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We study electronic structures at an interface between a topological insulator and a ferromagnetic insulator
by using a three-dimensional two-band model. In usual ferromagnetic insulators, the exchange potential is much
larger than the bulk gap size in the topological insulators and electronic structures are asymmetric with respect
to the Fermi level. In such situation, we show that unusual metallic states appear under the magnetic moment
pointing the perpendicular direction to the junction plane, which cannot be described by the two-dimensional
effective model around the Dirac point. When the magnetic moment is in the parallel direction to the plane, the
number of Dirac cones becomes even integers. The conclusions obtained in analytical calculations are confirmed

by numerical simulations on tight-binding lattice.
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I. INTRODUCTION

Physics of a metallic state on a surface of a three-
dimensional (3D) topological insulator (TI)!* is undoubtedly
a hot issue these days.”” Intrinsic phenomena originated from
the topological nature of the insulating state would open a
novel field of condensed matter physics. In particular, the
metallic surface state shows interesting features when the TI
is attached to another materials with gapped excitation spectra
such as superconductors®~'” and ferromagnetic insulators.'' =16
The existence of Majorana fermions has been discussed in
hybrid structures of such materials ®!!-17-19

The surface metallic state has a linear dispersion, so-called
two-dimensional Dirac cone. The upper and lower corners
touch at a point in Brillouin zone, so-called Dirac point. The
3D TI’s can be classified into the strong and week TI in terms
of the number of Dirac points."*?%?! Namely, the metallic
state is protected from the impurity scattering for odd number
Dirac cones,’*?? whereas it disappears for even number Dirac
cones. To discuss intrinsic phenomena of TIs, it is necessary
to tune the Fermi level near the Dirac point, which is possible
in experiments by chemical doping.***

At the interface of a TI and a ferromagnetic insulator (FI),
the metallic state is drastically modified depending on the
direction of magnetic moment.!! The metallic state becomes
insulating in the presence of magnetic moment perpendicular
to the interface plane. On the other hand, it remains metallic in
the presence of magnetic moment parallel to the interface.
The parallel magnetic moments only shift the Dirac point
from the I' point in the Brillouin zone to another points
there. Such conclusions have been obtained by analyzing
effective theoretical model around the Dirac point, where
the surface state is described by the two-dimensional Dirac
Hamiltonian under the small exchange potential due to the
magnetic moment. However it is unclear if these conclusions
are still valid or not in real TI/FI junctions because the
exchange potential of FI is much larger than the gap of TL.

In this paper, we study electronic states at the interface of
FI/TT junction by using three-dimensional two-band model.
We show that asymmetry of the band structure in FI with
respect to the Fermi level separates the dispersion of interface
state from bulk band in whole Brillouin zone. This suggests
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that the effective theory around the Dirac point is no longer
valid in real TI/FI junctions. A metallic interface state appears
even when the magnetic moment in FI is perpendicular to the
junction plane. When the magnetic moment in FI is parallel
to the interface plane, number of Dirac points should be
even number in whole Brillouin zone. In addition to large
asymmetry of band structure in FI, breaking down the time-
reversal symmetry and a basic feature of Brillouin zone also
play important roles in there electric properties of the interface
state. The conclusions obtained by analytical calculation are
confirmed by numerical simulation on three-dimensional two-
band tight-binding lattice. Obtained results would be important
not only in the basic physics but also in the view of potential
application.

This paper is organized as follows. In Sec. I, we summarize
electric property at a TI/FI junction interface based on the
effective Hamiltonian around the Dirac point. At the same
time, we discuss the limits of the effective theory. In Sec. III,
we analytically study effects of large band asymmetry and
large magnetic moment of FI on the interface electric states.
In Sec. IV, the conclusions based on the analytical results
are checked by the numerical simulation on three-dimensional
tight-binding model. The conclusion is given in Sec. V.

II. EFFECTIVE THEORY AROUND THE DIRAC POINT

We firstly summarize the features of the interface state
which have been discussed by using effective Hamiltonian
around the Dirac point in two dimensions.!® The effective
Hamiltonian in two dimensions is derived from the three-
dimensional electric states of a TI described by

[ A3 dk)-3
H= (d(k)-§ —AS ) )
A= Mo~ ) Boki’, &)

where M, and B,, for « = 1-3 are band parameters. The unit
matrix in spin space is denoted by §; and §,, for « = 1-3 are
the Pauli matrices. The spin-orbit coupling is symbolically
expressed by d(k), which satisfies

d(—k) = —d(k). 3)
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The surface state on the TI is approximately described by the
effective Hamiltonian in two dimensions:

hsur(kmky) =vrD-§— M, (4)

where v is the Fermi velocity. In what follows, we implicitly
consider Bi,Ses;.> However, the arguments below are valid
for all TI's. For Bi>Ses, it is shown that D = (—k,,k,).* The
Dirac pointis at (k,,k,) = (0,0), which we call A in this paper.
The dispersion relation becomes Ej = vp|k| — n. The spin
configuration on the Fermi surface is schematically illustrated
in Fig. 1(a), where we assume p > 0 and focus only on the
upper Dirac cone. The direction of spin and that of momentum
are locked to each other. Thus the spin direction flips abruptly
at Ao when we trace the electronic states along the line L
as shown in Fig. 1(b). Thus the Dirac point may be a kink
for the spin polarization on a line passing through it. This
fact limits the validity of the effective theory around the Dirac
point. Namely, it is impossible to extend the effective theory to
electric states in whole Brillouin zone. Let us trace electronic
states along the straight line between A = (7,0) and A =
(—m,0) in the upper Dirac cone. The states at A and that at
A'| must be identical to each other because the two points are
connected by a reciprocal vector. In other words, the topology
of the Brillouin zone is the same as that of two-dimensional
torus (72 = S' x S'). Although the energy of the two states
are equal to each other, the spin direction of the two states
are opposite to each other. In the effective theory, A; and A
characterize the different electronic states. In real TI’s, the
effective theory usually works well because electric states on
the Dirac cone is absorbed into the bulk energy bands before
| k| reaching at the zone boundary.

The interface state between a TI and a FI is also approx-
imately described by the effective Hamiltonian around the
Dirac point in two dimension:

hTIFI(kx»ky) = hsur(kx aky) +M-3 (5)

where M is the exchange potential in FI. Effects of the FI
on the interface state are considered only through M. It is
easy to show that the magnetic moment perpendicular to
the two-dimensional plane, M,, gives rise to a gap energy
at the Ag. The magnetic moment parallel to the interface
(M,,M,,0), on the other hand, shifts the Dirac point from
Agto (M, /vp, — M, /vF). In addition to this, the Fermi level
stays at the Dirac point even in the presence of (M, M,,0)."!
The conclusions obtained by analyzing Eq. (5) seem to be valid
for weak exchange potentials smaller than the gap size of TL.

(b) b ©
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However, the typical gap size in TI is 100 meV,*?%?” whereas

the gap of FI is of the order of eV.?®3! Thus the low-energy
electronic states around the gap of TI should be studied by
using more realistic theoretical model.

III. EFFECTS OF BAND ASYMMETRY AND LARGE
MAGNETIC MOMENT OF TI

Let us consider a TI in three dimension under the exchange
potential due to the magnetic moment in a FI. The Hamiltonian
reads

C( heo di) -5
i = <d(k) '3 —hofo ) ©)
ho = My — Bik? — By (k; + k). (7
d(k) = (Azky,Arky, Ark;), (3)

where My, A, As, By, and B, are material parameters.?® The
wave number in x, y, and z directions are denoted by k., k,,
and k, respectively. The Hamiltonian (6) is decomposed into
two parts:

H = Hy+ H', )]
_( (Mo — Bik?)5 Aik.$,
Ho = ( Ak, —(Mo—BiR)s ) 19

, —By (k2 4+ k2)So Ao(ky 3¢ + ky §y)
H = N N 2 2\ A (11)
Ax(ky 8y +ky 8y)  Bo(kZ+ ky)s()

To analyze interface electric state, we apply the transfor-
mation k, — ik in H,

l.Alezz

_ [ (Mo + Bik?)3o
Ho= < —(Mo+BlK2)§0>' (12)

iA]KfZ

In Fig. 1(c), schematic band structures of Europium chalco-
genides are illustrated. The band structures are generally
asymmetric with respect to the Fermi level in these materials,
which we consider through two parameters M; and M, with
M, # M, as shown in Fig. 1(c). The horizontal line shows the
Fermi energy of FI. The lowest band and the highest one are
spin splitted due to the exchange potential. We assume that
the middle bands are spin degenerate. We consider the large
asymmetry of the band structures through the the exchange
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FIG. 1. (Color online) (a) The spin configuration of the Fermi surface. (b) The spin configuration on the line L. (c) The schematic band
structure of a ferromagnetic insulator. The arrow in a band denotes spin direction and the horizontal line shows the Fermi energy.
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Hamiltonian
_ M5, + Mm~§0 0
H, = ( o O), (13)
M1=M+/'Lma MZZM_Mma (14)

where « indicates the direction of the magnetic moment in FI
and u,, represents the asymmetry in the band structure. In these
definition, M, = M, and M| # M, describe the symmetric
and asymmetric band structures, respectively. We assume that
the correction for Hamiltonian of surface state in TI has same
manner.

A. Perpendicular magnetic moment to plane

When the magnetic moment of FI is perpendicular to
the junction plane, the exchange Hamiltonian for the surface
sate is

M, 0 00

H, — 0 —-M, 0 O (15)
0 0 00
0 0 00

In usual FI's, a relation M; > M, holds. The Hamiltonian
Hy + H,, is decomposed into two 2 x 2 matrices whose
eigenvalues are E; = (M; — My)/2 with M, = M, + M, and
M, = —M, + M,. The eigenstates of can be expressed by

ai (k) 0
1 o _ | a2k2)
vl(Kl) - bl(Kl) s v2(K2) - 0 . (16)
0 ba(x2)
The coefficients a; and b; satisfy
a; iD,'IC
—=-—— ; (17
bi (M; + My)/2 — B1k?
where D; = A and D, = —A;. This Hamiltonian is equiva-

lent to that of the surface state of a TI facing to vacuum by
substituting (M; + M,)/2 by M.

The imaginary wave number Kii takes different forms
depending on the sign of M; + M. For M; + My > 0, k has
the similar form as it is in the TI/vacuum surface,

2B(M; + M,
11\/1—1(T+°) . (18)
1

oo AL
Y]

The eigenstate in this case can be described by

(Z) B (Diz/'Al )(Qﬂf fHCeY), (19

with C.. being arbitrary constants. For M; + M, < 0, the wave
number becomes

A 2B\(M; + M,
+_ Al \/1_ 1(M; + O)j:

Ki = 231 A12

1]. (20)

The eigenstate is given by

(Zl) _ C+<D,'l/.A1>e—Ki+z+C(_D;/Al)e_'("z. 1)
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For M, >0, M; + My > 0 always holds. Thus «; takes
Eq. (18). On the other hand, M; + M can be either positive
or negative even for M, > 0.

We first analyze weak exchange potential satisfying M, <
2M,. The wave function of in this case is

<Zl > = ( Di/.Al )[C;r exp(—xﬁz)+Ci_ exp(—«; 2)], (22)

l

with Cii being the normalization constant. For simplicity, in
what follows, we drop z dependence from the wave function.
There are only two independent wave function for M, < 2M,.
The surface state is a superposition of | and i, that are
defined by

1
_— - L[ 23
n=2li| =50 ] 0@
0 i
The total Hamiltonian Hy + H' 4+ H,, can be represented
in this basis of i; as

H = M, 0 + Hl/l H1/2
0 —M, Hy, Hy,
_ M, ivp(k, —iky)
= (—ivF(kx viky) My ) @B
Hj; = (YilH'|Y;) (25)
with vp = A,. The energy of the surface state is

_Ml—Mzi\/(Ml+M2)2
2 4

E + vp2k? (26)

with k = \/k,> +ky2. For weak exchange potential M, <

2M,, the exchange potential in the z direction causes the
gap, which is consistent with the previous theories.!! The
asymmetry of the band structures gives a constant energy shift
to the dispersion relation.

Next, we consider strong exchange potential satisfying
M, > 2M,. In this case, the straightforward calculation of
the eigenfunction at the I' point results in

0

1 —
¢1=— s W2=— s ¢3:E 01

1
1 {o 1
V21

0

-~ O = o

For convenience, we employ another basis as follows:
0 0

/ 1 / 0
w1 = = ol W3 = DR (28)
0 1

1
I|o
. v =
V2| 2
0
The total Hamiltonian Hy + H' + H,, in this representation
reads

M, —ivp(ky — iky) vpky —iky)
H = | ivp(ky +iky) —M, — Bok? 0 . (29)
vp(ky + iky) 0 —M;, + Byk?
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with vy = A,/+/2. The energy dispersion can be derived from
the eigenequation

X7 —2Mx* — (Bo’k* 4+ 2vp%k)x + 2M B’k =0, (30)

with x = E + M,. At the vicinity of " point, x(k) is approxi-
mately given by

x(k) = ag 4+ a1k + ark*. 31)

Here, ay can be obtained easily by putting £ = 0. We obtain
two values:

ap =0, 2M. (32)

For ay = 0, a; can be derived by putting the coefficients of k*
and k% terms in Eq. (30) to be zero. Since M > My, a; and a,
have simple expression

2 4
13 VF
=———4 B, /1 33
a oy Ty 1+ B2 (33)
2
~_ Y 1B (34)
- 2M 2’
~ UF2
a) X~ :FWBZ (35)
Then the energy dispersions are approximately given by
E(k) = —M, + Bok> VF p g (36)
= 2 27 F a2 0
In the same way, we also obtain
2 4
E(k) = My + 22 — 25 _p4, (37)

M 2M3

for ag = 2M. For both ay = 0 and 2M, the coefficient of k>
and that of k* have opposite sign to each other. In addition, we
can also predict that two minima of the dispersion go across the
Fermi level and the interface becomes metallic for M > 2M,.

B. Parallel magnetic moment to plane

When the magnetic moment of FI is parallel to the junction
plane, the Hamiltonian of the surface sate at I point is Hy +

H,, with
MS, + pumSo O
H, = . 38
("5 0) (38)

Here, we assume that the magnetic moment is in the x
direction. This does not loose the generality of argument below
because the Hamiltonian is rotationally invariant in momentum
space. Applying a unitary transformation, we obtain

U'(Hy + H,)U

:<(M0+B1/<2)§0+M —iAKsy ) (39)

—IAKSy —(My + B|K2)§0
A M, 0
M=<o _Mz), (40)
with
(B0 — i8,)//2 0
U= ’ . 41
( 0 G0 — z'sy)/ﬁ) @b
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The eigenvectors can be expressed by

a (k) 0
| 0 _ | @)
¢1 - 0 s w2 bz(l() (42)
b1 (IC) 0
The elements satisfy
ai 1Ak @3)

b,‘ B Ml‘ -|-Bll{27

where M, = My + M and M, = My — M. The eigenvalues
and eigenvectors can be calculated in the same way with the
previous section.

When the exchange potential is weak M, < 2M,, the
eigenvectors are the eigenvalues E; are

g =M o b (44)
1 = 2 ’ 2 = 2 .
Corresponding vectors are given by
-1 0
1 0 1 [ -1
i

The total Hamiltonian H = Hy, + UTH’U becomes

M, — M — 4
g 2 50 (M. vrk,
ivpk,

—iUFkX
—M + kay)’ (46)

where vy = A, and 2M = M, + M,. The energy dispersion
is given by

£ M, — M, " 2 5
= S bk G — MJupR. (47)
The Dirac point moves from the I" point to (0, M), which is
consistent with the effective theory in around the Dirac point.
The asymmetry of the band structures, however, shifts the
Fermi level from the Dirac point.

When the exchange potential is sufficiently large satisfying
M, > 2M,, the basis of the surface state becomes

—1 0 0
1 0 1 0

wl = E 0 s I//2 = ol 1//3 = 11 (48)
i 0 0

The total Hamiltonian H = Hy + H' + H,, in this basis
results in

Ml _UFky _ikax/ﬁ _UFkx/\/z
ivpke /N2 —My + Bok>  ivpk, ., (49)
—vpk, /N2 —M, — Bk?

with vy = A,.

By analyzing Eq. (49) in detail, we can conclude that (a)
there are two Dirac cones in the whole Brillouin zone, (b) the
asymmetry of band structure in FI with respect to the Fermi
level may causes the separation of the interface state from the
bulk band, and (c) three branches of surface states appear in
the gap of TI. These conclusions can be confirmed in a simple
case where we consider the dispersion relation along a line
satisfying k, = 0. Atk, = 0, three dispersion branches appear

H =

—l.UFky

195325-4
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FIG. 2. (Color online) (a) The simple Brillouin zone and its TRI points A;. In this figure, A, and A} are same TRI points under translational
operation of a reciprocal lattice vector. (b) The spin configuration on the line L with a single Dirac points is illustrated. (c) In the parallel

magnetic moment case, the positions of two Dirac corns are shown.

at the interface

E1 = M] — vpky, (50)

Ey = —M> — vrky /1 + (B2? /vp?)k2, (51
E3 = —Ms + vpky /1 + (B /vp)k2. (52)

Near the I" point, two branches E; and E; are almost parallel to
each other. The remaining branch E3 goes across E; and E;.

Therefore there are two Dirac points. For k; =ky — (M +
M,)/2vF, Egs. (50) and (52) can be represented by
M, — M, ,
E = — + vk, (53)

where higher order terms for k* in Eq (52) are ignored. The
first term implies a asymmetry of the band structure of FI.
Another Dirac point is obtained by Egs. (51) and (52) in the
same way:

E = —M, + vpk,, (54)

where higher order terms for k3 in Eqgs. (51) and (52) are
ignored. The schematic illustration for positions of two Dirac
points is shown in Fig. 2(c).

As we have discussed above, the asymmetry of band
structure in FI removes the dispersion of the interface state
from the bulk band. This causes more drastic modification of
interface state in the presence of magnetic moment parallel
to the interface plane. When M = (M,,0,0), the magnetic
moment shifts the Dirac point from A in the Brillouin zone
to a point D as shown in Fig. 2(a). Let us consider the spin
configuration along a line that satisfies D | M (Eq. (4) and
passes through the Dirac point D. For M = (M,,0,0), the line
corresponds to the straight line L connecting A, and A} as
shown in Fig. 2(a). We note two key features of spin direction
along the line: (i) A, and A, are identical point to each other
and (ii) the spin direction flips at D. If the number of the
Dirac point is one, spin direction at A, and A} would be
opposite to each other. This statement, however, contradict
to (i). Therefore the number of Dirac point must be an even
integer on A, — Aj. Since D is a Dirac point, at least one extra
Dirac point is necessary on A, — A} [see Fig. 2(b)].

This conclusion above can be obtained in more general
argument. The Dirac point can be regarded as the magnetic
monopole in the momentum space. The Gauss integration in

the first Brillouin zone becomes finite in the presence of the sin-
gle monopole. This integration should coincide with the path
integration of D(k) along the zone boundary. However, the
integration along the boundary vanishes be cause of the relation
D(—k) = —D(k). Thus there must be extra monopoles in the
Brillouin zone. According to this argument, the number of
the Dirac points must be even number in the Brillouin zone. In
Eq. (§2), two Dirac points are expected in the present situation.
The conclusions obtained by the analytical calculation are
confirmed by numerical simulation in the next section.

IV. NUMERICAL RESULTS IN 3D

Let us consider a junction of TI and FI on three-dimensional
tight-binding lattice as shown in Fig. 3(a). We describe the TI
by using the two-band model as

it étiSo A -8 Cr.ji
Hr = ZZ[C/” 1Ck,j' 2 |:A .3 —ETI§0:| |:Ek,j,2i|’ (55
& jo = [C"*”*T } : (56)

&r1 = [Mo — 2by + 2b; cos(kya) + 2b; cos(kya)
—4by — pr1ld; j + b1(8) 1 + 85 -1),  (57)

A = [ack,d; j,a0kyb; ;j, —iai(8; y11—8; 7-1)], (58)

where c,T( s (ck,jv,s) 1s the creation (annihilation) operator

of an electron with spin s, belonging to the band v = 1-2,

(a) (b)
TI FI t

- oM E

HFET

FIG. 3. (Color online) (a) TI/FI junction on the three-dimensional
tight-binding lattice. The interface is at j = 0. (b) The schematic band
structure of a FI. The arrow in a band denotes spin direction and the
horizontal line labeled by € is the Fermi energy.
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M =5M,
ppp = —Mp/2

05 1

403 05 0
ky [ /a)
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M =2M,
ppy = —Mo/2
407

05 05 i

0
ky [m/a]

FIG. 4. (Color online) The global pictures of band structures are showed for a perpendicular (a) and a parallel (b) magnetic moments.

having two-dimensional wave vector k = (ky,k,), and at a
lattice site j < O in the z direction. We used the periodic
boundary condition in the xy plane.

In the same way, we describe the FI by

~T ~F
Hyp = Z Z[Ck,j’,l’ck,j’,z]
ik

for j > 0. At the interface (j = 0), TI and FI are connected
by

_NTpat A
Hp = Z[Ck,o,vck,o,z]
k

5 [@, + E1/2)
A -§

Jan]

28 = Mo — 2by + 2(by + t) cos(k,) + 2(by + t) cos(ky)
—4by — 8t — w1 — K, (62)
24" = (asky,azky,0). (63)

A -§
(=& + E»/2)S0+ M - §/2

(61)

(b) M =5M,

pry = My/2

= —Mo/2

« (& + E1So 0 Cr,j1
0 (=ém+E)So+M -5 || Ejo2|’
(59
&rr = [21 cos(ky) + 2t cos(ky) — 8t — urrld;, jr
+1(8j, 41 +6;,-1), (60)
15 .
(a) pp = —Mp/2 M = 5My —
1} M =2My—
0.5} .
;é o i|lll Iv !I'I
53] III 3 I'.
-0.5¢ | I;
II i I !|
At f |
f |
k) 05 05
15 .
(© M = 21,
1 .
05} Y
=
= o
05 '
24k /
155 05 : 05

ky [r/a)

o

(d) M=2M,

ppp = Mp/2
ppy = —My/2

ky [7/a]

0.5

FIG. 5. (Color online) The band structures of TI/FI junction with a perpendicular (a) and (b) and parallel (c) and (d) magnetic moment are
plotted of the energy E vs the wave vector k,. The optical gap of FI is locked in 2M in (a) and (c). The magnitude of a magnetic moment of
FI is 2M, and 5M,. There are the surface band separated from the bulk band structure. The effect by shifting the Fermi energy in the optical

gap is plotted in (b) and (d).
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M = 2M,
1 ~ e = —My/2
05
s
=, o
=
05 0.1
0 k.lr/a
-0.1 zlm/a)

0
ky [7/a]

FIG. 6. The dispersion of the interface states in TI/FI junction
with magnetic moment parallel to the interface are plotted in two-
dimensional Brillouin zone. To show two Dirac point clearly, &, is
restricted within [—107'7/a,10 ' /a].

The hard-wall boundary condition along with z axis is
employed. The parameters in this calculation take values
of BiZSe3: a) = 7.86M0/a, a) = 14.6M0/(1, b] =3.57 x
10My/a?, and b, = 2.02 x 10°My/a? in TI side.?® The lattice
constant ¢ is about 5 A. In FI, we assume bg; = 1072b; and
E| = —E;, = —M /2. The total lattice size in the z direction
is 200 sites, where TI and FI occupy 150 and 50 sites,
respectively. A schematic band picture of a FI is shown
in Fig. 3(b). Electronic structure becomes asymmetric with
respect to the Fermi level.

We first show the dispersion relations of the interface states
rather large energy range for magnetic moment perpendicular
to the interface [see Fig. 4(a)] and for magnetic moment
parallel to the interface [see Fig. 4(b)], where the dispersion
is calculated along k, = 0, upr = —My/2, M = 5M, in (a)
and M = 2M, in (b). The wave function of the interface states
behaves like e/ for j < 0 in TI with jj being the inverse of
localizing length. In the figures, we also show the bulk band in
TI. As we discussed in Sec. III, the upper dispersion in (a) is
clearly separated from the bulk band of TI in whole Brillouin
zone because of the band asymmetry in FI. The dispersions
of the interface states for the magnetic moment parallel to the
interface have rather complicated structure as shown in (b). We
note that upper dispersion branch is well separated from the
bulk band for |k, | > 0.3. We zoom up the dispersion relations
near the I" point and discuss their features in the next figures.

In Fig. 5(a), we show the dispersion relation of the interface
states along k, = 0 for the magnetic moment perpendicular to
the interface. Here, we assume pup; = —Mj/2 and show the
results for M = 2M, and 5M,. When the magnetic moment
is relatively small at M = 2M, the Dirac cone disappears as
predicted by the effective theory around the Dirac point. When

PHYSICAL REVIEW B 85, 195325 (2012)

we increase the exchange potential at M = 5M,, however, the
dispersion of the interface state behaves like €, ~ g — ark? +
ask®. As aresult, the interface states become metallic. Features
of the metallic also depends on the Fermi level in the FI. The
dispersion relation in Fig. 5(b) show that the number of Fermi
surface is one for up; = My /2, whereas for upr = —My/2 two
Fermi surface appears. These numerical results are consistent
with analytical ones in Sec. III.

Next, we look into the interface states at TI/FI junction in
the presence of the magnetic moment parallel to the junction
plane. Figure 5(c) shows the dispersion relation along k, =
0 for M || x, where gy =0 and M = 2M,. There are two
Dirac cones in the Brillouin zone, which is consistent with
the argument in Sec. III. In Fig. 5(d), we show the results
at M = 2M, for upr = —My/2 and M, /2. The characteristic
features of the interface states are insensitive to parameters
such as g and M. Finally, we show the energy dispersion for
urpr = —My/2 and M = 2M, in two-dimensional Brillouin
zone in Fig. 6(a). In this figure, it is clear that there are two
Dirac points in two-dimensional Brillouin zone.

V. CONCLUSION

In this paper, we have studied electronic properties of
interface state between a topological insulator (TI) and a
ferromagnetic insulator (FI) by using two-band model in
three-dimension in both analytically and numerically. The
energy gap of FI is usually much larger than that of TI and
the band structures in FI is asymmetric with respect to its
Fermi level. The dispersion branches of the interface state are
separated from the bulk band in whole Brillouin zone due to the
asymmetry of the band structures. When the magnetic moment
is in the perpendicular direction to the interface plane, the
interface states become metallic. The number of Fermi surfaces
of such interface states depends on the material parameters.
When the magnetic moment is in the parallel direction to the
interface plane, metallic states always appear irrespective of
the amplitude of the exchange potential. The number of the
Dirac point becomes even integers in whole Brillouin zone.
Such drastic effects of the magnetic moment on interface states
obtained in analytical calculation have been confirmed by the
numerical simulation on the tight-binding lattice.
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