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self-consistent GW band structures
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We present band gaps, electron effective masses, and valence band effective-mass Hamiltonian parameters
as well as strain deformation potentials of the crystal field splittings for AlN, GaN, and InN obtained from
quasiparticle self-consistent GW calculations. Excellent agreement is obtained with experimental data for the
crystal field and spin-orbit coupling splittings of bulk AlN and GaN. For InN, the discrepancy on the crystal
field splitting is likely due to the residual strain in InN thin films from which that experimental value was
extracted. We obtain a negative spin-orbit splitting for InN, which is plausible in view of the stronger negative
contribution of In-4d in InN than Ga-3d in GaN. The inverse effective-mass parameters Ai agree well with
previous G0W0 calculations except for A6. We find that the A6 parameter describing the band dispersion in
directions intermediate between parallel and perpendicular to the basal plane is not well described by the
quasicubic approximation. Good agreement with the most reliable experimental data is obtained for hole effective-
mass parameters in AlN and GaN, extracted from exciton binding energies and their fine structure. For InN and
GaN, the spin-splittings of the bands in the plane due to spin-orbit coupling requires the inclusion of linear in k and
spin terms.

DOI: 10.1103/PhysRevB.85.195147 PACS number(s): 71.20.Nr, 71.15.Mb

I. INTRODUCTION

The group-III nitride semiconductors AlN, GaN, and InN
are important for a variety of optoelectronic and electronic
applications. To model electronic states, optical properties,
and transport in quantum well heterostructures, nanowires, and
nanoparticles of these materials, one often uses a description in
terms of a six-band effective-mass Hamiltonian describing the
valence band maximum manifold of nearly degenerate states
near the center of the Brillouin zone. Within the envelope
function approximation, the states of these nanostructures are
described as a linear combination of products of slowly varying
envelope functions and the Bloch functions of the crystal near
the valence band maximum. This effective-mass Hamiltonian
approach is also used in the theory of excitons and shallow
acceptors. The effective-mass Hamiltonian for semiconductors
with zincblende structure was introduced by Luttinger and
Kohn.1,2 Its form is determined by the theory of invariants. Its
generalization for wurtzite crystals was introduced by Rashba,
Sheka, and Pikus (RSP).3–7

The parameters for these effective-mass Hamiltonians
include inverse effective mass parameters, describing all
the terms of order k2, crystal field and spin-orbit splittings
at � and some linear in k terms. Strain dependent terms
are added to the energy splittings. Several previous works
have fitted these parameters to first-principles band structure
results.8–10 Because there were significant discrepancies on
these parameters from different groups, and validation of these
parameters by experimental methods is indirect, some efforts
were made to arrive at a recommended set of values.11,12

Recently, there has been a resurgence of interest13–15 in
improving these valence band parameters because more
accurate band structure methods have become available, going
beyond the local density approximation used in the work of
the 90s. Among the group-III nitrides, InN requires perhaps
the most important revisions because its band gap is now

accepted16,17 to be 0.7 eV while it was long believed to be about
1.89 eV.18

Rinke et al.13 used G0W0 quasiparticle band structures
starting from optimized effective potential exact exchange +
LDA correlation, but focused on the fit only very near the �

point. de Carvalho et al.15 use G0W0 starting from hybrid
functional HSE calculations. Svane et al.14 used quasipar-
ticle self-consistent GW calculations, very similar to the
calculations reported here, but did not extract effective-mass
Hamiltonian parameters. It focused only on the effective
masses and splittings.

In this paper, we revisit the problem once more with several
differences to be mentioned from the previous work. First, we
use the quasiparticle self-consistent GW (QSGW ) method
developed by van Schilfgaarde et al.19,20 This method has a
distinct advantage for determining the fine structure of the
band structure, such as effective masses. In fact, its use of a
linearized muffin-tin orbital basis set allows for a real space
representation of the GW self-energy. This can then be Fourier
transformed back to k space on a much finer mesh than the k

mesh for which the GW calculations need to be carried out.
This is important to extract reliable effective masses.

Second, we have re-evaluated the process for most reliably
extracting the effective-mass Hamiltonian parameters. While
some derive directly from the effective masses without spin-
orbit coupling in or perpendicular to the basal plane, some of
the parameters such as A6 required fitting the band structures
in an intermediate k-space direction if one does not wish to
rely on quasicubic approximations. The linear in k-parameter
A7 also requires careful evaluation of the band anticrossing
behavior. These aspects will be discussed in detail below. The
determination of the spin-orbit and crystal field splittings and
the validity of the quasicubic approximation for the former
also requires some discussion. We show that in GaN and InN,
relativistic terms linear in k need to be included to properly
describe the spin splittings.
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Finally, the crystal field splitting at � is particularly
sensitive both to the GW corrections to the band structure
and to the crystal structure, such as c/a ratio. This means in
practice it is dependent on uniaxial strain. We therefore think
it is essential to include a description of the latter in terms of
deformation potentials.

As our main results, we mention that we find a crystal field
splitting in GaN much closer to experiment than in previous
work. Secondly, we find a negative spin-orbit splitting for InN.
We also discuss the recent experimental work on AlN band
parameters in view of our results.21,22

II. FIRST-PRINCIPLES COMPUTATIONAL METHOD

We use the density functional theory23,24 in the local density
approximation to determine the equilibrium crystal structure
parameters. The full-potential linearized muffin-tin orbital
method25,26 is used to solve the Kohn-Sham equation.

The quasiparticle band structures are calculated using
the quasiparticle self-consistent GW approach (QSGW ) as
developed by van Schilfgaarde and Kotani.19,20 As is well
known, the GW method originally proposed by Hedin27

uses a product of the one-electron Green’s function G and
the screened Coulomb interaction W as first approximation
for the quasiparticle self-energy. Within the random phase
approximation, the screening polarizability is itself derived
from the independent particle Green’s function G0 so that
the self-energy, schematically written as � = iG0W0, can
be viewed as a functional of G0. A new nonlocal exchange
correlation potential can then be extracted from the energy
dependent � and defines hence a new independent particle
Hamiltonian as the starting point for a new G0. The QSGW

method consists of iterating this process to convergence. It
provides in a sense the best one-electron independent particle
Hamiltonian so that the quasiparticle shift from it is minimized.
At convergence, the quasiparticle Hamiltonian and the Kohn-
Sham Hamiltonian have the same eigenvalues. Although we
start from LDA, the final QSGW eigenvalues are independent
of this approximation.

In practice, other details of the GW implementation used
here set it apart from other recent calculations for the nitrides,
mentioned in the introduction. It is implemented in the FP-
LMTO method and uses a mixed basis set of plane waves and
LMTO product basis functions for all two electron operators,
such as the Coulomb interaction, the polarizability, and the
self-energy operator. Details can be found in Ref. 20, and its
performance for a wide variety of semiconductors is shown
to be excellent in Ref. 19. More specifically, it slightly
overestimates the gaps because of the underestimation of the
screening by the random phase approximation but agrees to
better than 0.1 eV for all known semiconductors after we scale
the GW correction by a factor 0.8. This correction factor is
included in the calculations here.

Some specific details of our calculations follow. We use a
double (κ,Rsm) basis set consisting of spdf and spd functions
for the first and second set of group-III and N atoms. In addition
we add 3d and 4d local orbitals of Ga and In atoms, and also
spd floating orbitals. Here, κ is the smoothed Hankel function
decay constant and Rsm is the smoothing radius. We use a
GW k-point set of 4 × 4 × 4 for AlN and GaN. In the case
of InN, we found the results to be particularly sensitive to the
k-point convergence and therefore used 6 × 6 × 4. The self-
energy is approximated by a diagonal approximation above a
certain cutoff energy, as discussed in Kotani et al.20 We choose
this parameter to be 2 Ryd in GaN, AlN, and InN. Spin-orbit
coupling is added independently of the GW self-energy in the
end.

III. EFFECTIVE-MASS HAMILTONIAN AND PROCEDURE
FOR EXTRACTING ITS PARAMETERS

The effective-mass Hamiltonian can be described in terms
of the operators for L = 1 angular momentum representing the
basis states of the threefold degenerate valence band maximum
(VBM) at � without spin-orbit coupling, the Pauli matrices,
representing the spin, the wave vector k, and the strain tensor
ε. The only allowed terms are those up to terms of second
order in any of these quantities whose combination has the A1

symmetry. In wurtzite, this Hamiltonian is described by:

H = �1L
2
z + �2Lzσz +

√
2�3(L+σ− + L−σ+) + (

A1 + A3L
2
z

)
k2
z + (

A2 + A4L
2
x

)(
k2
x + k2

y

) − A5(L2
+k2

− + L2
−k2

+)

− 2iA6kz({Lz,L+}k− − {Lz,L−}k+) + A7(k−L+ + k+L−) + (
α1 + α3L

2
z

)
(σ+k− + σ−k+) + α2(L2

+k−σ− + L2
−k+σ+)

+ 2α4σz({Lz,L+}k− + {Lz,L+}k+) + 2iα5kz({Lz,L+}σ− − {Lz,L−}σ+) + (
D1 + D3L

2
z

)
εzz + (

D2 + D4L
2
z

)
ε⊥

−D5(L2
+ε− + L2

−ε+) − 2iD6({Lz,L+}ε−z − {Lz,L−}ε+z). (1)

Here, {Lz,L−} = 1
2 (LzL− + L−Lz) is the symmetrized prod-

uct, L± = 1√
2
(±iLx − Ly), σ± = 1

2 (±iσx − σy), k± = kx ±
iky , k2

⊥ = k2
x + k2

y , ε⊥ = εxx + εyy , ε±z = εxz ± iεyz, and
ε± = εxx − εyy ± 2iεxy . The parameters �1, �2, �3 are the
crystal field splitting and spin-orbit coupling parameters. The
A1–A6 are inverse effective-mass type parameters and
the A7 is a nonrelativistic (spin-independent) linear in k term.
Relativistic terms linear in k and spin are described by the
α1–α5 terms. The parameters A1–A5 are directly related to the

hole masses in the plane and perpendicular to the plane by
means of

−(m‖
hh)−1 = A1 + A3

−(m‖
sh)−1 = A1

−(m⊥
hh)−1 = A2 + A4 + A5 (2)

−(m⊥
lh)−1 = A2 + A4 − A5

−(m⊥
sh)−1 = A2.
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The parameter A6 only affects the bands in directions
intermediate between the plane and perpendicular to it. While
in Kim et al.10 these were obtained by means of the quasicubic
approximation from the previous parameters, we here deter-
mine it directly by fitting the bands in an intermediate direction.
We will show explicitly that the quasicubic approximation is
not sufficient.

As described in detail in Kim et al.,10 the A7 parameter
is related to the avoided band crossing of the light hole and
crystal field split-off band. When it is set to zero the bands
cross. The split-off band then has a large effective hole mass.
When A7 is switched on, the crossing is lifted. The light hole
and split-off hole masses are changed respectively by

± 2A2
7

/|�1|. (3)

The parameter A7 is determined by fitting the nonparabolic
shapes of the bands near this crossing directly by manually
adjusting A7 until good agreement is obtained.

The crystal field splitting parameter at � is directly obtained
from the calculation without spin-orbit coupling. It is defined
as the difference �1 = E(�5) − E(�1) between the doublet
and singlet of the VBM. When spin-orbit coupling is included
the �5 state splits into a �9 and �7 state. The latter can then
interact with the nearby crystal field split-off state �1 because
in double group notation, �1 becomes �7. This leads to the
eigenvalues given by

E9 = �1 + �2

E7± = �1 − �2

2
±

√(
�1 − �2

2

)2

+ 2�2
3. (4)

The two splittings allow us to determine the parameters �2

and �3. We already know �1 or assume it is not changed by
spin-orbit coupling. While in some other cases, this procedure
may lead to difficulties, (it may lead to an imaginary �3) it
works fine for all nitrides considered here. On the other hand,
one may assume a quasicubic approximation for spin-orbit
coupling �2 = �3. In that case, there are only two parameters
determining the two energy splittings and they can directly be
determined.

The crystal field splitting �c = E(�5) − E(�1) is sensitive
to uniaxial strain. For a uniaxial volume conserving (traceless)
strain in the z direction, εxx = εyy = −εzz/2. Eq. (1) then gives

�c = �1 + (D3 − D4)εzz. (5)

On the other hand, for an isotropic volume change, the strain
tensor is εxx = εyy = εzz = ε/3 with ε = dV/V . In that case,

�c = �1 + (D3 + 2D4)
dV

V
. (6)

By fitting �1 extracted from the band structure for isotropic
and uniaxial strains, we can determine both D3 and D4. In
the quasicubic approximation D3 = −2D4, there would be no
isotropic strain change in crystal field splitting, and the uniaxial
effect reduces to 3

2D3εzz. Thin films are often under biaxial
strain, which has both a uniaxial and isotropic component. By
providing both D3 and D4, the change in crystal field splitting
can easily be obtained for any biaxial strain situation that might
occur depending on growth conditions, temperature, and film
thickness. The parameters D1 and D2 only lead to shifts of the
bands and were not determined. The parameters D5 and D6

only enter when strains breaking the hexagonal symmetry are
considered. We did not determine them here because they are
of less interest for thin films. Finally, we also determine the
band gap hydrostatic strain deformation potentials as

av = dEg/d ln V. (7)

IV. RESULTS

A. Band structure parameters

The structural parameters obtained from our LDA optimiza-
tion are in good agreement with experiments and previous
calculations and are given in Table I for reference. For InN
no experimental value is available for the u parameter, but
our value agrees well with that of de Carvalho et al.,15 0.378,
Svane et al.,14 0.379, and Rinke et al.,13 0.380.

The band structures near the VBM without spin-orbit
coupling are shown for AlN, GaN, and InN in Fig. 1 for k
along the c axis (k‖) and in the plane (k⊥). The solid lines
indicate the fits by means of the effective-mass Hamiltonian.
Separately, in Fig. 2 we show the bands for a direction between
the two at an angle of 45◦ illustrating the inadequacy of using
the quasicubic approximation for A6.

The band structures including spin-orbit coupling are
shown in Fig. 3 together with the effective-mass Hamiltonian
results. These include the same parameters as before plus the
spin-orbit splitting parameters at �. It shows that now the bands
become spin-split in the plane. Along the c axis, they are still
degenerate because by time reversal ψkzσ = ψ−kz−σ , and by the
glide mirror plane perpendicular to the c axis ψkzσ = ψ−kzσ .
Hence there is a Kramer’s degeneracy. In order to fully adjust

TABLE I. Lattice parameters (Å) a, c, c/a, u.

AlN GaN InN

LDA Expt. LDA Expt. LDA Expt.

a 3.112 3.11a 3.157 3.19a 3.508 3.54b

c 4.975 4.978a 5.143 5.166–5.185a 5.666 5.718a

c/a 1.599 1.601a 1.629 1.627a 1.615 1.613b

u 0.382 0.382a 0.376 0.377a 0.380

aExpt. from Schulz et al. (Ref. 28).
bExpt. from Ueno et al. (Ref. 29).
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FIG. 1. Valence bands of AlN, GaN, and InN without spin-orbit
coupling, dots represent QSGW results, full lines represent the RSP
fits including A7, dashed lines excluding A7. The zero of energy is at
the �5 state.

the spin splittings in the plane, we also needed to add the small
relativistic linear in k,α terms, for GaN and InN. This is shown
in Fig. 4. For AlN, we notice that along k‖, the upper band
crosses the second band but not the third band. This is because
the upper band has �7 symmetry along the line � = � − A,
the second band has �9 symmetry, and the third band has �7

symmetry. Bands of the same symmetry cannot cross because
an interaction between the two avoids the crossing.

The parameters are summarized in Table II. Here we
use �

‖
so = 3�2, �⊥

so = 3�3. In the quasicubic approximation
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FIG. 2. Valence bands of AlN, GaN, and InN without spin-orbit
coupling in the direction between in-plane and perpendicular to plane
at angle 45◦. Left hand side: using quasicubic approximation, right
hand side: using manual fitting. The zero of energy is at the doubly
degenerate �5 state. Dots represent QSGW results, full lines represent
the RSP fits.

�
‖
so = �⊥

so = �ZB
so , the latter being the value in the zincblende

structure. Using this approximation, we can extract �1 and �2

directly from the two band splittings using Eq. (4).
Finally, we include the (spin-averaged) effective masses

of the three separate valence band maxima, A, B, C when
spin-orbit coupling is included as shown in Table III. Here, A

means �9, B means �7+, and C means �7−.
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FIG. 3. Valence bands of AlN, GaN, and InN including spin-orbit
couplings, but neglecting the αi spin-dependent terms. The zero of
energy is at the valence band maximum, which is �9 in GaN, �7+ in
AlN and InN. Dots represent QSGW results, full lines represent the
RSP fits.

V. DISCUSSION

The crystal field and spin-orbit coupling parameters are
compared with other recent calculations and experimental data
in Table IV. We note that the crystal field splitting is sensitive
to strain. The experimental values quoted here for AlN are
for bulk single crystals.34,35 For GaN, they correspond to
500-μm-thick layers.36 For InN, the only value we could find
is for a rather thin film of only 670 nm on r-plane sapphire.37

This value is likely to be influenced by some residual strain.
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FIG. 4. Valence bands of GaN and InN including spin-orbit
couplings and the additional αi spin-dependent terms. The zero of
energy is at the valence band maximum. Dots represent QSGW

results, full lines represent the RSP fits.

We can see in Table II that the QSGW values differ
significantly from the LDA values for the deformation poten-
tials. While for AlN and GaN the quasicubic approximation
D3 + 2D4 ≈ 0 are reasonably well obeyed, the deviation from
quasicubic is significant for InN. The band gap deformation
potentials are all negative. The decrease of the band gap with
increasing lattice constant is the usual behavior in covalent
semiconductors. Our values are comparable to those of Rinke
et al.13: −9.8 eV for AlN, −7.6 for GaN, and −4.2 for InN.

We found the crystal field splitting of InN to be very
sensitive to computational details. For example, using a smaller
GW k-point set, we obtained a negative crystal field splitting
of −14.8 meV. A small compressive strain along the c axis
could easily reduce the crystal field splitting and even make it
negative. This is accompanied by a significant change in the
band structure as illustrated in Figs. 5 and 6. The valence band
maximum in that case moves away from � due to the repulsion
between the crystal field split-off and light hole band. We can
see that this off-� valence band maximum persists up to a
positive crystal field splitting of about 15 meV. Given the
deformation potentials, we can see that uniaxial compressive
strain of order 1–2% could cause the crystal field splitting to go
from positive to negative and shift the valence band maximum
away from �.
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TABLE II. Band structure parameters: inverse masses (A1–A6) (in units h̄2/2me), energy splittings (�1–�3) (in
meV), A7 and αi (in units e2/2), band gap and deformation potentials (in eV). The value of A6, �1,�2,�3 in parentheses
are obtained in the quasicubic approximation. Electron effective masses (in units me). The hole masses correspond to
the band structure without spin-orbit coupling. The hole masses obtained with A7 from Eq. (3) are in parentheses.

parameter AlN GaN InN

Eg 6.19 3.60 0.70
A1 −4.05 −5.98 −15.7
A2 −0.28 −0.58 −0.63
A3 3.71 5.44 15.2
A4 −1.71 −2.46 −7.10
A5 1.90 2.53 7.14
A6 −1.05(−2.75) −1.55(−3.31) −5.03(−9.45)

A7 0 0.03 0.09
�1 −245(−245) 12.2(18.2) 43.7(43.4)
�‖

so = 3�2 18.6(18.9) 11.7(5.4) −9.5(−9.2)
�⊥

so = 3�3 22.5(18.9) 16.2(5.4) −5.9(−9.2)

m‖
e 0.32 0.20 0.09

Expt. 0.29–0.4a 0.20b 0.05–0.07c

m⊥
e 0.31 0.22 0.09

m
‖
hh = m

‖
lh 2.94 1.85 2.00

m
‖
sh 0.25 0.17 0.06

m⊥
hh 11.11 1.96 1.69

m⊥
lhw/o A7 0.26 0.18 0.07

m⊥
lh with A7 0.30(0.28) 0.10(0.10)

m⊥
shw/o A7 3.57 1.72 1.59

m⊥
sh with A7 0.36(0.39) 0.17(0.18)

α1 0.0028 −0.0095
α2 0.0080 0.0135
α3 −0.0030 0.0110
α4 0.0028 0.0035
α5 0 0

D3 − D4 (LDA) 6.04 5.43 2.70
D3 + 2D4(LDA) 0.23 −0.14 2.78
D3 − D4(QSGW ) 14.3 4.71 2.98
D3 + 2D4(QSGW ) 0.52 −0.04 −1.25
av = dEg/d ln V −9.78 −8.41 −2.33

aReference 30.
bReference 12 and references therein.
cReferences 31 and 32.

TABLE III. Hole effective mass with spin-orbit coupling included. The masses obtained from directly fitting the effective-mass
Hamiltonian bands near the � point are given in the first line for each material, the numbers in parentheses are obtained from
second order perturbation theory as given in Eq. (10) in Kim et al. (Ref. 10). Only for GaN, a direct comparison to experimental
values obtained from exciton binding energies is available.

m
‖
A m

‖
B m

‖
C m⊥

A m⊥
B m⊥

C

AlN 2.94 0.25 2.83 0.56 3.53 0.46
(2.94) (0.25) (2.89) (0.50) (3.53) (0.50)

GaN 1.85 0.55 0.20 0.69 0.50 0.80
(1.85) (0.51) (0.22) (0.33) (0.42) (0.82)

a 1.76 0.419 0.299 0.349 0.512 0.676
InN 2.00 1.86 0.06 0.15 0.14 1.26

(2.00) (1.81) (0.06) (0.13) (0.13) (1.53)

aExpt. from Rodina et al. (Ref. 33).
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TABLE IV. Comparison of the band gaps (in eV) and valence band splittings (in meV) to previous calculations and experiment.

QSGW Ref. 15 Ref. 13 Expt.

AlN Eg 6.19 6.55 6.47 6.3
�1 −245 −260 −295 −230a,−225a

�‖
so 19 22 36b

�⊥
so 22 22

�9 − �7+ −239.2 14.9 14a, 25b

�9 − �7− 12.9 −235.9 −218a,−214b

GaN Eg 3.60 3.85 3.24 3.5
�1 12 34 34 10c

�‖
so 12 17 18.6c

�⊥
so 16 20 16.5c

�9 − �7+ 3.2 8.7 7c

�9 − �7− 20.4 49.3 23c

InN Eg 0.70 0.76 0.67 0.65–0.8
�1 44 38 67 19-24d

�‖
so −9 11

�⊥
so −6 20

�9 − �7+ −6.5 5.4 3d

�9 − �7− 40.7 47.4 21d

aChen et al. (Ref. 34).
bSilveira et al. (Ref. 35).
cB. Gil et al. (Ref. 36).
dGoldhahn et al. (Ref. 37).

Our crystal field splitting for GaN is in better agreement
with experiment than previous results. It was already pointed
out by Kim et al.10 that this value was likely overestimated
by LDA (or GGA) because the �1v valence band is repelled
by the �1c conduction band and hence, an underestimate of
the gap results in an overestimate of the crystal field splitting.
Clearly it is extremely sensitive to computational details, since
it depends on the precise computational details of the GW

method as well as the crystal structure, which must be truly
strain free.

We also note that we find here a negative value for the
spin-orbit splitting in InN, in contrast to earlier reports.13,15 We
note that in order to ascertain the sign of the spin-orbit coupling
we need to examine the symmetry of the valence band states at
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FIG. 5. Valence bands of InN without spin-orbit coupling calcu-
lated from the effective-mass Hamiltonian (a) �1 < 0, (b) �1 = 0,
(c) �1 > 0.

�. Whereas the �7+ state has a small pz component in its wave
function, the �9 has no pz component by symmetry. We find
definitely a �7+ > �9 > �7− ordering. The negative spin-orbit
splitting arises from the contribution of the In-4d orbitals to
the effective spin-orbit splitting. Because the latter lie below
the VBM they give rise to a negative contribution. This is well
known to also be the case for ZnO.38 In that case, the Zn-3d

states are closer to the VBM. The value in GaN is already small
due to the coupling with the Ga-3d and the small value of the
N-2p atomic spin-orbit coupling which tend to compensate
each other. One may expect the In-4d contribution to be larger
in magnitude because In is a heavier atom. Therefore it is
plausible that it becomes negative in InN.
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FIG. 6. Valence bands of InN without spin-orbit coupling cal-
culated from the effective-mass Hamiltonian, with various positive
crystal field splitting.
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Next, we compare the Ai parameters to previous work. Our
results agree quite closely with those of Rinke et al.13 except
for the parameter A6. As we mentioned earlier, this parameter
requires some care to extract it. Rinke et al.13 used an automatic
fitting to calculated band structures on a mesh of points near �

but restricted themselves to obtaining a fit only very near �. In
contrast, our fitted band structures can be seen to fit very well
over a rather extended region of k space and down to energies
of order 100 meV below the VBM. This is important if one
wants to apply the method for calculating shallow acceptors
which have binding energies of this order of magnitude.

For AlN, Gil21,22 recently reviewed how well the A1,A2

parameters fit the experimental data on the 1s-2s exciton
splitting. In order to obtain a good fit, he found it is important to
also include the anisotropy of the dielectric constants. The best
fit corresponded to A1 = −3.95 and A2 = −0.27, in excellent
agreement with our calculated values. The reason why only the
A1 and A2 enter here is that in AlN, the VBM has �1 symmetry
and thus the split-off hole band lies above the usual heavy and
light hole. From Eq. (2) we can see that then A1 and A2 are
respectively the inverse masses for the directions parallel and
perpendicular to the c axis. They enter the reduced mass of
the excitons that goes into the equation for the exciton binding
energy.

For GaN, the most complete set of valence band effective
masses is obtained again from a study of the exciton fine
structure by Rodina et al.33 Their values are included in
the above Table III for comparison. For InN, no reliable
experimental data on the hole masses are available to the best
of our knowledge.

The conduction band effective masses for AlN, GaN, and
InN all agree well with experimental data and are only slightly
anisotropic. The experimental values included in Table II do
not resolve the anisotropy.

VI. CONCLUSION

The parameters of the valence band effective-mass Hamil-
tonians were determined for AlN, GaN, and InN from
quasiparticle self-consistent GW band structures. Because
the crystal field splitting is strongly dependent on strain, the
relevant strain deformation potentials are also determined.
Good agreement is obtained with experiment for the band gaps
and valence band maximum splittings at � in AlN and GaN.
Our calculated effective masses, including spin-orbit coupling
effects also agree well with those extracted from exciton fine
structure in AlN and GaN. For InN, it is concluded that
experimental data for strain free material is not yet available.
We find the spin-orbit coupling parameter in InN to be negative
and show that the band structure will be strongly dependent on
strain. For both GaN and InN relativistic terms linear in k and
spin need to be included to fully account for the spin splitting
of the bands away from �.
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