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Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb)
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Three-dimensional (3D) Dirac point, where two Weyl points overlap in momentum space, is usually unstable
and hard to realize. Here we show, based on the first-principles calculations and effective model analysis, that
crystalline A3Bi (A = Na, K, Rb) are Dirac semimetals with bulk 3D Dirac points protected by crystal symmetry.
They possess nontrivial Fermi arcs on the surfaces and can be driven into various topologically distinct phases
by explicit breaking of symmetries. Giant diamagnetism, linear quantum magnetoresistance, and quantum spin
Hall effect will be expected for such compounds.
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I. INTRODUCTION

The topological consideration of effective relativistic quan-
tum field theory in three-dimensional (3D) momentum space
allows us to classify a quantum vacuum into three distinct
classes, namely, that with gap, Fermi surfaces (FSs), and Weyl
points.1,2 The topological classes with Fermi surface or gap
are well known in condensed matters as metals or insulators.
The insulators have been further classified into topologically
trivial and nontrivial insulators.3–5 For the latter case, there
have been many candidate materials proposed and some of
them confirmed by experimental observations.3–8 The class of
compounds with Weyl Fermi points is relatively rare, however
the A phase of 3He9 and some recent proposals10–13 have
suggested various possibilities. In addition to Weyl Fermi
points, as we will demonstrate in this paper, the Fermi surfaces
can be further classified1,2 and each of them can be realized
in condensed matters. On the other hand, given those known
realizations of distinct topological states, it is yet challenging
to have a well-controlled example near the phase boundary
so that various topological phase transitions can be studied
systematically within one system. This challenge becomes
further relevant because the vacuum of the Standard Model
is regarded to be at the phase boundary with marginal Fermi
points (MFPs), which is composed of two overlapping Weyl
points with opposite chirality (or topological charge), i.e.,
forming 3D massless Dirac points.1,2 The Weyl points with
opposite chirality are stable topological objects only when
they are separated. If they meet in momentum space, their
topological charges may cancel each other and open a gap. In
principle, we may accidentally obtain 3D Dirac points by finely
tuning chemical composition or spin-orbit coupling (SOC)
strength.14–17 Unfortunately, such realizations are too fragile
and hard to control. In fact, in the presence of crystal symmetry,
the 3D Dirac points can be protected and stabilized, as has been
discussed in Ref. 18 and will be addressed in this paper.

Here, we report that the 3D Dirac semimetal (or MFP)
state can be achieved in a simple stoichiometry compound
A3Bi (A = Na, K, Rb), where the low-energy states form an
effective 3D massless gas of Dirac fermions, being different
from those in graphene [two-dimensional (2D) Dirac fermion]
and Weyl semimetals (nonoverlapping Weyl points). This state
is located at the phase boundary and is stabilized by the crystal
symmetry. It can be driven into various topologically distinct

phases by explicit breaking of symmetries and thus provides
us a nice example for the systematical studies of topological
phase transitions. In addition, the state itself is topologically
nontrivial in the sense that it has Fermi arcs on the surfaces, and
it shows giant diamagnetism and quantum magnetoresistance
(MR) in the bulk. It can also show the quantum spin Hall effect
in its quantum-well (or thin-film) structure. We will start from
the structure and methods in Sec. II, present the main results
in Sec. III, and finally conclude in Sec. IV.

II. CRYSTAL STRUCTURE AND METHODOLOGY

Among the alkali pnictides A3B (A = alkali metal, B =
As, Sb, or Bi), A3Sb is well known for its application as a
photocathode material,19 but the physical properties of A3Bi
are not widely studied.20 Both Li3Bi and Cs3Bi crystallize
in cubic Fm3̄m structure, while Na3Bi, K3Bi, and Rb3Bi are
in hexagonal P 63/mmc phase (or D4

6h, shown in Fig. 1),21

which are our main focus here. Taking Na3Bi as an example,
in this structure,22 there are two nonequivalent Na sites [Na(1)
and Na(2)]. Na(1) and Bi form simple honeycomb lattice
layers which stack along the c axis, while Na(2) atoms are
inserted between the layers, making connection with Bi atoms.
From the ionic picture, due to the closed-shell configuration
where the number of valence electrons (3 × Na-s1 + Bi-p3)
is equal to six, we may expect a semiconducting nature of
these compounds, similar to Na3Sb.23 However, they are in
fact different.

To explore the electronic properties of A3Bi, we performed
band-structure calculations based on the plane-wave ultrasoft
pseudopotential method, using the generalized gradient ap-
proximation (GGA) for the exchange-correlation functional.
The calculations based on hybrid function (HSE)24 are further
supplemented to check the band gap. The cutoff energy for
wave-function expansion is 25 Ry, and the k-point sampling
grid is 12 × 12 × 6. The experimental lattice parameters22

are used in calculation and convergency is checked with
the above settings. The projected surface states are obtained
from the surface Green’s function of the semi-infinite system,
similar to the method used for Bi2Te3 and Bi2Se3.6,15 For this
purpose, the maximally localized Wannier functions from the
first-principles calculations have been constructed.
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FIG. 1. (Color online) (a) Crystal structure of Na3Bi with
P 63/mmc symmetry. Na(1) is at 2b position ±(0,0, 1

4 ), and Bi is at 2c

position ±( 1
3 , 2

3 , 1
4 ). They form honeycomb lattice layers. Na(2) is at

4f position ±( 1
3 , 2

3 ,u) and ±( 2
3 , 1

3 , 1
2 + u) with u = 0.583, threading

Bi along the c axis. (b) Brillouin zone of bulk and the projected
surface Brillouin zones of (001) and (010) planes.

III. RESULTS AND DISCUSSIONS

A. Electronic structures: Fermi points and Fermi arcs

The calculated electronic structures shown in Fig. 2 suggest
that the valence and conduction bands are dominated by Bi-6p

and Na-3s states. Very close to the Fermi level, the top valence
band is mostly from Bi-6px,y states, while the conduction
band with very strong dispersion is mostly from Na(1)-3s

states. All these pictures are similar to that of Na3Sb,23 but
with the key difference that at the � point the Na-3s band

FIG. 2. (Color online) The calculated electronic structures of
Na3Bi. (a) The total and partial density of states. (b) and (c) The
band structures without and with spin-orbit coupling, respectively.
The red circles indicate the projection to the Na-3s states. The orbital
characters of wave functions at the � point are labeled in the inset
(see Sec. III B for details).

is lower than Bi-6px,y by about 0.3 eV, and it is further
enhanced to be 0.7 eV in the presence of SOC, resulting
in a metal with an inverted band structure, rather than the
normal narrow gap semiconductor like Na3Sb.23 The band
inversion is mostly due to the heavier Bi, which has higher
6p states and larger SOC compared to Sb. Considering the
possible underestimation of the band gap by GGA, the band
inversion can be further confirmed by the following evidences:
(1) calculation using hybrid functional HSE gives a band
inversion around 0.5 eV, still reasonably strong; and (2) the
earlier calculations for normal semiconductor K3Sb25 suggest
that its experimental gap can be reasonably reproduced by
GGA. With the same method, we calculate the band structures
for K3Bi and Rb3Bi and find that the band inversions are
0.33 and 0.42 eV, respectively. Because of the similar band
structures and the same outcomes of the analysis, we mainly
investigate Na3Bi for details in the following.

Having the inverted band structure, however, Na3Bi is not
gapped, different from topological insulators like Bi2Te3 and
Bi2Se3.6 It is a semimetal with two nodes (band crossings)
exactly at the Fermi level (Fig. 2). In other words, its Fermi
surface consists of two isolated Fermi points, which are located
at (0, 0, kc

z ≈ ±0.26 × π
c

) along the �-A line. Since both
time-reversal and inversion symmetries are present, there is
fourfold degeneracy at each Fermi point, around which the
band dispersions can be linearized, resulting in a 3D massless
Dirac semimetal. It is different from that in graphene not only
in dimensionality, but also in its robustness, because the Fermi
points here survive in the presence of SOC. This fact also
makes a difference from other proposals.26,27

The 4 × 4 Dirac fermion here is massless because
the two bands which cross each other along the �-A line
belong to different irreducible representations under threefold
rotational symmetry. Breaking of this symmetry will introduce
interaction between them and make the system insulating. For
example, 1% compression along the y axis will open up a gap
of ≈5.6 meV. This insulating state, however, is topologically
nontrivial with Z2 = 13,4 due to the inverted band structure
around the � point. This fact makes Na3Bi unique, because
both bulk 3D Dirac points and nontrivial surface states (a
single pair) should coexist (see Fig. 3) as long as the crystal
symmetry stands. Furthermore, the surface states are different
from that of topological insulators,6 in the sense that their
Fermi surfaces has Fermi arc structures. As shown in Fig. 3(b)
for the [010] surface of stoichiometry Na3Bi, although the
entire Fermi surface is closed, its derivative and Fermi velocity
are ill defined at the two singular points (corresponding
to the projection of bulk Dirac points to the surface). The
spin texture of surface states has a helical structure (also
similar to topological insulators), but the magnitude of spin
vanishes at the singular points. This kind of Fermi surface has
never been found before, and it can be understood following
the discussions for Weyl semimetal.10,11 If we split the
4 × 4 Dirac point into two separated 2 × 2 Weyl points
in momentum space by breaking time-reversal or inversion
symmetry,12,13 the Fermi surface of surface states will also
split into open segments which are Fermi arcs discussed
in Weyl semimetal [as shown in Fig. 3(d)].10,11 All these
characters in contrast to conventional metals and topological
insulators should be experimentally measurable by modern
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FIG. 3. (Color online) The projected surface states and their
Fermi surfaces of Na3Bi. (a) and (b) The projected surface density
of states for [001] and [010] surfaces, respectively. (c) The Fermi
surfaces (Fermi arcs) and their spin textures (in-plane components)
for the [010] surface states. (d) The Fermi arcs of the [010] surface
obtained from the fitted effective Hamiltonian with additional ex-
change field h1 = 6 meV (see Sec. III C for details). The discontinuity
around the singular Fermi points becomes now obvious (enlarged in
the insets).

angle-resolved photoemission spectroscopy technique. Our
further calculations for K3Bi and Rb3Bi suggest that they have
qualitatively the same physics as Na3Bi does.

B. Effective Hamiltonian

The low-energy effective Hamiltonian is derived from the
theory of invariants in a similar way as for Bi2Se3, Bi2Te3,
and Sb2Te3.28 The first-principles calculations indicate that the
wave functions of low-energy states at the � point are mostly
from the Na-3s and Bi-6px,y,z orbitals. For the low-energy
Na-3s states at �, about 65% of them are from Na(1)-3s

and 35% are from Na(2)-3s. Since the system has inversion
symmetry, we can start from the bonding and antibonding
states of the above relevant orbitals with definite parity:

|S±〉 = 1√
2

(|Na,s〉 ± |Na
′
,s〉),

|P ±
α 〉 = 1√

2
(|Bi,pα〉 ∓ |Bi

′
,pα〉),

where Na(Bi) and Na
′
(Bi

′
) are related by inversion symmetry.

The superscript ± indicates the parity, and α is px , py , or pz.
The bonding and antibonding splittings of these states can be
easily seen from the band structure along path A-� shown in
Fig. 2.

By including the SOC effect in the above atomic picture,
spin and orbital angular momentum are coupled and the
new eigenstates with definite total angular momentum can be
written as |S±

1
2
,± 1

2 〉, |P ±
3
2
,± 3

2 〉, |P ±
3
2
,± 1

2 〉, |P ±
1
2
,± 1

2 〉, where the

subscript indicates the total angular momentum J . Different
from the case with zinc-blende structure (such as HgTe), here
the heavy-hole state |P ±

3
2
,± 3

2 〉 and light-hole state |P ±
3
2
,± 1

2 〉 are

no longer degenerated (with the former being higher) at the �

point, because Bi atoms are sandwiched by Na(2) atoms along

the z axis, and the Bi pz orbital is lower than px,y orbitals.
Furthermore, under the D4

6h symmetry, the light-hole state
|P ±

3
2
,± 1

2 〉 and split-off state |P ±
1
2
,± 1

2 〉 will mix further to form

the new eigenstates: |P ±
+ ,± 1

2 〉 and |P ±
− ,± 1

2 〉28. Nevertheless
these mixed states are not relevant to our discussions for the
3D Dirac points. The band inversion and their crossings along
the �-A line can be described by the four states |S+

1
2
,± 1

2 〉 and

|P −
3
2
,± 3

2 〉. Different from Bi2Se3,28 where all four bases have

the same |Jz|= 1
2 , here we have two different values of 1

2 and
3
2 , respectively. This difference is essential to the existence and
stability of 3D Dirac points observed here.

Therefore, an effective 4 × 4 k · p Hamiltonian using
these four states as bases (in the order of |S+

1
2
, 1

2 〉, |P −
3
2
, 3

2 〉,
|S+

1
2
,− 1

2 〉, |P −
3
2
, − 3

2 〉) can be constructed by considering the

time-reversal, inversion, and D4
6h symmetries. The leading-

order Hamiltonian around � reads

H�(k) = ε0(k) +

⎛
⎜⎜⎜⎝

M(k) Ak+ 0 B∗(k)

Ak− −M(k) B∗(k) 0

0 B(k) M(k) −Ak−
B(k) 0 −Ak+ −M(k)

⎞
⎟⎟⎟⎠ ,

where ε0(k) = C0 + C1k
2
z + C2(k2

x + k2
y), k± = kx ± iky ,

and M(k) = M0 − M1k
2
z − M2(k2

x + k2
y) with parameters

M0,M1,M2 < 0 to reproduce band inversion. By fitting the
energy spectrum of the effective Hamiltonian with that
of the ab initio calculation, the parameters in the ef-
fective model can be determined. For Na3Bi, our fitting
leads to C0 = −0.063 82 eV, C1 = 8.7536 eV Å2, C2 =
−8.4008 eV Å2, M0 = −0.086 86 eV, M1 = −10.6424 eV Å2,
M2 = −10.3610 eV Å2, and A = 2.4598 eVÅ. Please note
the leading-order term of off-diagonal elements B(k) has
to take the high-order form of B3kzk

2
+ under the three-

fold rotational symmetry and the opposite parity of |S〉
and |P 〉 states. Evaluating the eigenvalues E(k) = ε0(k) ±√

M(k)2 + A2k+k− + |B(k)|2, we get two gapless solutions

at kc = (0,0,kc
z = ±

√
M0
M1

), which are the two Dirac points

discussed above, which are separated along the �-A line.
If we only concentrate on the neighborhood of each crossing

point kc and neglect the high-order terms [i.e., B(k) ≈ 0],
the linearized Hamiltonian is nothing but 3D massless Dirac
fermions. The block-diagonal form allows us to decouple the
4 × 4 matrix into two 2 × 2 matrices, which are Weyl
fermions with degenerate energy but opposite chirality.10–13

The breaking of threefold rotational symmetry, however, will
introduce a linear leading-order term of B(k), i.e., B(k) =
B1kz. In such a case, two Weyl fermions will be coupled
together, resulting in massive Dirac fermions with gaps, similar
to the case of Bi2Se3 or Bi2Te3.6,28 Nevertheless, as long as the
threefold rotational symmetry survives, the Dirac points here
should be stable and protected.

C. Phase diagram and topological phase transitions

Na3Bi with 3D Dirac points (i.e., the MFP state) is
located at the phase boundary and may be driven into
various topologically distinct states by explicit breaking of
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FIG. 4. (Color online) Phase diagrams of Na3Bi with mass term
m = 0 meV (left panels) and m = 5.6 meV (right panels). The high-
order term of B(k) is neglected for the case of m = 5.6 meV. (a) and
(b) Phase diagrams. (c) – (j) Band dispersions, corresponding Fermi
surfaces, and their topological charges for some characteristic phases
(with h1 fixed to be 10.0 meV). Only the neighborhood around one
of the Dirac points is shown with the k̃ defined as k − kc. The |± 1

2 〉,
|± 3

2 〉 are abbreviations (i.e., Jz values) for the four bases, which are
used to indicate the main component of the wave functions for the
states away from band crossings (see Sec. III B for details).

symmetries.1,2 For simplicity of illustration, here we focus on
the effects of exchange interaction. In general, it can be induced
by magnetic doping as in diluted magnetic semiconductors29

or by an external field. Other symmetry-breaking terms (such
as inversion, mirror, or twofold rotational symmetries of the
crystal) may play the similar roles and can be analyzed
analogously. Since the |S〉 and |P 〉 are different orbitals
(or pseudospins), we may in general separate any exchange
splitting into orbital-dependent and orbital-independent parts
as Hex1 = h1σz ⊗ τz and Hex2 = h2σz ⊗ I , where h1 and h2

are field strengths (along the z direction), and 	σ and 	τ are
Pauli matrices describing spin and pseudospin, respectively.
The total Hamiltonian is given as H = H� + Hex1 + Hex2,
and the resulting phase diagram is shown in Fig. 4.

If the threefold rotational symmetry of crystal is preserved
[i.e., B(k) = B3k

c
zk

2
+, see left panels of Fig. 4], starting from

the MFP state (h1 = 0, h2 = 0), the state with Weyl points
will be introduced by h1 (the horizontal axis), because such
an exchange field will split the Dirac point into two separated
Weyl points in momentum space. If the h2 is further introduced,

however, the two Weyl points will separate energetically, and
a system with Fermi surfaces (FS) will be obtained. On the
other hand, if the threefold rotational symmetry is broken, a
mass term m ≈ B1k

c
z will be induced as the leading-order term

of B(k). For example, m can be estimated to be the gap size
(5.6 meV) at kc when 1% compression along the y axis is
applied. Then the high-order term of B(k) can be neglected,
and a topologically nontrivial insulating phase is obtained (see
right panels of Fig. 4). In such a case, the Weyl semimetal
phase can be driven only when h1 is larger than the mass
term m.

The FS states can be further classified according to the
topological charge (or Chern number CFS) enclosed by the FS.
CFS is defined as the net flux of the Berry phase gauge field
penetrating the Fermi surface:

CFS = 1

2π

∫
FS

[∇k × A(k)] · dS,

where the integrand is the Berry curvature, A(k) =
−i〈uk|∇k|uk〉 is the adiabatic Berry connection for the states
|uk〉 at the Fermi level, and dS points from low to high energy.
For the case m = 5.6 meV (right panels), the two distinct
FS states, trivial (CFS = 0) and nontrivial (CFS = ±1), are
separated by the line defined as h2

1 − h2
2 = m2. If m = 0

(left panels), both FS states are nontrivial, but with different
topological charges (CFS = ±1 or ±2). The appearance of
the CFS = ±2 phase in this case is due to the B3kzk

2
+ term

of B(k). At the boundary between distinct FS states, the
Fermi-surface spheres should be connected, and the CFS

becomes ill defined. The nontrivial FS states may become
important for the topological superconductivity.30

D. Expected distinct physical properties

Even without the exchange splitting, we can expect some
particular physical properties for such compounds. First of
all, we will expect the quantum spin Hall effect in z-oriented
Na3Bi thin film (or a Na3Bi/Na3Sb quantum well). Due to the
quantum size effect, the kz is further quantized, and in general
the 2D band structures of Na3Bi thin film will be fully gapped.
Then, depending on the number of band inversions associated
with the sub-bands, the system should cross over between
trivial and nontrivial 2D insulators oscillatorily as a function
of film thickness.31 Our estimated first critical thickness of
Na3Bi is 35 Å, below (above) which the film is a trivial
(nontrivial) insulator. Second, we will expect giant diamag-
netism of the 3D massless Dirac fermion.32 The diamagnetic
susceptibility, χ (ε) ∼ log 1

ε
, should diverge logarithmically

when the chemical potential approaches the 3D Dirac points
(i.e., ε ∼ 0),32 much stronger than that in narrow gap semimet-
als like Bismuth. In fact, early experimental measurement had
found distinct diamagnetism in the A3Bi system.33 Third, we
will also expect linear quantum magnetoresistance (MR) as
proposed by A. A. Abrikosov.34 In conventional metals with
closed Fermi surfaces, the MR should behave quadratically
at a low field and saturate at a high field. However, for
the 3D massless Dirac fermionic gas, the MR will have
linear field dependence if only the lowest Landau level is
occupied. This idea has been examined for the Ag2Te both
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experimentally and theoretically,34,35 where the Dirac-type
energy dispersion is not obvious. Having Na3Bi with 3D Dirac
points, it will be straightforward to check the quantum MR
proposal.34

IV. CONCLUSION

In summary, based on the first-principles calculations and
effective model analysis, we have shown that the long-pursuing
examples with bulk 3D Dirac points can be actually realized in
existing compounds A3Bi (A = Na, K, Rb). It is important to
note that this state and its Dirac points are protected by crystal
symmetry and therefore stable. We have demonstrated that
this state is located at the topological phase boundary and can
be driven into various topologically distinct phases, such as
topological insulator, topological metal (with nontrivial Fermi

surfaces), and Weyl semimetal states, by explicit breaking of
symmetries. It therefore may provide us a condensed-matter
simulator of the Standard Model, from the viewpoint of an
emerging relativistic quantum field at low energy. In addition,
we have shown that the state itself is unconventional in
the sense that it shows Fermi arcs on the surface, giant
diamagnetism and linear quantum magnetoresistance in the
bulk, and quantum spin Hall effect in the quantum-well or
thin-film structure. Experimenters are strongly encouraged to
test those proposals and phenomena.
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