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Nonequilibrium electron leakage in terahertz quantum cascade structures
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The nonequilibrium absorption of longitudinal-optical phonons by hot electrons are studied in terahertz
quantum cascade structures. We present a method for including electron leakage to the continuum that takes into
account the mobility of the electrons. This is incorporated into a density matrix Monte Carlo method that includes
the optical field within the resonant cavity. The effects of electron leakage to the continuum as a function of lattice
temperature are discussed. Results are compared with experiment and found to be consistent. It is shown that
using only confined wave functions and thereby neglecting the leakage via tunneling is inadequate for describing
the electron transport.
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I. INTRODUCTION

Terahertz (THz) quantum cascade (QC) laser structures1

have been devised using several approaches2 since their
first inception,1 and efforts to model the electron transport
have allowed for the carrier dynamics to be examined on
a detailed level. These types of studies have proven to be
useful for solving level occupations, carrier distributions, and
analyzing temperature effects. Several approaches to modeling
the electron transport in QC structures have been undertaken
to varying degrees of accuracy. Rate equations,3,4 ensemble
Monte Carlo method,5–11 density matrices,6,12–14 nonequilib-
rium Green’s functions,15–21 and combined approaches22,23

have been used. Most of these studies have focused on the
carrier transport, with only a few including the resonant cavity
optical field in the calculations.11,24 However, all of the THz
QC structure studies have neglected the electron leakage to
the continuum by using only confined wave functions in the
analysis. Ignoring electron leakage is permissible only when
such channels are negligible. In the THz QC laser field, there is
much interest in improving the operating temperature of these
devices. At elevated temperatures, the electron distributions
will increase in k-space and are more prone to leaking.
The quest for improving operating temperature limits will
continue investigations of new structures, increasing the need
for accurately modeling leakage channels in order to ensure
they are minimized. For these reasons, we introduce a method
for including the electron leakage in the analysis of THz QC
structures and incorporate this into a density matrix Monte
Carlo method.

Transport methods used for electron leakage analysis
should be able to accurately estimate the current density to have
confidence in the approach. This is because current density
is a device characteristic that is readily measured and can
sometimes be used to identify when leakage channels are
present. The ensemble Monte Carlo method is a commonly
used approach for modeling electron transport in QC struc-
tures, as it is one of the simplest methods to implement, but it is
well known that overestimates in the current density can occur
when using that approach,22,25 particularly when scattering
between weakly coupled states (states with a small anticrossing
gap). The reason for this is because, in ensemble Monte
Carlo simulations, generally spatially extended wave functions

are used in the calculations, and the coherence interaction is
ignored. Therefore, increasing the barrier thickness between
two coupled states only decreases the anticrossing gap. Thus,
at resonance, the peak current density through a barrier is not
affected, and only the resonance is made sharper.25 This we
know to be incorrect and inconsistent with experiment. This
indicates that transport through thick barriers and between
weakly coupled states is largely an incoherent process. This
is also the reason why ensemble Monte Carlo simulations
sometimes predict devices to work which experimentally have
been found to fail.22,25

The density matrix Monte Carlo method22 is one ap-
proach that can improve on these shortfalls, as it allows for
dephasing26,27 to be included in the calculations in a straight-
forward manner. Dephasing scattering interrupts the coherent
interactions and effectively localizes the wave functions, and
inclusion of dephasing is necessary to accurately describe the
interaction between weakly coupled states. Because modeling
the electron transport using the density matrix Monte Carlo
method allows for the solution of the electron distributions for
all states within a QC period, this approach is well suited for
modeling the temperature dependence in QC devices. It is for
these reasons that we use this method in our analysis, where
we additionally incorporate a method for including the leakage
due to tunneling.

II. ELECTRON TRANSPORT METHOD

In the density matrix Monte Carlo method, tight-binding
wave functions localized over one QC period are used for
the confined states to correctly account for dephasing, as
with extended wave functions the results reduce back to the
semiclassical case.22 The intraperiod relaxation scattering is
handled semiclassically as in an ensemble Monte Carlo simu-
lation, and the transport coherence through the injector barrier
is modeled using a density matrix approach that includes
dephasing. The intra-QC period scattering is calculated via
Fermi’s golden rule, and our specific implementation of the
Monte Carlo portion of this simulation and the details of the
scattering rate calculations have been previously described in
Ref. 28 and the transport coherence implementation described
in Ref. 23.
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For upper-most states that are not well confined and
are more susceptible to leaking (< h̄ωLO from the barrier
height), it is somewhat questionable to use localized states.
For this reason, we model these states and the corresponding
interactions with extended wave functions. At elevated lattice
temperatures, hot electrons within these states can scatter and
leak out of the confining potential to the continuum. To account
for this leakage, we include a quasibound continuum-like
state.29,30 Leakage to the continuum4 and X-valley leakage10

have been previously modeled in mid-infrared (IR) QC
structures using rate equations and an ensemble Monte Carlo
approach, but here, we use the density matrix method to
additionally include coherence effects.

We next discuss the scattering mechanisms included in
this analysis as well as further details of the density matrix
transport method. Results using this method are then compared
to experimental measurements.

A. Scattering interactions

Scattering interactions including e−-LO phonon, e−-e−,
impurity, interface roughness, and photon-induced stimu-
lated scattering rates are calculated. An effective electron
temperature is used only in the screening for both the
e−-e− and impurity scattering rate calculations, where a
nonequilibrium screening model31 using a multisubband form
is employed. In the rate calculations, 2D wave functions
and a constant effective mass are used, and we neglect sub-
band nonparabolicity. While both intersubband and intraband
scattering rates are calculated, it is the intraband e−-LO
phonon and e−-e− scattering interactions that are the primary
mechanisms responsible for thermalizing the electron gas and
distributing the carriers within the subbands. It is therefore
necessary to include these interactions to correctly predict
the electron distributions. The electron distributions that are
solved as part of this method are used in the state-blocking
calculations and to calculate the density-dependent scattering
rates.

The longitudinal-optical (LO) phonon scattering rates
are calculated using the Fröhlich32 interaction for bulk LO
phonons, which is given by32–35

Ve−-LO =
∑

q

i

q

√
e2ELO

2V

(
1

ε∞
− 1

εst

)
(aq − a

†
−q)eiq·x, (1)

where ELO = h̄ωq is the LO phonon energy that we take as a
dispersionless constant ∼36 meV in GaAs, q is the LO phonon
momentum vector, V is the quantization volume, ε∞ and εst

are the high and static frequency permittivities, and a
†
q(aq)

are the creation and annihilation ladder operators. Both the
e−-e−36,37 and ionized impurity scattering38 rates are calcu-
lated using the Coulombic potential VCoul = α/|x − x′|, where
α = e2/4π . The impurity scattering rates are included because
the QC structures are doped. For the e−-e− scattering,34,39–42

antiparallel and parallel spins are taken into account by means
of the exchange effect.39,41

Interface roughness is due to the monolayer fluctuations that
are formed at the heterostructure interfaces. Scattering can oc-
cur from these imperfect growth surfaces, where the variations

in the barrier thicknesses gives way to variations in the energy
levels and wave functions of the subbands. The potential
for this interaction is taken to be VIR

∼= �(x||)∂Veff/∂x3,43–46

and we assume the roughness height �(x||) at the in-plane
position to have an exponential correlation function as given
by Ref. 43. In our calculations, we use typical values of � =
1 ML = a/2 and � = 5 nm for the roughness and cor-
relation lengths, respectively. The photon-induced scattering
rates are calculated using the electric dipole approximation
e−iq·x ∼ 1.42,47

B. Quantum dynamics

The density matrix method is implemented into the calcu-
lation as follows. By including only coherent transport and
dephasing, the density operator equation becomes (with units
of h̄ = c = 1) 22,23

∂ρij

∂t
=

∑
(−Lij,mn − T ′−1δimδjn)ρmn, (2)

where Lij,mn = Himδjn − H ∗
jnδim is the Liouville operator,

which is a tetradic matrix and T ′ is the dephasing time
used for all subbands. This equation is solved and used
to describe the time evolution coherence of the electron
ensemble without relaxation scattering. During the simulation,
relaxation scattering is handled in the usual Monte Carlo way,
but the particle ensembles are no longer integer particles as
they are in the case of an ensemble Monte Carlo simulation.
Scattering events where the initial state population is scattered
to a final state affect the diagonal elements as ρii,ki

→ 0 and
ρff,kf

→ |f 〉〈f |. The total dephasing time τdeph is related to the
relaxation scattering time τ and T ′ by τ−1

deph = 1/2τ−1 + T ′−1.
The factor of 1/2 comes from the fact that ρii ∝ |ρij |2.
In order to incorporate this 1/2 factor in calculating the
total dephasing time, when a scattering event occurs the
off-diagonal i 
= j elements are set to zero 50% of the time
ρij,ki

,ρji,ki
→ 0 during the simulation.22 Weighted averaging

and k-space bins are used to keep from having an unbounded
number of density matrices with different kf values that would
otherwise occur from these scattering events. A tight-binding
method is used to calculate the localized basis wave functions
and anticrossing gaps23 that are used in these calculations
for the confined states. Under this approximation k|| is
conserved.6

The optical gain is calculated from density matrices,
using the method outlined in Ref. 23. The contributions
from all of the states are included in the calculation. Some
previous density matrix analysis48,49 has ignored any upper-
most principally unused states and neglected the electron
distributions. At low temperatures, these simplifications may
sometimes be acceptable, as not much scattering to those states
may occur, and electron distribution effects often become
more pronounced at higher temperatures. However, at elevated
lattice temperatures these simplifications are no longer valid
due to the thermal nonequilibrium electron distributions.
Using the temperature-dependent lifetimes calculated from the
density matrix Monte Carlo method, the time evolution of the
density operator, including the coupling between the optical
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states, is solved23

∂ρij

∂t
=

∑
[−iL′

ij,mn + Wji − (Wji + Wi)δij ]ρmn, i = j

=
∑ {

−iL′
ij,mn −

[
1

2
(Wi + Wj ) + T ′−1

ij

]
δimδjn

}
ρmn,

i 
= j, (3)

where L′
ij,mn=H ′

imδjn−H ′∗
jnδim, H ′

ij=Hij + |e|xulE cos(ωt) ×
(δiuδjl + δilδju), xul = 〈l|x|u〉, u and l are the upper and
lower lasing state indexes respectively, Wi is the total
scattering rate out of state |i〉, Wji is the scattering rate
from |j 〉 → |i〉, and T ′

ij is the pure dephasing time between
states |i〉 and |j 〉. Here, we treat the coupling of the optical
states using the electric dipole interaction, by calculating the
response to a time-harmonic electric field perturbation of
the form E = E cos(ωt)

�
x . The optical states are coherently

coupled through this off-diagonal term, where the optical
field Rabi frequency is ul = |e|xulE/h̄. This approach allows
for the optical gain spectra to be calculated. The electrical
susceptibility χ = χ ′ + iχ ′′ can now be found from the
polarization P induced from the optical field E and is χ (ω) =
−2|e|xul/εVcE[ρul(ω) + ρlu(−ω)], where Vc is the volume of
the resonant cavity. The optical gain is then calculated from

g(ω) ∼= k

n2
r

χ ′′(ω) (4)

where k is the wave number and nr is the refractive index.
The spectra are found by solving the set of coupled first-order
differential equations with time-varying coefficients of Eq. (3).
In this manner, the density matrix Monte Carlo method along
with Eqs. (3) and (4) allows for the temperature-dependent
optical gain spectrum to be calculated. By calculating the
gain spectra using density matrices, no assumption about
the line shape is needed. This is useful, for instance, when
calculating multiple-peaked gain spectra observed in some QC
devices.48,49

The intensity of the optical field within the cavity is
taken into account by using the classical field intensity.11 The
temporal evolution is described for each mode by

I (t + �t) = I (t)e[�(ω)g(ω)−αm(ω)−αw(ω)]v�t , (5)

where � is the confinement factor, g(ω) is the optical gain, αm

is the mirror loss, αw is the waveguide loss, and v is the speed
of light in the medium. During the simulation g(ω) and the
optical field intensity within the cavity are updated. The photon
induced stimulated scattering rates are calculated using the
updated intensity from Eq. (5), as is the magnitude of optical
field E in Eq. (3). In this manner, the saturated optical gain
(which includes the optical field effects) is self-consistently
calculated clamped at the threshold gth = (αm + αw)/�.

Since leakage to the continuum is included in these
calculations using a quasibound state approach,29,30 the total
current density is found as follows. It consists of carrier
transport via the bound states within the wells and the carrier
transport via the continuum states. The carrier transport via the
bound states is calculated using the localized wave functions
within the density matrix formalism. We employ classical
transport analysis using the mobility of the electrons and the
steady state carrier density in the continuum to estimate the

FIG. 1. (Color online) (a) Conduction band diagram of the Ref. 50
QC structure, showing the localized wave functions, extended wave
function for state |4〉, and the quasibound continuum-like state
|5′〉 used in this analysis. The diagonal optical transition is from
|3〉 → |2〉 (�E3-2 ∼ 19 meV or 4.6 THz), and the lower lasing state
is depopulated via fast intrawell e−-LO phonon scattering where
�E2-1 ≈ h̄ωLO. (b) The effective electron temperature of the upper
and lower lasing states as a function of lattice temperature.

contribution from the continuum states. Thus, the total current
density J may be written as including two components, the
probability flux j from the density matrix incoherent transport
and the drift current ncont

3D μd |E| resulting from mobility of the
electrons in the continuum

J = |e| (j + ncont
3D μd |E|) , (6)

where ncont
3D is the population of free electrons in the continuum,

μd is the electron drift mobility, and |E| is the magnitude of
the applied electric field. With this approach, the effects of any
leakage channels on the current density are taken into account.

III. RESULTS AND DISCUSSION

In order to validate our approach for investigating electron
leakage in THz QC structures, we compare results with
experimentally measured data from a ∼4.6 THz two-well QC
structure.50 This device uses intrawell LO phonon scattering
for depopulation,51 and measured temperature-dependent data
is available. The QC structure along with the wave functions
used in our calculations is shown in Fig. 1(a). In this particular
structure, we model the upper most state |4〉 using an extended
wave function since it is close to the barrier height and not well
confined compared to the other states within the structure. At
elevated lattice temperatures, hot electrons in the upper lasing
state |3〉 (see Fig. 1(b) for the effective electron temperature)
can scatter into state |4〉 and leak out of the confining potential
to the continuum. To account for this leakage, the quasibound
continuum-like state29,30 |5′〉 is included. The |4〉 ↔ |5′〉
interaction is modeled with these extended wave functions.
The other states are more confined within the quantum well
barriers and are modeled using the usual density matrix
localized states. A phenomenological pure dephasing time of
0.5 psec is used in our calculations, which correspond to a
dephasing scattering line width of 2h̄/T ′ ≈ 2.6 meV prior
to lifetime broadening. This value for the pure dephasing
time is within the range of commonly accepted values,22,48,49

which are based on measured spontaneous emission line
widths.48,52,53
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FIG. 2. (Color online) Current density as a function of lattice
temperature calculated from the density matrix Monte Carlo method,
with and without leakage to the continuum included. The maximum
current density measured in CW mode as a function of heat sink
temperature is also shown. The heat sink temperature scale is set
such that, at 75 K, there is a �T = 45 K between the lattice and heat
sink temperatures. This �T estimate is based on the approximate
difference between the pulsed and CW maximum device operating
temperatures. At 10 K, a �T = 15 K has been set corresponding
to the temperature rise typically measured in QC devices. The total
net scattering flux from |3〉 → |4〉 and that due to the incoherent
transport between |2〉 → |4′〉 is shown, which illustrates the scattering
channels into |4〉 and hence the increasing leakage at elevated lattice
temperatures.

The device structure consists of 246 QC periods, yielding
an overall active region thickness of ∼8 μm. It was processed
into a metal-metal waveguide of 20 μm wide (A ∼ 160 μm2)
by 1.56 mm in length.50 Using the finite element method
(FEM),54 we calculate the facet reflectivity to be R = 0.76
and � = 0.93 at 4.6 THz. Because the applicability of the
Drude model for free carrier loss in multiple quantum wells
is highly questionable,55 there is uncertainty in calculating the
waveguide loss and hence the threshold using the FEM. The
threshold gain measured in Ref. 56 for a similar metal-metal
waveguide was reported to be gth = 36 ± 10 cm−1. Therefore,
we use the nominal measured value of gth = 36 cm−1 in our
calculations.

Shown in Fig. 2 is the calculated current density as a
function of lattice temperature found from the density matrix
Monte Carlo method, as well as the experimentally measured
current density as a function of the measured heat sink
temperature. A �T ∼ 45 K between the pulsed and CW
maximum device operating temperatures was measured,50

which indicates this is the approximate difference between the
lattice and heat sink temperatures. Therefore, the temperature
scales are set in Fig. 2 to reflect this difference at 75 K
heat sink temperature, and at 10 K a �T = 15 K has been
chosen, which is the temperature rise from the cryostat cold
finger we typically measure in our QC devices. It is seen in
Fig. 2 that the calculated current density is in reasonably good
agreement with the experimentally measured current density.
The increase in current density above ∼80 K is correctly

predicted when the electron leakage and the electron mobility
are included in the calculations, as done in these density matrix
Monte Carlo simulations where a temperature-independent
electron mobility of 8,500 cm2 V−1 sec−1 has been used. Also
shown is the current density solved without including leakage
(with only confined wave functions used in the analysis) as
has been done in all previous THz QC device studies. It
is seen that, without leakage taken into account, the sharp
rise in current density with increasing lattice temperature
is not correctly calculated. It is the electron mobility drift
current portion of the computation that is largely responsible
for correctly calculating this increase in current density. This
analysis not only quantitatively confirms the presence of hot
nonequilibrium electron leakage in this structure (something
previously qualitatively speculated50), but additionally reveals
a previously unidentified |2〉 → |4′〉 leakage channel to be
dominant. This can be seen from the computed total scattering
flux due to the net scattering between |3〉 → |4〉 and the
incoherent transport between |2〉 → |4′〉, as shown in Fig. 2. It
is seen that the |2〉 → |4′〉 channel dominates the filling of state
|4〉, and hence the continuum leakage via |4〉 → |5′〉 as well as
that from electrons with sufficient in-plane kinetic energy that
are unbound from the potential barrier En + Ek|| > Vb. This is
particularly evident at the lower cryogenic temperatures where
the scattering flux from |3〉 → |4〉 is negative, indicating more
back-scatter than forward scattering. The |3〉 → |4〉 scattering,
which directly affects the population inversion, becomes more
pronounced above ∼85 K when the LO phonon absorption
process becomes noticeably thermally active. Nevertheless,
the |2〉 → |4′〉 incoherent transport continues to dominate
and is over two times greater at 125 K. Without inclusion
of scattering to the quasibound state |5′〉 and taking into
account the drift current as well as the nonequilibrium electron
distributions, this increase in current density is not correctly
accounted. Because of the |2〉 → |4′〉 transport, when leakage
to the continuum is neglected in the calculations, the current
density is underestimated even at 25 K (see Fig. 2). Thus,
density matrix calculations which only include confined tight-
binding wave functions will not produce results consistent
with experiment in structures where appreciable leakage to
the continuum takes place, particularly at elevated lattice
temperatures.

The peak optical power is obtained from the mode intensity
inside the cavity as P = 1/2 IA(1 − R)/�, and computed
to be about 2 mW at a lattice temperature of 25 K and
at the reported peak emission frequency of 4.7 THz. The
uncorrected optical power reported in Ref. 50 is ∼0.5 mW
measured at a heat sink temperature of 10 K. The optical
power value we compute corresponds to a collection efficiency
of ∼25%, which is close to the collection efficiency others
have estimated.57 Now if the threshold gain is less than the
36 cm−1 value we used in our calculations, to be consistent
with experiment and predict the same measured peak optical
power would also require the collection efficiency to be
less. The computed current density would then also increase
slightly at 25 K, even without leakage taken into account. This
would possibly indicate the contribution computed from the
|2〉 → |4′〉 leakage channel could be slightly high. However,
we were not able to predict the sharp increase in the current
density with increasing lattice temperature without including
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FIG. 3. (Color online) Peak optical gain as a function of lattice
temperature calculated from the density matrix Monte Carlo method
and the peak device optical power measured in pulsed mode. A �T =
15 K between the lattice and heat sink temperature scales is set. Shown
in the inset is the corresponding calculated unsaturated temperature-
dependent optical gain spectra.

the leakage to the continuum and the electron mobility drift
current.

The computed optical power as a function of lattice
temperature, normalized to correct for the collection efficiency,
is shown in Fig. 3. The measured device optical power as a
function of heat sink temperature is also included. A �T =
15 K between the lattice and heat sink temperature scales is
chosen for this pulsed case. We find reasonable agreement
with the calculated optical power as a function of temperature
compared to that of the measured peak optical power curve.
The optical power is predicted to be slightly higher around
∼135 K. One explanation for this could be the difference
between the lattice and measured heat sink temperatures
at elevated lattice temperatures is likely higher than the

15 K value assumed in Fig. 3. Although the spontaneous
emission spectra were not reported as being measured for this
device, included inset in Fig. 3 is the calculated unsaturated
temperature-dependent optical gain spectra, where a line width
of �ν = 1.39 THz at 25 K is computed for this structure.

It should be noted that, while extended states were used
for the leakage analysis, localized states could also be used,
provided the quasibound state is localized over one QC period.
When this was done in our calculations, the results were nearly
the same. This is as expected due to the large ∼10 meV
anticrossing gap computed for the leakage coupling.

The results from using this method for including the
temperature-dependent electron leakage to the continuum,
incorporated into a density matrix Monte Carlo simulation,
were found to be consistent with experiment. This approach
is applicable for any QC structure, especially when the
nonequilibrium electron distributions may be leaking to the
continuum. This method is useful for identifying potential
leakage channels, particularly in new structures intended to op-
erate at elevated lattice temperatures. The limiting mechanisms
identified suggest not only leakage from the upper lasing state
should be minimized, but leakage from other states that may
not be intended to be used should also be minimized. These
types of thermally active leakage channels may not be easy to
identify without performing this type of analysis, especially
in new structures under study. Using density matrices to
calculate the temperature-dependent optical gain spectra may
also be useful for analyzing devices that may not have simple
Lorentzian temperature-dependent shaped gain spectra. Our
analysis shows the importance of including leakage and the
electron mobility, as well as incoherent transport, in the
calculations of THz QC structures. It also shows that including
only confined wave functions in the analysis is inadequate for
describing electron transport leakage.
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