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Space-charge-limited current transients (also referred as time resolved dark injection) is an attractive technique
for mobility measurements in low mobility materials, particularly the organic semiconductors. Transients are
generally analyzed in terms of the Many-Rakavy theory, which is an approximate analytical solution of the
time-dependent drift-diffusion problem after application of a voltage step. In this contribution, we perform
full time-dependent drift-diffusion simulation and compare simulated and experimental transients measured
on a sample of triaryl-amine based electroactive dendrimer (experimental conditions: p ~ 10~ cm?/(Vs),
L =300 nm, E < 10° V/cm). We have found that the Many-Rakavy theory is indeed valid for estimating the
mobility value, but it fails to predict quantitatively the time-dependent current response. In order to obtain a good
agreement in between simulation and experiment, trapping and quasi-ohmic contact models were needed to be
taken into account. In the case of the studied electroactive dendrimer, the experimental results were apparently
consistent with the constant mobility Many-Rakavy theory, but with this model, a large uncertainty of 20% was
found for the mobility value. We show that this uncertainty can be significantly reduced to 10% if a field-dependent
mobility is taken into account in the framework of the extended Gaussian disorder model. Finally, we demonstrate
that this fitting procedure between simulated and experimental transient responses also permits to unambiguously
provide the values of the contact barrier, the trap concentration, the trap depth in addition to that of the mobility

of carriers.
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I. INTRODUCTION

Charge carrier mobility is the most crucial property deter-
mining the performance and applicability of a semiconducting
material. However, more particularly in the field of organic
electronics, experimental determination of the charge carrier
mobility is still challenging. Time-of-flight (TOF) based tech-
nique is certainly one of the preferred mobility determination
methods. However, in some cases it might be relatively difficult
to be used as it requires relatively thick (several micrometer)
samples. Therefore, more commonly, the mobility is deduced
from steady state current-voltage characteristics. In such a
case, the mobility cannot be determined without an a priori
knowledge of the contact barrier,' even under the assumption
of a trap-free material. Such an assumption is most of the time
far from being fulfilled in a solution processed material. All
these considerations have led us to investigate space-charge-
limited current (SCLC) transients in order to estimate the
carrier mobility in semiconducting organic solution processed
layers. While potentially difficult from an experimental point
of view,” the technique can in principle permits measurements
on thin samples and provide mobility values unaffected by
carrier trapping and sample thickness.> The obtained current
transients are analyzed using the following formula:*

L2
tmax = 0786M—V, (1)

which relates the time position of the current peak #.x, the
sample thickness L, the mobility u, and the applied voltage V.
Additional analysis of trapping is also possible®® and, once the
mobility is known, the agreement between predicted and ob-
tained steady-state current gives the extent in which the contact
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can be considered as ohmic.”"'! The above formula is approxi-
mate (diffusion, initial sample state, and trap release dynamics
are neglected) and is known to have a limited validity.®'> We
would like to show here that a more complete analysis can be
achieved by using simulation in parallel to experiments.
Recently there has been a growing interest in performing
simulations for interpreting and fitting results of stationary
electrical measurements on organic materials. In particular,
this approach has permitted the characterization of the contact
barrier in a material with known mobility,'* and the char-
acterization of mobility and disorder from current-voltage
characteristics.'*'® It can be expected that applying this type
of analysis to the transient case might permit obtaining even
more information. Time-dependent simulation generally takes
more time than stationary simulation and is sequential. Also,
because the transient responses have a more complex structure
than stationary characteristics, the requirements on correctness
of the physical model of the sample are more strict than
in the time-independent case. It has been recently pointed
out that staying on the only basis of standard drift-diffusion
theory, used to derive Eq. (1), does not permit us to obtain an
agreement between simulated and experimental responses.'”
That directly questions the real accuracy of the mobility
estimation using the above formula. Very often the formula
has been checked by establishing the good agreement between
its results and those obtained with TOF technique.18 Howeyver,
it is not always possible to use multiple techniques of mobility
measurements to estimate uncertainty of the mobility value
and accordingly it is highly desirable to know the mobility
uncertainty by employing only the SCLC transient technique.
In this work we develop a method to obtain an experimental-
simulation agreement for space-charge-limited transient

©2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.85.195205

MAREK Z. SZYMANSKI et al.

responses and an acceptable uncertainty on the mobility value.
We use the widely accepted drift-diffusion model, and show
which aspects of transport physics must be taken into account
to obtain a good agreement with the experimental results.
The organization of the paper is as follows: first, we
describe in detail the physical model of transient behavior of
a semiconducting sample (Sec. Il A); second, the simulation
method is developed in Sec. IIB, while the exhaustive
parameter fitting procedure we used is explained in Sec. IIC.
The comparison between experimental and simulated current
responses, under different model assumptions, is presented in
Sec. III. Discussion and conclusions are drawn in Sec. IV.

II. THEORY AND SIMULATION

A. Physical model of the sample

As a starting point, let us consider the following system of
time-dependent drift-diffusion and trapping equations, which
was actually the basis of analytical derivation of formula (1). 4
They describe the time evolution of both the conduction n(x,?)
and trapped n,(x,t) charge carrier concentrations and of the
electrical potential ¢(x,) in an insulator:

d*¢ q
-7 _ , 2
2 S0t (n+n;) (2)
3 19j
_ =———Z, 3
” (n+n;) 7 3)
on ¢
i=—qg|D— — un— 1, 4
J q( o “"at) 4)
kT
D = pugz—, (5)
q
O (N, = ny) ©6)
ar = Frin(iNy — n; ryng,

where ¢ is the carrier charge, ¢, is the relative dielectric per-
mittivity, j is the carrier current, D is the diffusion coefficient,
W is the charge carrier mobility, & is the Boltzmann constant, T’
is the temperature, g3 is the so-called diffusion enhancement
factor, r, and r, describe charge trapping and charge releasing
rates, and N, is the trap concentration. Equation (6) describes
the population dynamics of an individual trap. The kinematic
coefficients are related to the energetic trap depth E;, and to
the trap cross section o, as follows:'?

™ = Noexp(—E,/kT), %)
;

t

r = (voy). ®)

Ny = u% is the conduction states density, v is the charge
carrier velocity, and (-) denotes average. In many cases,
in the transport model u = const and g3 = 1 are assumed.
However, it was demonstrated that the model can incorporate
the effects of disorder by considering the so-called extended
Gaussian disorder, in which u(T,F,n) = uog1(n,T)g2(F,T)
and g3 = g3(T,n). The functions g;, g, g3 are given in
Refs. 20-22; they depend on the disorder energy width o
and the intersite distance a. In this work we will take in
consideration both models.
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The applied voltage V (¢) is taken into account as a boundary
condition for the electrical potential

p(x =0,t) = V(t), ¢(x=L,t)=0. )

In the case of time-dependent simulation, the displacement
current term

] 1) = oF 10
Ja(x, —GOErE (10)

must be included in the calculation of the total current j,
which is the current experimentally measured and it follows:

JOe0) + Jax,t) = ji(t). Y

Integrating over the sample length and using the boundary
conditions (9), we obtain

€o€, OV
—_—. 12
L ot (12)

g
Jz<r>=z/0 jendx +

A crucial problem associated uniquely with simulations of
transient currents is the determination of the electrical initial
sample state at t = 0. At the equilibrium, the sample contains
charge carriers diffusing into it. In order to be able to solve
equilibrium sample state, some established contact models?*>*
expressing current as a function of the electric field ' cannot be
used. Indeed, such models by definition predict zero current at
the equilibrium, resulting in the so-called empty sample initial
condition. Accordingly, a contact theory specifying carrier
density at the electrode must be used:*’

n(x =0)=n.JFx =0)], (13)
nx=L)=nJ]—Fx =1L)]. (14)

The contact interface charge carrier density n, is defined in
Refs. 22 and 26 and is obtained by establishing the condition
of local thermal equilibrium between the metal contact and the
organic layer

. / R {05 N
) l+explE/(KT)]

where g(E) is the density of states in organic layer. For the
contact we assume a Gaussian density of states as follows:

E, (15)

g(E) = (16)

where A’ takes into account the injection barrier (A) lowering
due to image potential®®?’

eF
4epe,

AN=A—c (17)

For consistency we distinguish here contact disorder o,
from bulk disorder o. This is because we start by considering
the case of constant mobility, for which disorder is irrelevant
for bulk transport, but still, contact disorder is necessary to
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FIG. 1. Simulated dark injection current responses according
to different models in which common simulation parameters are
sample length L = 300 nm, mobility x = 10~ cm?/(Vs), applied
voltage 2 V, and relative dielectric permittivity €, = 3. The full line
corresponds to the response predicted by the analytical solution. Other
lines are obtained by taking into account additional parameters as
quoted in the inserted legend and detailed in Sec. I A.

establish the relation between contact charge densities and
contact barrier.

In the classical Many Rakavy theory,* the above system of
equations (2)—(6) is solved for constant mobility, neglecting
diffusion, and by assuming empty sample at the beginning
of the measurement. Let us now consider the influence
of these assumptions when simulating transient responses.
Several simulated curves are plotted in Fig. 1. All of them
correspond to the same mobility, the same sample thickness,
the same voltage, and considering the contact as ohmic. In
Fig. 1 the solid curve corresponds to the analytical solution
neglecting diffusion while the top curve corresponds to a
solution including diffusion, calculated at room temperature.
The curves with long time decaying responses correspond to a
situation including the presence of traps. They were obtained
for the same set of traps, but one assumes equilibrium state at
room temperature at time ¢ = O while the other one assumes
an empty sample. The difference between these two curves
directly comes from the existence of pretrapped carriers in
the near electrode region, which diffuse from the metal in
the equilibrium conditions. The traps are here characterized
by the concentration N; = 6.2 x 10" c¢cm™3, the trapping
coefficient r, = 6.4 x 1073 cm?3s~!, and the release rate
r, = 400 s~!. Common simulation parameters are the sample
length L =300 nm, the mobility u = 107> cm?/(Vs), the
applied voltage 2 V, the relative dielectric permittivity €, = 3,
and charge carrier density at contact plane n. = Ny/2 =
1.22 x 10 cm 2.

From Fig. 1 it can be seen that the time position of the
peak is, in all cases, close to that predicted by the analytical
theory Eq. (1). But it is clear that for a quantitative analysis of
the current, neglecting diffusion and assuming empty sample
at the beginning of the measurement cause large errors in
the evaluation of the current. Accordingly, for comparing
experiment and simulation, the sample must be measured in
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a well defined (equilibrium) state, and an appropriate contact
model must be used in the simulation.

B. Model implementation

Continuous variables ¢, n, n, are sampled with uniform
spatial step Ax. Subscript i denotes cell index. The potential
¢; and the charge concentrations n;, n,; are defined inside
cells and the current in between cells (j; .1 denotes the current
flowing from site i to site i 4+ 1). To relate them algebraically

we use the Scharfetter-Gummel discretization:2®
1 Ax/D
. n; — e Ui} nit1 18
]i-‘,—% - vH—% 1 _ e_viJr%Ax/D ) ( )

where charge carrier velocity between cells is

¢t+1 ¢t
A .

V.

i+ (19)

(NI

The formula (18) is obtained by solving j = const between
cells i and i + 1 assuming fixed drift velocity v and diffusion
D. This choice of discretization is optimal for simulation of
electrical transport, as it provides exponential interpolation
of charge carrier concentration between cells and prevents
negative concentration values.

In order to be able to solve the model quickly, we decided
to use implicit adaptive time stepping. Indeed, implicit time
stepping is convenient as transient responses may change over
extended range of time, and explicit time-stepping method
would enforce maximum time step for stability even when the
solution is close to a stationary state. After discretization of
spatial and time derivatives, the differential equations system
is converted into the following algebraic equations:

i—1—2¢; + ¢
P =2 P 9 gy =0, (20)
Ax 8() r

: old  p —pM i — il

L S e}
At At q Ax

nei —ngd

T —rmi(N, _”lt,i)+rr”lt,i =0. (22)

n®, n%9 refer to conduction and trapped charge concentration,

relspectlvely, obtained in the preceding time step. The above
nonlinear equations system is solved iteratively using Newton
method, once for each time step of duration A¢. For reasons
of computation time and numerical precision it is desirable
to reduce the number of time steps in the simulation. Due to
the character of the time evolution of transient responses, the
optimal time-step Af is much smaller than the transit time
(Atmax) at the beginning of the simulation, and then much
longer when the steady state is being approached. Therefore,
we implement adaptive time stepping in our simulation. For
this purpose we define local error as

Jito + At + At) — ji(to + 2A1)
Ji(to + At + Ar)

, (23)

where j;(fo + 2At) denotes current value on the basis of
a single time step of duration 2Afr and j,(fp + At + At)
denotes the current value for the same time calculated
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with two time steps of duration Af. During simulation, the
time-step duration Af¢ is automatically adjusted in order
to be close to the maximum value for which local error
€ < €goul”’

For the simulation we used Ax =1 nm and €405 =5 X 1073
to define spatial sampling and time stepping, respectively. We
checked that use of smaller values do not change significantly
the output.

In order to solve equilibrium initial conditions, we run the
simulation with zero bias voltage and substituting t = 0. This
gives the solution for the stationary case.

We checked our simulation with results published in Refs. 4,
19, 22, and 26.

C. Parameters estimation

The transient responses depend in a nonlinear way on
the simulation parameters. We decide to assign the same
weight to all experimental points, therefore fitting simulation
to experimental data consists in finding a set of parameters
(U, A, Ny, 1,1y, . ..) for which

X2 = Lt V) = et V)P (24)

t,V

is minimized. j, denotes theoretical current response to voltage
V at time ¢, and jexy denotes the experimental current.
Generally, in order to use efficient local optimization method
to obtain parameter values (such as Levenberg-Marquardt),
initial estimation of all parameters must be provided, and the
final set of values may depend on that estimation. We indeed
found that Levenberg-Marquardt method can fail frequently
if initially a too large distance between experimental and
theoretical points exists.

We therefore propose the following two step procedure
for fitting space-charge-limited transients. In a first phase,
only trapping parameters are optimized using local search,
while mobility and contact barrier are sampled regularly. We
perform the process for mobility value estimated from peak
positions, and all feasible barrier values sampled regularly
with a predefined increment in energy. Once a region of
barrier values giving good agreement is found, we take the
best set of parameters thus obtained as the starting point and
we use the Levenberg-Marquardt algorithm to optimize all the
parameters. In order to avoid the risk of finding local minima,
we repeat this optimization multiple times with different initial
set estimation, obtained by multiplying each parameter in the
original set by random numbers close to 1.

The consistency of such a procedure can be justified by
considering that in a previous work'® it was shown that for
a given mobility value, the trap concentration and the trap
depth (corresponding to the ratio r,/r,) can be obtained from
the shape of the current-voltage curve alone. Furthermore,
in Refs. 5 and 6 it was noted that the decay time constant
of transient responses defines the trapping rate r,. Therefore,
fitting for trapping parameters yields an unique solution and
fast local search method can be used safely. By contrast, we
do not expect it to be always true if fitting with local search
methods is done also for contact barrier and mobility.

PHYSICAL REVIEW B 85, 195205 (2012)

III. RESULTS

The sample measured was a layer of a first generation
triarylamines based dendrimer CssH36N4(C4Hg)g similar to
that described in Ref. 30, but provided with six peripheral
butyl groups for a better solubility. On a clean glass slide
was first deposited a bottom golden electrode by evapora-
tion under vacuum. This substrate was then UV treated. A
0.01 mmol/cm? solution of the dendrimer in THF was then
spin coated onto it. Finally, the second golden electrode
was also cross evaporated under vacuum on the top of the
organic layer. The layer thickness was carefully measured
using a profilometer (Ambios-Technology XP-2). Moreover
we applied the so-called atomic force microscopy scratch
method by using a microscope Nanosurf Mobile S. We obtain
a thickness value L = 300 & 10 nm. The sample capacitance
was checked using Agilent 4294A impedance analyzer and
gave €, ~ 3. Transient measurements of hole transport were
performed by using the experimental procedure described
in Ref. 2. Single measurements duration was 1 s and the
delay time between consecutive measurements was 1 s also.
The reproducibility of measurements between different fresh
samples was checked. All the measurements have been done at
room temperature. The responses were measured for voltages
from 1.0 to 2.5 V. Because of the high dynamic range of the
response signals, the initial part of the responses cannot be
measured. Accordingly, we only analyze responses for times
longer than 10 us.

Let us start the analysis by first considering the time position
of current response peaks as a function of the applied voltage
(Fig. 2). Since obtained responses have less sharp current peaks
than predicted by the analytical theory, an objective estimation

anaiytical '
6=75 meV
100 ¢ =100 meV ]
6=125 meV
90 =150 meV 1
. 80 ¢+
(2]
=3
o 70
£
x 60
e
50
40 +
30 1
20 1 1 1 1 1 1 1 1

1 1.2 14 1.6 1.8 2 2.2 2.4 2.6
Voltage [V]

FIG. 2. Experimental peak times as a function of applied voltage.
Lines correspond to different fits obtained with analytical model
(full line) and models including different degrees of disorder (o)
(inset legend). The experimental positions are consistent both with
analytical model and with extended Gaussian disorder for o not
exceeding approximately 100 meV. Fit to analytical formula (1)
gives mobility 8.25 x 107° cm?/(Vs) (solid curve). Fits to extended
Gaussian disorder model with intersite distance @ = 1.6 nm and
different disorder values o = 75, 100, 125, 150 meV give mobility
prefactors o = 6.32 x 107%, 4.53 x 107°, 1.99 x 107°, 4.25 x
1077 cm?/(Vs), respectively. Sample length L = 300 nm.
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FIG. 3. Experimental transient responses (points) fitted to basic theoretical models (curves): (a) constant mobility and injection
barrier'?; (b) constant mobility with trapping.!” Common simulation parameters: u = 8.25 x 107 cm?/(Vs), €, = 3. (a) Injection barrier
A = 0.456 eV (0. = 75 meV); (b) trap concentration N, = 8.14 x 10'> cm™3, trapping coefficient r, = 6.856 x 10~'> cm®s™!, release rate

r, = 12.52.

of maximum time is not straightforward. We attempted the
maximum time estimation by curve fitting as in Ref. 17.
However, we found this procedure to give results strongly
dependent on the estimation of the initial location of the peak.
Instead, for each response we have calculated the peak time as
the average maximum point time obtained for n (n > 1000)
realizations of artificial white noise added to the response. The
variance of this artificial noise is chosen to be approximately
equal to the variance present in the experimental response. The
procedure is simple and uses only one parameter (artificial
noise variance) for all the responses, in contrast with the
curve fitting procedure which is actually semimanual for noisy
responses.

Once the peak time positions are known, they can be
fitted to formula (1), and the mobility value can be ex-
tracted immediately giving = 8.25 x 107® cm?/(Vs). The
experimental responses appear to be in very good agreement
with the analytical model suggesting that no field dependent
mobility would exist in this sample. Still from Fig. 2 we
can also remark that the simulation-experiment agreement
stays consistent with bulk disorder values not exceeding
approximately 100 meV.

After estimating the mobility, we can realize that the
observed current density is smaller than the value which would
be theoretically deduced from this mobility value. In order to
explain the actual current response, we consider two existing
space-charge-limited current lowering mechanisms: contact
barrier and trapping (Fig. 3). It turns out that considering each
mechanism alone in itself is not sufficient to explain observed
current response even qualitatively. The presence of contact
barrier alone, considered in Refs. 1 and 13 cannot explain
the experimental current transients, at least because it does
not reproduce the long term decay following the current peak
[Fig. 3(a)]. Therefore, observed current is not purely injection
limited. Such decay can be due to traps. In a similar way, the
presence of an arbitrary distribution of traps causes a very sharp
slope of the current-voltage characteristics over extended range
of fields,'® which is incompatible with our observations. It can
be seen that trap distribution compatible with our observation

for highest applied voltage does not account for the low
voltages set of the responses [Fig. 3(b)]. However, it is worth to
remark that the fit of the contact barrier value gives the superior
limit of the barrier height. This is because no mechanism can
increase the current and the predicted current is always lower
or equal to the observed one.

The impossibility of explaining the current responses by
either contact barrier or trapping effect alone, which reduce the
current at interface and bulk, respectively, imposes to take into
account both effects for the modeling (Fig. 4). We proceeded to
find the mobility, trap parameters, and barrier height using the
parameter estimation procedure described in Sec. I C. For the
initial estimation we used the previously found mobility value
8.25 x 107% cm?/(Vs) and we sampled barrier heights every
0.01 eV starting at 0 eV. A satisfactory agreement between
simulated and experimental responses has been found only for
barrier values around 0.37 eV (assuming o, = 75 meV). At
this point we then proceeded to the fitting of all other model
parameters (including mobility) using previously found values
multiplied by a random vector (0.5-1.5) as a starting point. We
repeated the process 100 times to obtain a population of pos-
sible fits to experimental data. It turned out that solutions with
rather different values of mobility describe the data equally
well. As seen in Figs. 4(a) and 4(b), smaller mobility values
~6 x 1078 ¢cm?/(Vs) provide better agreement in the case
of lower voltages and higher values ~8.5 x 107® cm?/(Vs)
in the opposite case. This is reflected by the relatively wide
spread of best fit mobility values, as shown in Table I and
Fig. 4(c).

We interpret this fact as due to an effect of bulk disorder,
which, while not visibly altering peaks positions of the
responses, is affecting their shapes significantly. We repeated
the search procedure of parameters described above taking into
account extended Gaussian disorder model for bulk disorder
values 0 = 75 meV and o = 100 meV. While for o = 75 meV
results are similar as those found in the case of constant
mobility, for o = 100 meV relative spread of best fit’s mobility
values is significantly reduced, clearly indicating a better
agreement with experimental data as shown in Fig. 5.
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FIG. 4. Experimental transient responses (points) fitted to a
model assuming constant mobility and taking into account both inter-
facial barrier and bulk trapping effects. The same result is presented in
logarithmic (a) and linear (b) scale for clarity. For each voltage, best
possible goodness of fits is obtained for a range of mobility values (c).
Simulation parameters are 4 = 6 x 107% cm?/(Vs): A = 0.283 eV
(0. =75meV), N, =737 x 105 cm™3, r, =3.39 x 1072 cm3s7!,
r, = 2820 s7'; = 8.495 x 107° cm?/(Vs): A = 0.409 eV, N, =
5.09 x 108 ecm™3,r, =3.84 x 1072 cm’®s~!, r, = 3067 s~

Obtained results are summarized in Table I. The depen-
dence of extracted barrier A on assumed energetic contact
disorder o, is due to the fact that the charge concentration
at contact for a given barrier height strongly depends on the
distribution of energy states in the material Eq. (15).%!
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FIG. 5. Results obtained after including the influence of effects
of disorder o = 100 meV on diffusion and mobility using extended
Gaussian disorder model. (a) and (b) Experimental (points) and
simulated (curves) transient responses, in logarithmic and linear
scales, respectively. Simulation parameters: o = 100 meV, po =
5.02 x 107 cm?/(Vs), A =0.42 eV, N, = 6.56 x 10" cm™3, r, =
3.39 x 1072 cm®s7!, r, = 2998 s~!. (¢) Distribution of best fit’s
mobility and barrier height values.

IV. DISCUSSION AND CONCLUSION

This contribution aimed at first to detail a modeling
procedure able to simulate transient current responses obtained
in SCLC experiments for estimating the carrier mobility
in organic semiconductors. Second, we have shown that
comparing simulated and measured time-dependent current

195205-6



COMPARISON OF SIMULATIONS TO EXPERIMENT FOR A ...

TABLE 1. Extracted model parameter values with uncertainties
for the two models considered. © denotes charge carrier mobility
(in the case of constant mobility model), i and ¢ denote mobility
prefactor and bulk disorder (in the case of extended Gaussian
disorder model), A denotes potential barrier, o, denotes Gaussian
disorder of state energies at metal-organic interface, N, denotes trap
concentration, r, is trapping coefficient, r, is release rate, E, is
calculated trap depth, and o; is estimated trapping cross section.
Intersite distance is assumed to be a = 1.6 nm, sample length
L =300 nm, relative dielectric constant €, = 3, and temperature
T =300 K.

Model

u (em?/(Vs)) (7.1 £ 1.6) x 1076
o (cm?/(Vs)) -

W = const o = 100 meV

(5.1£0.4) x 1076

A (eV), o, = 50 meV 0.31 +£0.09 -
A (eV), o, =75 meV 0.37 +£0.09 -
A (eV), o, = 100 meV 0.44 £0.09 0.44 £0.04

N, (cm™3) 64415 x 105 6.9+ 1) x 10"
ry (cm?s~1) (84 1.4)x 1072 (294 1.0)x10-12
r (s~ (B5+14)x10°  (43+1.3) x 10°
E, (eV) (0.32 £0.02) (0.31 £0.02)
o, (cm?) ~3 x 10712 ~3 x 10712

responses is a powerful mean to extract not only a relatively
accurate value of the mobility (10% of uncertainty) but also
important characteristics concerning the contact barrier, the
trapping of charge carriers, and the bulk disorder effect.

In particular, we have put emphasis on the definition of
the initial electrical state of the sample and we have been
led to choose adapted contact model and numerical algorithms
which notably differ from those invoked in previous works. >33
Moreover, it has been shown how crucial it can be that all
the relevant bulk and interfacial effects are included in the
theoretical model.

We used a contact model in which are defined conditions of
local thermal equilibrium between metal and organic layer.?®

For solving the resulting time-dependent one-dimensional
drift-diffusion system, we use Scharfetter-Gummel discretiza-
tion method with adaptive implicit time stepping. Resulting
nonlinear equation systems are solved using Newton method.
This permits fast calculation of current responses without
neglecting equilibrium state diffusion of charge carriers into
the sample. The resulting simulator is efficient and reliable
enough to be used conveniently for fitting space-charge-limited
current transient responses.

We compared the results of our simulations assuming
equilibrium initial sample state with experimental space-
charge-limited current responses obtained with well rested
samples. As far as our experimental data are concerned, it
was necessary to take into account trapping, contact barrier,
and even bulk disorder effects to be able to reproduce correctly
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the whole time dependence of the current transient responses
(Figs. 3, 4, and 5).

Concerning this last point, we have proved, by developing
a relatively simple statistical analysis of results, that including
the bulk disorder effects permits to reduce significantly the
uncertainty on mobility values from 20% to 10%. This fact
seems to us convincing enough to claim that disorder is really
an important factor for the interpretation of dark injection
transients in this material and this improvement is not due to a
simple numerical effect. This conclusion can be drawn in spite
of the fact that these measurements have been carried out in
a limited range of fields and mostly indicate a behavior with
a constant mobility. At the end of this detailed analysis, it is
remarkable that the extracted constant mobility value with its
uncertainty is still in good agreement with the Many-Rakavy
formula (1). It can be noted, however, that the analytical value
is slightly higher and this is because the diffusion reduces
the prefactor in Eq. (1). This procedure has permitted us to
confirm the large influence that the disorder effects can have
on transient responses for these materials in agreement with
previous work reported in Ref. 12.

However, it is important to stay conscious that in order
to obtain a consistent analysis, precautions must be taken to
avoid overfitting and to proceed to an exhaustive exploration of
parameters space. Especially, we show that care must be taken
concerning the influence of initial parameter values on the final
fit. The physical correctness of the parameters values depends
only on the correctness of the underlying theory. While
extended Gaussian disorder model and contact model are well
established, it is noteworthy that the kinematics of trapping
has not been studied so extensively. In particular, single trap
level assumption is probably unrealistic for many samples.
Notably, the presence of ionic currents due to impurities or
spatial trap distribution would violate our model. Detailed
study of universality of the model considered here is a subject
for a future work.

With these limitations kept in mind, we have demonstrated
that it is possible to model theoretically experimental dark in-
jection responses obtained with such organic semiconducting
materials using well established models for electrical transport
in insulators. This approach permits a full usability of dark
injection mobility measurements; that comes to interestingly
moderate some more negative conclusions recently drawn
by the authors of Ref. 17, particularly those concerning the
sufficiency of existing models for modeling of the transient
responses.
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