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Excitation of spin waves in ferromagnetic (Ga,Mn)As layers by picosecond strain pulses
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We report the excitation of spin waves in ferromagnetic semiconductor (Ga,Mn)As films by picosecond strain
pulses. The strain pulse with a broad acoustic spectrum excites a number of magnon modes, which contribute
to the precession of magnetization. The spectrum of the excited spin waves shows two well-resolved peaks with
intensities dependent on the applied magnetic field. For a certain range of magnetic fields only the low-frequency
spin wave is detected. We present the theoretical analysis and compare it with the experimental results, addressing
the spatial overlap of the magnon and phonon eigenfunctions. Depending on the boundary conditions and the
spectrum of the spin waves the spatial matching of the spin wave and resonance phonon eigenfunctions may
provide high excitation efficiency for only one magnon mode, while other modes are not excited.
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I. INTRODUCTION

The enormous success of semiconductors is based on the
possibility to tailor their electrical and optical properties
almost arbitrarily. This has stimulated activities to seek
such a level of control also for their magnetic properties
which might allow all-in-one-chip solutions in information
technology. Ferromagnetic semiconductors, on whose basis
ultrafast magnetoelectronic and magneto-optical devices1 may
become operational, are a key building block on this route.
While great progress has already been achieved in this area,
considerable obstacles still need to be overcome. This concerns
not only the development of highest quality material, but
also novel tools, distinctly different from established ones,
for manipulating and controlling the magnetization may be
required.

An example of such a novel concept is the recent demon-
stration that the interaction between spin waves (SWs) may
be used for spin current control.2 During the last decade, the
underlying magnon excitations with frequencies in the giga-
hertz range have been intensively studied experimentally and
theoretically for ferromagnetic (Ga,Mn)As.3–8 These activities
were focused on thin ferromagnetic films in which SWs have
a discrete frequency spectrum determined by parameters such
as magnetocrystalline anisotropy, spin exchange interaction,
layer thickness and boundary conditions. For SW applications,
it is essential to control the amplitude of various SW modes.
In particular, it is attractive to have a technique that allows
selective excitation of a single SW mode with particular fre-
quency/wavelength while all other modes have zero amplitude.
The most common technique to achieve this is microwave
excitation at a frequency resonant with the SW mode.2–4,6–8

While nicely functioning, microwave manipulation is limited
to nanosecond time scales and cannot be scaled down to
submicrometer spatial dimensions. Optical excitation of SWs
has also been demonstrated, but this excitation does not show
a dependence of the SW amplitudes on magnetic field and thus
it is not frequency selective.5

In this paper, we demonstrate an approach to excite SW
modes in a ferromagnetic layer using picosecond strain pulses
with a broad acoustic phonon spectrum that overlaps the SW
frequencies. Using this picosecond acoustic technique, which
is a well developed method by now, we excite various SW
modes and find that their relative amplitudes depend on the
applied magnetic field. We analyze the excitation of SWs
theoretically and attribute the experimental observation to the
spatial overlap of the SW mode and the resonant component in
the phonon spectrum. A theoretical picture reveals the strong
sensitivity of this type of excitation to magnetic boundary
conditions and SW frequency. The goal of the present work is
to show that despite of all complications reliable conditions for
single SW mode excitation can be obtained in the experiment.

II. EXPERIMENT

The studied sample is a single Ga0.95Mn0.05As layer with
thickness d = 200 nm grown by low-temperature molecular-
beam epitaxy on top of a semi-insulating (001) GaAs substrate.
The Curie temperature of the ferromagnetic layer is 60 K
and the saturation magnetization is 20 emu/cm3. The layer is
compressively strained normal to the growth direction leading
to an in-plane orientation of the easy axis of magnetization.

Figure 1(a) shows the schematic of the experiment, which
was carried out at temperature T = 6 K in a cryostat with
a superconducting magnet. The external magnetic field B is
applied in the layer plane parallel to the easy axis, denoted
as x axis. For picosecond strain pulse generation,9 optical
pulses from a femtosecond laser (wavelength 800 nm, pulse
duration 150 fs, pulse energy density 2 mJ/cm2, repetition rate
100 kHz) excite a 100-nm thick Al film deposited on the back
side of the GaAs substrate. The strain pulse injected into the
GaAs substrate has a duration of ∼20 ps with a maximum
amplitude ∼1 × 10−4. Figures 1(b) and 1(c) show the time
dependence and the corresponding frequency spectrum of the
injected strain pulse εin(t) respectively. The pulse propagates
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FIG. 1. (Color online) (a) The schematic of experiment with
picosecond strain pulses. (b) Time profile of the strain pulse, εin(t),
injected into the GaAs substrate. (c) Fourier spectrum of the strain
pulse; the inset shows the spectral part corresponding to the range of
magnetization precession frequencies experimentally observed.

normal to the layer through the GaAs substrate (along the
z axis) at longitudinal sound velocity s = 4.8 km/s, and
after t0 = l0/s ≈ 22 ns reaches the (Ga,Mn)As magnetic layer
(l0 = 105 μm is the GaAs substrate thickness). There it passes
through the layer, becomes reflected at the open sample surface
with a π -phase shift, and travels back towards the GaAs
substrate. At T = 6 K for the initial strain amplitude of ∼10−4,
scattering as well as nonlinear effects are insignificant10 and
we may assume that the strain pulse propagates in the sample
keeping its initial shape and spectral content.

While propagating through the (Ga,Mn)As layer, the
strain pulse modifies the magneto-crystalline anisotropy at
each spatial (z) position as a function of time (t), causing
the magnetization M to be turned out of the equilibrium
orientation, which is approximately parallel to the [100] axis.
The magnitude of this turn and the corresponding tilt angle
were discussed in earlier works.11,12 After the strain pulse has
left the magnetic film, the subsequent dynamics of M(z,t)
shows harmonic oscillations of the Mz and My components.

The effect on the magnetization dynamics induced by the
strain pulse is measured by monitoring the Kerr rotation angle
φ(t) as function of the delay of a probe laser pulse relative to the
pump pulse, both taken from the same laser. The pump beam is
modulated by a mechanical chopper, and �φ(t) = φ(t) − φ0

is recorded (φ0 being the Kerr rotation angle without strain
pulses). Examples of the signals �φ(t) measured at B = 100
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FIG. 2. (Color online) (a) and (b) Kerr rotation signals measured
for various polarizations of the probe beam at applied magnetic fields
of B = 100 mT (a) and 250 mT (b); the horizontal bars indicate
the time intervals during which the strain pulse is present inside
the film. (c) and (d) Temporal evolutions of the mean magnetization
projections Mz(t) and My(t) for the same B as in (a) and (b), obtained
from the measured Kerr rotation signals using Eq. (1).

and 250 mT for three different polarization settings of the probe
beam are shown in Figs. 2(a) and 2(b). Different temporal
regimes are seen for the oscillatory behavior of �φ(t). The
high-frequency features in the interval t < 0.1 ns result mainly
from elastooptical effects, as described in detail in the recent
work by Thevenard et al.13 For times t > 0.1 ns, i.e., after
the strain pulse has left the (Ga,Mn)As layer, the oscillations
correspond exclusively to magnetization precession. In the
experimentally used geometry for which the direction of M0

is close to the [100] axis, the evolution of �φ(t) depends on
the angle between the probe polarization plane and the [100]
direction, ψ , and may be written as

�φ(t) = aMz(t) + bMy(t) cos 2ψ + c(t) sin 2ψ. (1)

The first two terms in Eq. (1) give the dynamics of the layer
magnetization, which in general evolve spatially nonuniform.
Here, a and b are constants and Mz,y(t) are determined by the
spatial distributions of the magnetization and the probe light
field inside the magnetic layer. In case of no light absorption
and no reflection at the (Ga,Mn)As/GaAs interface, we
have Mz(t) = 1

d

∫ d

0 Mz(z,t) cos[2kph(z − d)]dz and My(t) =
1
d

∫ d

0 My(z,t) sin[2kph(z − d)]dz, where the magnetic layer is
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located at 0 < z < d and kph is the photon wave number in
the layer. The contributions of the z and y magnetization
components to the rotation of probe polarization are due to the
magnetooptical anisotropy and are governed by the circular14

and giant linear15 dichroism in (Ga,Mn)As, respectively. The
third term in Eq. (1) describes the dynamical photoelastic
perturbation induced by the strain pulse in the presence of
a static magnetooptical anisotropy of the magnetic layer.13

The constants a, b, and the dependence c(t) are not known
with high precision. Nevertheless, Eq. (1) allows us to extract
Mz(t) and My(t) from measurements of �φ(t) for three
different probe beam polarizations e: e.g., for e‖M0, e⊥M0,
and e � M0 with an angle of 45◦ between e and M0. The
resulting evolutions of Mz(t) and My(t) for the two B values
from above are shown in Figs. 2(c) and 2(d). Figure 3(a)
shows fast Fourier transform spectra of Mz(t) for different
B. The spectra obtained from My(t) look similar. Generally,
two spectral lines are seen whose central frequencies, fl and
fh, shift smoothly to higher values with increasing B, while
the spacing �f = fh − fl ≈ 2 GHz between them remains
almost constant, see Fig. 3(b). The solid line in Fig. 3(b) shows
the calculated magnetic field dependence16 of the spatially
uniform magnetization precession frequency, which correlates
well with that of fl , supporting the origin of the observed
signal in the magnetization precession. The amplitudes of
the two spectral lines vary with magnetic field. The most
interesting feature in this respect is that at fields around
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FIG. 3. (Color online) (a) Amplitude spectra, obtained by FFT of
the temporal curves in a 2-ns time window for the z projection of
the magnetization at different applied magnetic fields, indicated at
each curve. The B values for which only low frequency SW mode
is detected are highlighted. (b) Central frequencies of the excited
SW modes as functions of B. The solid line shows the calculated
frequency of the spatially uniform magnetization precession. The
magnetic anisotropy parameters were chosen close to those derived
for a similar sample (see Ref. 16). (c) Magnetic field dependencies
of the peak intensities of the low- and high-frequency SW modes.
The arrows in (b) and (c) indicate the frequency and magnetic field
around which single spectral line is observed.

B = B0 = 225 ± 25 mT, only a single line corresponding
to the lower frequency component is observed. This is also
demonstrated by Fig. 3(c), which shows the peak intensities of
the low- and high-frequency spectral lines versus B. Both vary
nonmonotonically with B, and the high-frequency spectral line
disappears around B = B0, while the low frequency one is still
present. The dependence of the spectrum on magnetic field is
the main experimental observation of the present work. Earlier
work5 in which SWs were excited optically, also demonstrated
a doublet of lines in the SW spectrum, but the amplitudes
of the peaks did not depend on B. Thus the present tool
using picosecond strain pulses may represent an exceptional
instrument for controlled SW excitation.

III. THEORETICAL ANALYSIS AND DISCUSSION

The physics underlying SW excitation is related to the spin-
phonon interaction in ferromagnetic materials, as discussed
in literature.17 In bulk materials, energy and momentum
conservation for the spin-phonon interaction result in strict
selection rules for the SW excitation or, in case of strong
coupling, for excitation of hybrid magnon-phonon modes.
In thin films, momentum conservation is relaxed so that a
monochromatic acoustic wave may excite a resonant standing
SW independent of its wavelength.18 In our experiments, the
ultrashort strain pulse corresponds to an acoustic phonon wave
packet that contains a broad distribution of frequencies, so
that the excitation cannot be considered as monochromatic.
Nevertheless, we show below that a strain pulse, propagating
through the layer in forward and, subsequently, in backward
direction, excites SW modes whose amplitudes are strongly
dependent on the SW frequency and thus on B. Moreover, for
certain conditions, only a single SW mode may be excited by
the strain pulse. For this purpose, we analyze the magnetization
dynamics by the Landau-Lifshitz equation19:

∂M
∂t

= −γ M ×
(

−∇MF + D

M0
∇2M

)
, (2)

where γ , F , D, and M0, are the gyromagnetic ratio, the
magnetic free energy density, the exchange stiffness constant,
and the magnetization magnitude, respectively. F contains
contributions determined by the magnetic layer properties
and the applied magnetic field. In addition to the case of an
unstrained crystal, F contains also magnetoelastic terms for
biaxially strained (Ga,Mn)As.20

The strain pulse propagation through the magnetic layer
causes a variation of F in time, t , and space, z, resulting in a
complicated trajectory of M. When the strain pulse leaves the
magnetic layer, M continues to precess about its equilibrium
position while relaxing towards M0 [note that relaxation is not
included in Eq. (2)]. During this precession, the asymptotic
solutions of the magnetization components Mi can be obtained
in linear approximation in which the deviation from steady-
state δM(z,t) = M(z,t) − M0 is written as a superposition of
standing SW eigenmodes S

(n)
i (z):

δMi(z,t) =
∞∑

n=0

C(n)S
(n)
i (z) cos

(
ωnt + α

(n)
i

)
, (3)
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where the C(n) and α
(n)
i are the stationary amplitude and phase

of the nth mode with frequency ωn (n= 0, 1, 2,. . .). Calculation
of the mode amplitudes C(n) shows that they are proportional
to the overlap integrals:

C(n) ∼
∫ d

0
ε(n)(z)S(n)

i (z)dz, (4)

where ε(n)(z) is the spatial distribution of the strain pulse
Fourier component with phonon frequency identical to that
of the SW, ωn, in the magnetic layer (see Appendix).

In order to evaluate the overlap integral Eq. (4), we need
to know ε(n)(z) and S

(n)
i (z). The properties of the propagating

spatial strain pulse were studied in numerous works experi-
mentally and theoretically using various approaches (see, for
example, Refs. 21 and 22). It is known that the shape of the
strain pulse injected into the substrate is similar to that shown in
Fig. 1(b). For strain amplitudes �10−4 and low temperatures
(T < 100 K), the damping is not essential and the spatial
profile of the initial strain pulse is approximately conserved
while travelling through the substrate. Thus, at any coordinate,
the time evolution of the strain induced by the initial strain
pulse εin(t) traveling toward the open surface of the sample is
ε(z,t) = εin(t − z/s). In the frequency range between 8 and
20 GHz, relevant for our case, the Fourier spectrum of the
strain pulse is a smooth function of frequency [see the inset in
Fig. 1(c)]. It is important that the z dependence of the strain
harmonics ε(n)(z) is governed by the properties of the acoustic
wave reflection from the free surface at z = d, namely, by the
requirement of zero stress at surface of the sample. Neglecting
nonlinearity and dispersion during pulse propagation through
the magnetic film, we can express the strain as a superposition
of the incident and the reflected components: ε(z,t) = εin(t −
z/s) − εin[t + (z − 2d)/s]. Accordingly, we get

ε(n)(z) = 2i exp(iωnd/s)ε(ωn)
in sin[ωn(z − d)/s], (5)

where ε(ωn)
in is the spectral amplitude of the initial strain pulse

at frequency ωn. The z-dependent factor sin[ωn(z − d)/s] is
the key feature which, as we will see below, determines the
efficiency of excitation of a certain SW mode. This factor is
independent of the particular shape of the strain pulse, which
enters the expression for ε(n)(z) only through the spectral
amplitude.

A. The role of magnetic boundary conditions

The SW eigenmodes S
(n)
i (z) and their frequency spectrum

depend on the magnetic boundary conditions. These conditions
have major impact on the analysis of the SW amplitudes
governed by the overlap integral in Eq. (4). In this section,
we present the results of model calculations of SW amplitudes
for various boundary conditions. The aim of this consideration
is to show that the SW amplitudes are strongly dependent on
the magnetic field due to the dependence of the overlap integral
Eq. (4) on the resonance frequency, and for certain conditions
only one SW mode may be excited.

Within the macroscopic Landau-Lifshitz approach, the
boundary conditions can be introduced through the surface
magnetic energyFsurf . Most commonly, it is assumed that

Fsurf = Ks cos2 θ (where θ is the angle between M at the
surface and the normal to the surface n). The surface magnetic
energy parameter Ks depends on the surface easy axis, that can
be oriented either normal (Ks < 0) or parallel to the surface
(Ks > 0). Then the boundary conditions can be written as
M × (D ∂M

∂n + 2nKs cos θ ) = 0.23

For (Ga,Mn)As, the magnetic boundary condition param-
eters have been discussed intensively during the last decade
but the problem is still unsolved.3–8 Three extreme cases were
reported earlier for (GaMn)As with M0 close to [100]:5,6 (i)
extremely high values of Ks > 0, almost equivalent to the
pinning boundary conditions Mz,y = 0; (ii) Ks = 0, which
corresponds to a “free surface” with ∂Mx,y

∂z
= 0; and (iii)

Ks < 0, where typically surface- and bulklike modes exist
in the SW spectrum.

First, we analyze the amplitudes of the SWs assuming
the pinning conditions at the interfaces (Ks > 0). For homo-
geneous magnetic properties of the film, one easily obtains
S

(n)
i ∼ sin[π (n + 1)z/d] (see Ref. 24) and from Eqs. (4) and

(5) for the amplitude of nth SW mode we can write

C(n) ∼ (n + 1) sin πxn

x2
n − (n + 1)2

, (6)

where xn = ωnd/(πs).
For simplicity, we consider the frequency spacing between

different modes to be much less than the fundamental fre-
quency ω0. Then the ε(n)(z) are almost the same for all SW
eigenmodes and we may assume ε(n)(z) = ε(0)(z) for any mode
number, n. The results of calculation for this simplified case
are presented in Fig. 4. The solid lines in Fig. 4(a) show the
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FIG. 4. (Color online) (a) Spin wave eigenfunctions (solid lines)
of the four lowest modes calculated for pinning boundary conditions
(Ks > 0). The dotted line shows the spatial dependence of the Fourier
component of the acoustic wave packet in the strain pulse with
frequency ω0, which corresponds to the condition ω0d/πs = 1 and
is equal to 12 GHz for the studied structure. (b) Dependencies of the
SW mode amplitude on the normalized resonance frequency ωd/πs

for the four lowest modes. The vertical dash-dotted line corresponds
to the frequency at which only the ground mode n = 0 is excited. The
vertical arrows indicate the frequencies related to the experimental
conditions at B = 0 and B = 500 mT.
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spatial shapes of S(n)
z (z) for the four lowest modes (n = 0, 1,

2, and 3). The amplitudes C(n) of these modes as functions of
the dimensionless parameter ωd/πs are shown in Fig. 4(b).
We see that all the SW modes have an oscillating shape with
the number of oscillations increasing with the increase of n. In
general, they all can be excited by the strain pulse in the whole
range of frequencies. The relative amplitudes of the excited
SW mode depend on the frequency and correspondingly on the
applied magnetic field, which determines ωn, but for certain
values of ω only a single SW mode has nonzero amplitude.
From Eq. (7) we obtain that if the parameter ωd/πstakes on
an integer value, i.e.,

ωd

πs
= (n + 1) and n = 0,1,2, . . . , (7)

only the nth SW mode is excited, while the amplitude of
all other modes is equal to zero. The lowest fundamental
mode (n = 0) may be the only excited mode if ω0d/πs =
1 [indicated by the vertical dashed line in Fig. 4(b)]. The
dashed line in Fig. 4(a) shows the spatial distribution of the
corresponding resonant harmonic of the strain pulse ε(0)(z) ∼
sin[ω0(z − d)/s], which has two nodes at the interfaces of the
magnetic layer. Obviously, the overlap integral of ε(0)(z) with
S(n)

z (z) is nonzero only for the fundamental mode S(0)
z .

Figures 5 and 6 show the results of calculations performed
for the other boundary conditions, assuming either a free
surface (Ks = 0) or mixed bulk- and surface-like modes
(Ks < 0). In these cases, the amplitudes C(n) also depend
strongly on SW mode number n and frequency ω, but the
exact dependencies are very different from those for pinning
boundary conditions. In particular, C(n) = 0 for some values
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FIG. 5. (Color online) (a) Spin wave eigenfunctions (solid lines)
of the four lowest modes calculated for “free-surface” boundary
conditions (Ks = 0). The dotted line shows the spatial dependence
of the Fourier component of the strain pulse with frequency ω0 =
12 GHz. (b) Dependencies of the SW mode amplitude on the
normalized resonance frequency ωd/πs for the four lowest modes.
The vertical dash-dotted line corresponds to the frequency ω =
12 GHz at which ωd/πs = 1. The vertical arrows indicate the
frequencies related to the experimental conditions at B = 0 and
B = 500 mT.
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FIG. 6. (Color online) (a) Spin wave eigenfunctions (solid lines)
of the four lowest modes calculated for the boundary conditions,
which give mixed surface- and bulk-like modes in the SW spectrum
(Ks < 0). The dotted line shows the spatial dependence of the
Fourier component of the strain pulse with frequency ω0 = 12 GHz.
(b) Dependencies of the SW mode amplitude on the normalized
resonance frequency ωd/πs for the four lowest modes. The vertical
dash-dotted line corresponds to the frequency ω = 12 GHz at which
ωd/πs = 1. The vertical arrows indicate the frequencies related to
the experimental conditions at B = 0 and B = 500 mT.

of n and ω, but the calculations do not show the excitation of
a single SW at any ω.

B. Comparison with experiment

The model calculations clearly show that the amplitudes
of various SW modes excited by the strain pulse depend
on magnetic field and this dependence is governed by the
magnetic boundary conditions. The boundary conditions for
(Ga,Mn)As are debated widely in literature, but, unfortunately,
it is impossible to assess what boundary conditions should be
applied in our particular experimental case.

Comparing the experimental data and the theoretical results
we need to choose boundary conditions so, that the two
lowest SW modes have a frequency separation equal to �f =
fh − fl = 2 GHz and only the lowest SW mode is excited at
B = 225 mT. Indeed, for the case Ks < 0, we can find values
of D and Ks (D = 5 × 10−18 Tm2 and 2Ks/D = −1.2 ×
10−9 Tm), which give the frequency separation between
the lowest surface-like and bulklike modes of about 2 GHz
and this value is almost independent on B. However, the
calculated field dependence of excitation efficiency given by
Eq. (4) (see Fig. 6) does not demonstrate a single spectral
line around 12 GHz in the field range B = 200 ÷ 250 mT that
is measured experimentally. Alternatively, for large positive
Ks corresponding to the pinning boundary conditions, we get
perfect agreement between the calculated and experimental
field dependencies of the SW modes amplitudes. Indeed, the
single line observed in the measured spectrum around B = B0

[see Fig. 3(a)] has the frequency fl = 12 GHz, corresponding
to the fundamental radial frequency ω0 given by Eq. (7). Thus,
for the assumed magnetic pinning boundary conditions, we
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have excellent agreement with the experiment if we associate
the lower frequency (fl) spectral line with the fundamental
SW mode (n = 0). However, it is not possible to find a
reasonable value of D, which would provide 2 GHz frequency
splitting between the lowest SW modes.6 Thus we cannot
unambiguously attribute the high-frequency (fh) spectral line
observed in the experiment with the SW mode with n = 1.
Additional ambiguity in the theoretical analysis of the signal
spectra comes from the fact that the probe wavelength is close
to the fundamental absorption band, and we cannot analyze
quantitatively the efficiency of optical detection for various
SW modes.

Apparently, the problems in getting agreement for both the
spectrum and amplitude for various SW modes could be solved
for a wider class of boundary conditions. This should happen
as long as the mode’s spatial structure is determined by volume
inhomogeneities of the magnetic anisotropy parameters, sup-
pressing the magnitude of magnetization near the interfaces.6

Although it is difficult to assess the mode amplitudes for
this case quantitatively, the fast spatial oscillations of the
eigenfunctions S(n)

z (z) with n > 0 suggest that the efficiency
of their excitation is small, if the condition (7) is fulfilled for
the mode with n = 0.

The consideration given in the theory section does not
include the dissipation of SW modes. In principle, one can-
not completely exclude resonance conditions for interaction
of SWs with other excitations (e.g., plasmons, incoherent
phonons), which could result in strong damping of the
upper SW mode at B = B0. This statement however is too
speculative and we do not consider details in the present
paper.

IV. CONCLUSION

We have demonstrated the excitation of spin wave modes
in a (Ga,Mn)As layer by picosecond strain pulse. We find a
strong dependence of the amplitudes of the excited SWs on the
magnetic field and, consequently, on the SW frequency. Only
one spectral line, which can be attributed to the fundamental
SW mode, is observed when the magnetization precession
period is equal to the strain pulse travel time forward and
backward through the magnetic layer. This observation is
discussed and analyzed theoretically in terms of excitation
efficiency, which depends crucially on the spatial shape of
magnetization of distinct SW modes and their overlap with the
corresponding Fourier component in the acoustic wave packet.
In spite of difficulties in getting full agreement between theory
and experiment for SW frequencies and amplitudes, we show
that it is possible to realize the case when only one SW mode
is excited. Such selective excitation of one SW mode opens
potential in various applications.

The technique of exciting SWs by picosecond strain
pulses is a prospective tool for spin current manipulation
in devices in which hypersonic nanostructures, like phonon
cavities25 or sasers,26,27 are combined with electromagnetic
and optomagnetic components in a single semiconductor chip.
The understanding established here on the excitation of a single
SW mode gives a useful guide how to tailor both magnetic layer
and phonon pulse such that SWs of particular frequencies are
excited.
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APPENDIX: THEORY OF SPIN WAVE
EXCITATION BY STRAIN PULSES

In order to describe in detail the spin wave excitation
process by a strain pulse, we consider the dynamics of the
magnetization M within the macroscopic model by Landau and
Lifshitz, neglecting dissipation19 as described by Eq. (2). The
Landau-Lifshitz equation is complemented by the boundary
conditions through introducing the magnetic surface energy,
Fsurf , which is assumed as Fsurf = Ks cos2 θ , where θ is the
angle between the magnetization and the external normal to
the surface, n. A positive or negative value of the surface
magnetic energy parameter Ks corresponds to an in-plane or
normal orientation of the surface easy axis. Accordingly, the
boundary conditions are M × (D ∂M

∂n + 2nKs cos θ ) = 0.23

Although the mathematical approach to simulation of the
magnetization dynamics is quite clear, such problems are
rarely solved straightforwardly. The Landau-Lifshitz equation
in spectral representation is a fourth-order differential equation
and the solution for the SW modes in the film involves some
cumbersome algebra (see Ref. 23 and references therein).
Another difficulty lies in considering the magnetization ex-
citation process originating from an external perturbation that
makes impossible to use the mode expansion formalism for
the magnetization in general. However, in our case in which
the strain pulse drives the magnetization during a finite time,
we managed to obtain a relatively simple expression for the
magnetization, which at large times does correspond to the
mode expansion.

It is convenient to introduce the spherical angles ϑ and ϕ,
which characterize the direction of M instead of the magne-
tization projections: Mz = M cos ϑ , My = M sin ϑ sin ϕ, and
Mx = M sin ϑ cos ϕ. The equilibrium values of ϑ and ϕ, ϑ0

and ϕ0, are determined by the particular forms of F and
Fsurf . Because F contains magnetoelastic terms, the strain
pulse drives the magnetization out of equilibrium, causing its
precession, which persists even after the pulse has left the film.
Within the linear-response model, we assume ϑ ≈ ϑ0 + δϑ as
well as ϕ ≈ ϕ0 + δϕ, and obtain for δϑ and δϕ the following
equations:

∂δϑ

∂t
= γ

sin ϑ0

[
− F

′′
ϑϕδϑ − F

′′
ϕϕδϕ + D sin2 ϑ0

∂2δϕ

∂z2

−F
′′
ϕεε(z,t)

]
,

∂δϕ

∂t
= γ

sin ϑ0

[
F

′′
ϑϑδϑ + F

′′
ϑϕδϕ − D

∂2δϑ

∂z2
− F

′′
ϑεε(z,t)

]
.

(A1)

Here, F ≡ F/M0 and the derivatives are taken at the equilib-
rium values ϑ0 and ϕ0. The boundary conditions for Eq. (A1)
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are
∂δϑ

∂z
= ± 1

l∗
δϑ,

∂δϕ

∂z
= 0, (A2)

where l∗ = M0D/(2Ks) and the + and − signs correspond
to z = 0 and d, respectively. We do not analyze here the
explicit form of the free energy and the equilibrium directions
of the magnetization, which was done in detail in Ref. 12. It
is important that if the easy axes for the bulk and the surface
are not parallel to each other, the steady-state magnetization
in the film can be, in general, spatially nonuniform, and the
coefficients in Eq. (A1) become z dependent. Below we assume
that this is not the case. We will also show that for the magnetic
boundary conditions that allow selective excitation of spin
wave modes, the equilibirium magnetization is in fact uniform.

It is convenient to perform a Fourier transformation of
Eq. (A1). This results in fourth-order differential equations
in the variablez. We therefore obtain four wave vectors q for a
given frequencyω:

q2 = 1

γ 2D2

[−v2
m ±

√
v4

m + γ 2D2
(
ω2 − ω2

u

)]
, (A3)

where ωu = γ

√
F

′′
ϑϑF

′′
ϕϕ − (F

′′
ϑϕ)2(sin ϑ0)−1 is the frequency

of the spatially uniform magnetization precession and v2
m =

γ 2D(F
′′
ϕϕ/ sin2 ϑ0 + F

′′
ϑϑ )/2. In a bulk, ferromagnetic crystal

vm determines the dispersion of spin waves. In particular,
for ω close to ω0, we have ω ≈ ω0 + v2

mq2/ω0. Once these
wave vectors are known, it is straightforward to calculate the

solution of the spectral analog of Eq. (A1) using the variation-
of-parameters method. The resulting constants are determined
by the boundary conditions (A2) by which the solutions for
the spectral components δϕω(z) and δϑω(z) become uniquely
fixed. Then, the temporal evolution of the magnetization can
be obtained through the inverse Fourier transform. The form
of the solutions δϕω(z) and δϑω(z) allows one to perform the
analysis of the magnetization dynamics for times when the
strain pulse has left the film. δϕω(z) and δϑω(z) can be split into
resonant and transient parts: δϕω(z) = δϕ(res)

ω (z) + δϕ(tr)
ω (z)

and δϑω(z) = δϑ (res)
ω (z) + δϑ (tr)

ω (z). For the resonant part, we
have

δϑ (res)
ω (z) = 1

�e(ω)
ϑe(z)

∫ d

0
dzεω(z)[ςϑϑe(z) + ςϕϕe(z)]

+ 1

�o(ω)
ϑo(z)

∫ d

0
dzεω(z)[ςϑϑo(z) + ςϕϕo(z)],

δϕ(res)
ω (z) = 1

�e(ω)
ϕe(z)

∫ d

0
dzεω(z)[ςϑϑe(z) + ςϕϕe(z)]

+ 1

�o(ω)
ϕo(z)

∫ d

0
dzεω(z)[ςϑϑo(z) + ςϕϕo(z)].

(A4)

In this equation, the zeroes of �e and �o correspond to the
eigenfrequencies of even and odd free spin wave (SW) modes
of the film, and ϑe,o, ϕe,o are the corresponding eigenmodes.
The explicit expressions for �e,o and ϑe,o, ϕe,o are

�e = sin
q2d

2
(F

′′
ϑϕ + iω sin ϑ0/γ )−1

{
F

′′
ϑϑ

(
q1 sin

q1d

2
cot

q2d

2
− q2 cos

q1d

2

)

+D

[(
q2

2 − q2
1

)
q1q2l

∗ sin
q1d

2
− q3

2 cos
q1d

2
+ q3

1 sin
q1d

2
cot

q2d

2

]}
,

�o = sin
q2d

2
cot

q1d

2
(F

′′
ϑϕ + iω sin ϑ0/γ )−1

{
F

′′
ϑϑ

(
q2 sin

q1d

2
− q1 cos

q1d

2
tan

q2d

2

)

+D

[(
q2

2 − q2
1

)
q1q2l

∗ cos
q1d

2
+ q3

2 sin
q1d

2
− q3

1 cos
q1d

2
tan

q2d

2

]}
,

(A5)

ϑe = cos q1(z − d/2) −
(
F

′′
ϑϑ + Dq2

1

)
q1 sin q1d

2(
F

′′
ϑϑ + Dq2

2

)
q2 sin q2d

2

cos q2(z − d/2),

ϕe = ξ1

[
cos q1(z − d/2) − q1 sin q1d

2

q2 sin q2d

2

cos q2(z − d/2)

]
,

ϑo = sin q1(z − d/2) −
(
F

′′
ϑϑ + Dq2

1

)
q1 cos q1d

2(
F

′′
ϑϑ + Dq2

2

)
q2 cos q2d

2

sin q2(z − d/2),

ϕo = ξ1

[
sin q1(z − d/2) − q1 cos q1d

2

q2 cos q2d

2

sin q2(z − d/2)

]
,
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where the q2
1 and q2

2 correspond to the plus or the minus signs
in Eq. (4) and ξ1,2 = −(F

′′
ϑϑ + Dq2

1,2)( F
′′
ϑϕ + iω sin ϑ0/γ )−1.

The coefficients ςϑ,ϕ are given by

ςϑ = q2 sin q2d

2

q1 sin q1d

2

F
′′
ϑεξ

2
2

2(ξ1 − ξ2)D
,

(A6)

ςϕ = q2 sin q2d

2

q1 sin q1d

2

F
′′
ϕεξ2

2ξ1(ξ1 − ξ2)D sin2 ϑ0
.

The resonant Fourier components have poles at the frequen-
cies of the SW modes. This allows us to perform the inverse
Fourier transformation for them analytically, which provides
harmonic time dependencies for δϑ (res)(z,t) and δϕ(res)(z,t):

δϑ (res)(z,t) =
∑

n

C(n)ϑ (n)(z) cos
(
ωnt + α

(n)
ϑ

)
,

(A7)
δϕ(res)(z,t) =

∑
n

C(n)ϕ(n) (z) cos
(
ωnt + α(n)

ϕ

)
.

Here, the summation goes over the spin wave eigenmodes
and the index n gives both the mode number and parity
with n being even or odd for spatially even and odd modes,
respectively. C(n), α

(n)
ϑ , and α(n)

ϕ are amplitude and phases
for the mode n. Note that Eq. (8) accounts explicitly for
different oscillation phases of δϑ (res)(z,t) and δϕ(res)(z,t), and
the eigenfunctions ϑ (n)(z) and ϕ(n)(z) of Eq. (A7) must be
modified accordingly from those of Eq. (A5). Specifically,
in the expressions for ϕe,o(z) in Eq. (A5), one has to take the
factor |ξ1| instead of ξ1. In the paper, we define the eigenmodes
in terms of the magnetization projections rather than angles ϑ

and ϕ. Of course, both formulations are equivalent. While
operation with ϑ and ϕ is the adequate choice in the used
mathematical routine, reformulation of the final results in
terms of magnetization projections is convenient because of
the used optical method of precession detection. In the actual
geometry, where the equilibrium magnetization is close to the
[100] direction, the projections of the eigenmodes are S(n)

x (z) =
0, S(n)

y (z) = ϕ(n)(z), and S(n)
z (z) = −ϑ (n)(z). The expression

for the mode amplitudes C(n) can be easily obtained from
Eq. (A4). We are not aiming to obtain a quantitative expression,
but note that they are proportional to the overlap integrals

∫ d

0 dzε(n)(z)ϑn(z) and
∫ d

0 dzε(n)(z)ϕn(z), where ε(n)(z) is the
Fourier component of the strain corresponding to the frequency
of the nth spin wave mode. Now let us return to the analysis
of the spectrum of the SW modes. In fact, we are interested in
the modes with frequencies close to ω0. In this case, we have
the following approximate expressions for the wave vectors q1

and q2:

q1 =
√(

ω2 − ω2
u

)
/2

vm

, q2 = iκ2, κ2 =
√

2vm

γD
. (A8)

For typical material parameters, κ2 is a few tenths of inverse
nanometers, while q1, as we will see below, is of the order of
1/d. From this estimate, it follows that the SW mode structure
is determined mainly by the terms proportional to cos q1(z −
d/2) or sin q1(z − d/2) for even or odd modes, respectively,
while the cosh κ2(z − d/2) or sinh κ2(z − d/2) contributions
perturb the magnetization only slightly in the thin regions very
close to the interfaces. Hence in the following analysis we will
neglect these latter contributions.

Since κ2 is almost independent on frequency, the dispersion
relations set to zero for even and odd SW modes, �e = 0
and �o = 0, respectively, can be considered as equations for
finding q1. Taking into account that q1 � κ2 and κ2d � 1, we
get in this approximation the dispersion relations:

q1d

2
tan

q1d

2
= R (A9)

for even modes and
q1d

2
cot

q1d

2
= −R (A10)

for odd modes, where

R = κ2d

2

F
′′
ϕϕ/ sin2 ϑ0

F
′′
ϑϑ + (F

′′
ϑϑ + F

′′
ϕϕ/ sin2 ϑ0)κ2l∗

. (A11)

Naturally, for different material and surface parameters,
one gets a broad variety of SW spectra and eigenmodes.
Apparently, the solution of the dispersion equations (A9) and
(A10) corresponds to effective pinning, if |R| � 1. However,
for large negative R in addition to SW modes with real q1, two
surface-like modes with imaginary q1 appear.

1A. Kirilyuk, A. V. Kimel, and T. Rasing, Rev. Mod. Phys. 82, 2731
(2010), and references therein.

2H. Kurebayashi, O. Dzyapko, V. E. Demidov, D. Fang, A. J.
Ferguson, and S. O. Demokritov, Nat. Mater. 10, 660 (2011).

3S. T. B. Goennenwein, T. Graf, T. Wassner, M. S. Brandt,
M. Stutzmann, J. B. Philipp, R. Gross, M. Krieger, K. Zürn,
P. Ziemann, A. Koeder, S. Frank, W. Schoch, and A. Waag, Appl.
Phys. Lett. 82, 730 (2003).

4T. G. Rappoport, P. Redlinski, X. Liu, G. Zaránd, J. K. Furdyna,
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