source in coordinate space). In this example, no ap-
proximation concerning the electrostatic force associated with
the disorder potential is made and the full two-dimensional
particle dynamics is considered. Branches appear on similar
length scales as for the simplified plane-wave case due to
the same basic mechanism.13 This setup can be implemented
straightforwardly in a GaAs-based 2DEG on which a quantum
point contact (QPC) is patterned either by etching or the split
gate technique.14–19

It is instructive to oppose the appearance of branches due
to the disorder-induced formation of random caustics to the
focusing of two-dimensional electrons emitted from a point
source in a perpendicular magnetic field B in the absence of
disorder. We do this because also in the magnetic focusing
problem caustics play an important role.8,10,20 In a magnetic
field, the electrons execute circular cyclotron orbits with a
radius r = h̄

√
2πn

eB
, where n is the electron density. When

emitted from a point source, the electron trajectories converge
at a distance of one cyclotron diameter away from the point
source and a caustic forms. The enhanced local current density
can be detected with the help of a second collecting quantum
point contact in the transverse magnetic focusing geometry
shown in Fig. 3(b).10,21,22 The collecting QPC is at a distance
a from the emitting contact. The enhanced local density due
to magnetic focusing arises at a magnetic field for which
the cyclotron diameter 2r equals a. When enforcing zero net
current flow through this QPC and measuring the voltage drop
across, the enhanced local density can be detected as a voltage
or resistance peak.10 One may anticipate that disorder-induced
branching also produces resistance peaks when sweeping the
magnetic field.

C. Focusing in the corner device

In order to search for evidence of branching in dc ballistic
transport, we have chosen the corner-shaped device depicted
in Fig. 3(c), which, as we will show, can distinguish between
deterministic magnetic focusing at the collecting QPC and
random focusing caused by branching. The left panel shows
trajectories in the absence of disorder at the field B0 for
which r = a. The flow density along the bottom boundary is
plotted and forms a broad peak centered around the collecting
point-contact opening for this magnetic field. It is not caused
by magnetic focusing since a caustic has not yet developed.
Rather it results from the collimating properties of the emitting
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FIG. 3. (Color) Influence of disorder on the flow density ρ (gray
scale rendition) emitted from a point source. (a) Gray scale rendition
of the flow density ρ in the (x,y) plane when particles are emitted
from a point source with a cosinusoidal angular distribution. They are
subjected to the disorder potential color-coded in green and white.
Forces in both the x and y directions were taken into account and
the magnetic field is absent. (b) The formation of caustics in a
transverse magnetic focusing geometry. Particles are emitted from
the top point contact. The flow density is plotted on a gray scale
at a magnetic field where a caustic forms at the collecting point
contact. (c) Collimation (left panel) at B = B0 and magnetic focusing
at B = 2B0 (right panel) in a corner device consisting of two quantum
point contacts placed at a 90◦ angle. Red curves in the lower panels
show the flow density hitting the lower wall. (d) Same calculations
as in (c) but in the presence of weak disorder. The standard
deviation of the amplitude of the disorder potential corresponds
to 2%EF .

point contact from which electron trajectories leave with a
cosinusoidal angular distribution. One may anticipate that it
produces a first resistance peak.11,23 At the field 2B0 [right
panel of Fig. 3(c)], the particle flow converges first into the
device corner where a caustic has formed due to magnetic
focusing. The corner was chamfered to have well-defined
reflection. After specular reflection, the electron trajectories
refocus at the collecting QPC giving rise to another resistance
maximum.

Figures 3(c) and 3(d) illustrate how the disorder potential
affects the particle flow for both values of the magnetic field.
While at 2B0 the influence of disorder is weak, the flow density
has been drastically altered for B = B0 and now exhibits
multiple maxima of comparable size. The magnetic focusing
feature at 2B0 remains largely unaltered and is more robust
against disorder-induced branching. These conclusions can be
generalized and also hold at higher magnetic fields. In the
absence of disorder, the flow density reaches a maximum at the
collecting QPC for B = kB0, where k = 1,2, . . .. Collimation
and focusing are responsible for these maxima at odd and
even values of k, respectively. The collimation features are
prone to disorder-induced splitting, while the focusing features
are generally more resilient. As opposed to the conventional
transverse magnetic focusing geometry,10 in this corner device
deterministic focusing and collimation are separated on the
magnetic field axis and hence this geometry lends itself
particularly well to confirming the theoretical predictions.

III. EXPERIMENTAL RESULTS

The devices are fabricated from a modulation-doped
GaAs/AlGaAs heterostructure in which the 2DEG is located
150 nm underneath the crystal surface. Split gates, arranged
as shown in the insets of Fig. 4, form a 90◦ corner with a
QPC along each leg. One split gate is shared by both QPCs
and defines the corner. Devices with a chamfered corner
[Figs. 4(a) and 4(b)] as well as a straight corner [Fig. 4(c)]
are investigated. The electron density n equals 2.5 × 1011 and
2.2 × 1011 cm−2 in the devices used in Figs. 4(a), 4(b), and
4(c), respectively. The wall length a from each QPC to the
corner is 3 μm. The electron mean free path of the 2DEG is
45 μm, one order of magnitude larger than the ballistic electron
trajectories relevant for these studies. Transport measurements
in a perpendicular magnetic field are carried out at 1.4 K by
driving a sinusoidal current I of 5 nA with a frequency of
13.3 Hz through the injector QPC. The gate voltage applied
to all three gates defining the QPCs is identical. The voltage
drop across the detector QPC, V , and the injector QPC are
detected with separate voltage probes using a lock-in technique
(measurement configuration shown in the insets of Fig. 4).

Three typical experimental data sets are plotted in Fig. 4.
The resistance data Rfocusing = V/I are recorded on devices
which have an identical size but possess different realizations
of the disorder. Since all devices are fabricated from the same
heterostructure, the disorder is characterized by approximately
the same statistical parameters. The curves within each panel
are acquired for different gate voltage, i.e., different values
of the QPC resistances. For the bottom curves at low QPC
resistances, many modes propagate.24,25 The top curves are
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FIG. 4. (Color) Magnetoresistance traces measured in corner devices with different QPC resistances, RQPC. The electron mean free path
of the 2DEG is 45 μm. (a) and (b) Magnetoresistance traces for two devices with a chamfered corner fabricated from the same wafer show
different behavior of the resistance Rfocusing feature near B/B0 = 1. In each panel, curves are shown for various values of the resistance of the
quantum point contact, RQPC. (c) Magnetoresistance data for a device with a sharp corner design.

recorded for transmission of a single mode. The collimation
features at odd values of B/B0 are in general much broader
than the focusing features at even values, in agreement with
the broad distribution for the particle flow density in the
left panel of Fig. 3(c). They frequently split into two peaks
depending on the device, i.e., the specific disorder realization
[for instance at B/B0 = 1 in panel (b) and at B/B0 = 3 in
panel (c)]. We assert that the splitting of the collimation
features is a result of disorder-induced branching as in the
left panel of Fig. 3(c). Such splitting is absent for the focusing
features at even values of B/B0. The focusing features are
more robust against variations of the disorder potential. The
data in Fig. 4(c) were recorded on a device with a corner
that is not chamfered. Processing as well as depletion will
smooth this corner somewhat, however the direction of the
specular reflection is not as well defined, and focusing features
which require specular reflection in this corner have dropped
in amplitude.

IV. TRANSPORT SIMULATION IN THE CORNER DEVICE

To corroborate our assertion that the splitting of the
collimation features comes from disorder-induced branching,
we have numerically calculated resistances for different
disorder potential realizations. We simulate transport in the
corner device by following classical trajectories from the
emitting QPC until they either reach the collecting QPC and
contribute to the transmission, or until they leave the system
to the right of the collector. Within the Landauer-Büttiker
formalism, we approximate the resistance Rfocusing measured
in a four-terminal setup to be proportional to the transmission
probability from emitter to collector. The QPC is tailored

as a sum of variable-depth hyperbolic tangents, and we
assume the presence of a saddle potential inside the QPC.
Soft wall effects due to depletion are modeled by using a
quadratic potential.26 In the simulations, it is assumed that
the particles enter the QPC from a lead with a cosinusoidal
angular distribution. The saddle potential then has the effect
of collimating the flow. We find that to obtain a collimation
peak which is consistent with the experimental results, a
saddle potential of approximately 80%EF is needed. The
precise functional form of the saddle potential is given in
Ref. 26, and is illustrated in the inset of Fig. 5. We note that
the results presented here do not depend significantly on the
parameters which describe the electrostatic walls. The weak
disorder potential used in the simulations is modeled as a
Gaussian random field with zero mean and standard deviation
of the amplitude of the disorder potential V0 = 2%EF , and a
Gaussian correlation function 〈V (r)V (r′)〉 = V 2

0 e−|r−r′|2/l2
cor ,

with correlation length lcor = 180 nm. As these parameters
are not readily accessible in the experiment, they were chosen
from a realistic range of values.6 The mean free path in this
model potential is even larger than the measured mean free
path, which is limited by other scattering processes, e.g.,
scattering by charged crystal defects. These are, however,
only relevant on length scales larger than our system size.
Although our model system is even “deeper” in the ballistic
regime than suggested by the experimentally evaluated mean
free path, the weak disorder nevertheless has a pronounced
effect on the peak structure. Figure 5(a) shows calculated
resistance traces for different realizations of disorder potential
with the same statistical parameters. We point out that the
results are not sensitive to small variations in the parameters
chosen for the random potential. Figures 5(b) and 5(c) compare
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FIG. 5. (Color) Numerical transport simulation and its com-
parison with experimental results. (a) The number of trajectories
which reach the collecting QPC as a function of B/B0 in different
realizations of the disorder potential in a corner device with a
chamfered corner. Peaks at odd multiples of B0 are strongly affected
by branching. The inset shows a contour plot of the potential used
to simulate the QPC. (b) and (c) Comparison of experimental data
[magnetotransport curves for RQPC ≈ 3 k� in Figs. 4(b) and 4(c)]
and numerical simulations for different disorder realizations.

the experimental traces from Figs. 4(b) and 4(c) with the
calculated resistances. Finding potential disorder landscapes
which produce such excellent agreement with experiment is to
some extent accidental. The main purpose of the simulations is
to demonstrate that different disorder landscapes characterized
by the same statistical parameters can indeed either lead to
a pronounced splitting of collimation-related peaks, as one
would expect from the behavior of the flow density at the
sample boundary in the bottom left panel of Fig. 3(d), or not.
The focusing features at even values of B/B0 do not show
any splittings for the chosen parameters of the disorder. With
decreasing correlation length or increasing V0, however, we
anticipate that also magnetic focusing features are affected
by disorder-induced branching. To assess the influence of the
disorder as a function of the correlation length and V0, it is
instructive to calculate the average distance an electron travels
until a caustic forms, lcaustic. We have obtained an analytical
expression for this quantity, which is given by

lcaustic = π2κ(Ai[−κ2B2]2 + Bi[−κ2B2]2),

where Ai and Bi are Airy functions of the first and second
kind and where κ is a function of the disorder potential (see
Appendix). Our result is plotted in Fig. 6(a) for B = 0, B0,
and 2B0. For the latter field, magnetic focusing causes a
caustic in our corner geometry after electrons have traveled
on average a distance πa/2. Indeed, lcaustic saturates to this
value in the limit of large correlation lengths and small V0.
For both values of the magnetic field, we observe that for
the parameters chosen in the simulations (indicated by dashed
vertical lines) the mean distance to the first caustic starts to

V0

FIG. 6. (Color) Quantification of the influence of disorder. (a)
The average distance an electron travels until a caustic forms as a
function of the disorder parameters for B = 0, B = B0, and B =
2B0. The dotted lines mark the parameters of the random potential
chosen for the simulations in Fig. 5. (b) The numerically calculated
inverse participation ratio (IPR) of the flow density along the bottom
boundary between x = 0.5a and x = 1.5a, where a is the distance
from QPC to the corner, as a function of the standard deviation of the
amplitude of the disorder potential under collimation and focusing
conditions (B = B0 and B = 2B0), averaged over 200 realizations of
the random potential. The correlation length is identical to the one
for the calculations in Fig. 3, and the IPR is normalized by the IPR of
the clean system. The rising IPR at B = B0 indicates that increasing
disorder produces more peaks in the flow density, while the focusing
peak at B = 2B0 is broadened by the disorder.

deviate from the case of magnetic focusing without disorder.
For zero magnetic field, lcaustic scales like lcor/V

2/3
0 .12,27,28

Hence, branching can occur on much shorter length scales than
the mean free path, which scales as lcor/V 2

0 .29 Our analytical
calculation shows that branching influences the transmission
properties of our device. From Fig. 6(a) it is, however, not
apparent that disorder has a different impact on collimation
(B = B0) than on focusing features (B = 2B0). To assess
the impact of branching more quantitatively, we study the
peakedness of the flow density along the bottom boundary
of the corner device. Examples of the flow density I (x) are
displayed in Figs. 3(c) and 3(d). As is evident from this figure,
the disorder potential induces multiple peaks near the bottom
QPC at B = B0, while the peakedness of the flow density for
B = 2B0 resembles that of the flow density in the absence
of disorder. To capture the peakedness of the curves in a
single quantity, we use the inverse participation ratio IPR[I ] =∫ x2

x1
dx I 2(x)/[

∫ x2

x1
dx I (x)]2. This inverse participation ratio in

the vicinity of the bottom QPC is plotted as a function of
the standard deviation of the disorder amplitude in Fig. 6(b).
For the collimation condition B = B0, IPR[I ] rapidly rises to
higher values. It reflects the appearance of additional peaks.
Under focusing conditions, IPR[I ] drops, indicating that the
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original peak mainly broadens. This confirms our experimental
observations.

V. CONCLUSION

In conclusion, the weak disorder potential, which is present
in any real two-dimensional electron gas, causes a pronounced
modification of collimation features due to branching. Our
findings indicate that branching needs to be taken into account
when interpreting transport data of mesoscopic devices even
for state-of-the art heterostructures, for which the mean free
path is an order of magnitude larger than the device size.
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APPENDIX: MEAN DISTANCE TO THE FIRST CAUSTIC
IN A RANDOM POTENTIAL AND MAGNETIC FIELD

In order to determine the location of caustics, we consider
an equation for the curvature of the action function S, which
is obtained from the Hamilton-Jacobi equation (HJE). Points
along a trajectory where the curvature diverges indicate the
position of a caustic. In a constant magnetic field B, the
electron trajectories are circular. Considering small deviations
from the circular paths in polar coordinates {r,φ̂} allows a
quasi-2D treatment, similar to the one of Fig. 2, in which time
is identified with the angular variable as follows. The HJE in
the symmetric gauge with vector potential A = 1

2 rφ̂ is given by

∂tS + 1
2 (∂rS)2 + 1

2 r2B2 + V (r(t)) = 0,

where we have identified t with j . Taking two derivatives
with respect to r , and evaluating the equation for the curvature
u = ∂rrS(r) along the trajectories, we obtain the following
equation for u:

d

dt
u + u2 + B2 + ∂rrV (r) = 0.

For weak random potentials, we can approximate the corre-
lation function of the random potential as c(r − r ′,φ − φ′) =
〈V (r,φ)V (r ′φ′)〉 = δ(φ − φ′)A(r − r ′). Thus, extending re-
sults from Refs. 27, 30, and 31, we derive a Fokker-Planck
equation for the probability density p(t,u),

d

dt
p(t,u) = ∂

∂u
(u2 + B2)p(t,u) + D

2

∂2

∂u2
p(u,t),

where D = ∫ ∞
−∞

∂4

∂y4 c(x,y)|y=0dx. For a Gaussian correlation
function

c(x,y) = V 2
0 e−(x2+y2)/l2

cor ,

we obtain D = 12
√

πV 2
0 l−3

cor . To obtain an equation for the
onset of the branching, we now derive an expression for the
mean time it takes for a caustic to develop along a trajectory.
This can be done treating the problem as a mean first passage
time problem.26,32 From this expression, one can then easily
derive the mean distance traveled along a trajectory until a
caustic is hit. Of greatest importance for the experiment is the
point source with initial condition u0 = ∞. The corresponding
mean distance to the first caustic lcaustic is then calculated26

to be

lcaustic = π2κ(Ai[−κ2B2]2 + Bi[−κ2B2]2),

where Ai and Bi are Airy functions of the first and second
kind,33 and where κ = (2/D)1/3.
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