
PHYSICAL REVIEW B 85, 195133 (2012)

Enhancement of the spin Hall angle by quantum confinement
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We present ab initio calculations of the skew-scattering contribution to the spin Hall effect for freestanding
fcc Au(111) films. Their thickness is varied between 1 and 32 monolayers, and Pt atoms are considered as
substitutional impurities and adatoms. The obtained spin Hall angle drastically changes with varying impurity
positions in the film. Impurities in the adatom position play a special role reversing sign of the spin Hall angle.
In addition, we show that Pt adatoms on one-monolayer noble metal films cause a gigantic spin Hall angle up to
18%, which is attributed to the lack of interband transitions.
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I. INTRODUCTION

For practical applications of the spin Hall effect (SHE)
in spintronics devices it is of crucial importance to identify
materials with a large spin Hall angle (SHA). This quantity
indicates the efficiency of charge to spin current conversion.
After the first measurement of the gigantic SHE in Au,1 with a
SHA of about 11%, an intensive discussion about responsible
mechanisms started.2–5 Recent experiments with Pt-doped Au
films found a comparable large SHA.6 Therefore, theoretical
investigations of the influence of reduced dimension on the
SHA are highly desirable. In this paper we present an ab initio
study of the SHE for freestanding fcc Au(111) films of
varying thicknesses. We concentrate on the skew-scattering
mechanism which is shown to be dominant for dilute alloys
with impurity concentrations less than a few at.%.7–10

II. METHOD

Our calculations are based on density-functional theory
solving the Dirac equation by means of a relativistic screened
Korringa-Kohn-Rostoker (KKR) Green’s function method, as
explained in detail in Refs. 11 and 12. To perform transport
calculations, we solve the linearized Boltzmann equation for
the vector mean free path
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iteratively.13 Here, τm
k = (

∑
k′m′ P

mm′
kk′ )−1 is the relaxation time

and vm
k denotes the group velocity corresponding to the crystal

momentum k and the spin-resolved band m. The latter one is
a combined index, m = {n,σ }, since for nonmagnetic systems
with inversion symmetry, each band n is twofold degenerate
with respect to the relativistic spin state labeled by σ =
{+,−}.12 An important point in Eq. (1) is the presence of the
scattering-in term ∼∑

k′m′ P
m′m
k′k �m′

k′ , shown to be mandatory
for the SHE.4 The sums above incorporate spin-conserving as
well as spin-flip scattering processes.

The microscopic transition probability P mm′
kk′ can be ex-

pressed in the dilute limit of impurity concentration c0 (with

the number of impurities c0N ) as13
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The corresponding transition matrix elements T mm′
kk′ are calcu-

lated from the self-consistent solution of the impurity problem
via Dyson and Lippmann-Schwinger equations.4 It takes into
account charge relaxation around the impurity on a real-space
cluster of four nearest-neighbor shells.

The conductivity tensor can be expressed in the low-
temperature limit as a Fermi-surface integral.4,13 In the case
of a two-dimensional (2D) system, it is reduced to a sum of
Fermi-line integrals14
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where d is the film thickness. Thus, only electrons at the Fermi
level (EF ) contribute to transport. For the spin conductivity
tensor4
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the spin polarization sm
z (k) = 〈�mk|β̂σ̂z|�mk〉 (Ref. 12) is

included. A decomposition of σ s into the band- and k-resolved
contributions, σ s

n and σ s
n(k), by
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offers insight into the microscopic origin of the phenomenon.
As a consequence of the 2D geometry, the Bloch vector has
only two in-plane components, k = (kx,ky,0), if the z axis is
chosen along the growth direction of the film. The same holds
for vm

k and �m
k .

To quantify the strength of the SHE, commonly the spin
Hall angle

α = σ s
yx

/
σxx (6)

is used. It is the ratio of the spin Hall conductivity (SHC) σ s
yx

to the longitudinal charge conductivity σxx .4 Both quantities
depend inversely on the impurity concentration c0. Thus, α
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is concentration independent. Therefore, the SHA is a very
useful quantity for comparison with experiment.

The main focus of this paper is the investigation of the
influence of delta doping on the SHA. In other words, we
study α as a function of impurity position within the film. For
the considered Au films, all twofold-degenerate subbands n

stem from one and the same spin-degenerate bulk band. Thus,
the subband index n can be mapped onto the bulk quantum
number kz.15,16 As a consequence, each subband state can be
considered as a superposition of two bulk states with kz and
−kz forming a standing wave in growth direction of the film.
Since Au has a simple single-sheeted Fermi surface, there are
no degeneracies between different subbands. In this particular
case an electron state can be uniquely characterized by k and
σ omitting n for simplicity.

III. RESULTS

The main result of our calculations is depicted in Fig. 1,
where the SHA is shown as a function of the Pt impurity
position for different Au film thicknesses. Several conclusions
can be drawn. First, α changes sign for Pt adatoms with respect
to substitutional impurities within the film. This is valid for all
systems under consideration, except for the 2 ML film, which
will be discussed later. Second, α varies strongly as a function
of impurity position. The magnitude of the SHA does not,
however, exceed the corresponding bulk value of 1%,4 besides
for the 1 ML film, where Pt adatoms cause an enhanced |α| up
to 13%.

The absolute values of the SHA can be qualitatively
understood by the fact that for larger α, stronger scattering
is required. Stronger scattering would cause a higher spin Hall
conductivity and a decreased longitudinal charge conductivity.
According to Eq. (6), this should definitely enlarge the SHA.
The influence of quantum confinement can be explained in
terms of a quantum well model. Half of the eigenfunctions
are antisymmetric with respect to the center of the well,
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FIG. 1. (Color online) The spin Hall angle α for Au(111) films
with varying thicknesses. Pt impurities are considered at several sites
within the film shown on a normalized abscissa fixing adatom “a”,
surface layer “s”, and central layer “c” positions. The lines are to
guide the eyes.

where they have a node, and all solutions vanish at the
boundaries.17 Therefore, impurities at the central position or
at the boundaries cause weaker scattering than impurities
elsewhere and the SHA is reduced. This is reflected in our
calculations for thicker films (see Fig. 1). In the case of thin
films, their thickness becomes comparable to the size of the
scattering region. As a consequence, the perturbation of the
potential extends over the whole film without localization at
a certain node. This results in stronger scattering and a larger
SHA.

In order to understand the sign of α, we analyzed the k-
resolved contributions to σ s

yx in terms of the antisymmetric
part

σ s
A,yx(k) = 1

2 {σ s(k) − [σ s(k)]T }yx, (7)

of [σ s(k)]yx , which causes the SHC. Here the superscript
T denotes the transpose. The sign of σ s

A,yx(k) can be easily
obtained within a simple picture. Taking into account Eqs. (4)
and (5) and the symmetry relation s+

z (k) = −s−
z (k), one finds
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k ) × vk]z. Here the group velocity does
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degenerate states. The difference (�+
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spin anisotropy of the mean free path caused by the spin-orbit
coupling. Thus, the sign of σ s

A,yx(k) is entirely defined by the
sign of sin(�[(�+

k − �−
k ),vk]). This means that (�+

k − �−
k )

pointing into the left half plane of vk results in a negative SHA,
whereas the opposite is valid for (�+

k − �−
k ) pointing into the

right half plane. With Eqs. (1) and (6) it becomes clear that the
microscopic transition probability, appearing in the scattering-
in term, causes the spin-dependent deviation of �±

k from the
direction of vk and consequently determines the sign of α.

Thus, σ s
A,yx(k) offers insight into the microscopic origin of

the sign of the SHA. Figure 2 shows the results obtained from
Eq. (7) for five different Au film thicknesses. The left and right
columns correspond to Pt impurities in the adatom and surface
layer position, respectively. In addition, the subband-resolved
contributions αn to the SHA, defined by

α =
∑

n

αn =
∑

n

[
σ s

n

]
yx

/
σxx, (8)

are given for the thin films. Evidently, only the case of the
1 ML film looks quite trivial with respect to the sign change
of the total α. For all the other thicknesses we obtain subband
contributions with opposite sign. Nevertheless, the distribution
of σ s

A,yx(k), constructed according to Eqs. (5) and (7), properly
reflects the sign of the subband-resolved SHA shown in Fig. 2.

Furthermore, for a fixed impurity position, Fermi lines in the
same region of the Brillouin zone (BZ) show similar behavior
with respect to the sign of σ s

A,yx(k), independent of the film
thickness. This fact is connected to the discussion above. The
bulk system has fcc symmetry, whereas the 2D BZ of the film is
hexagonal, which determines the symmetry of the Fermi lines.
A certain Fermi line can be considered as a superposition of
two sections of the bulk Fermi surface corresponding to the
related kz and −kz. The thicker the film, the more Fermi lines
appear and sample the bulk Fermi surface. The thinner the
film, the less Fermi lines occur and the more pronounced are
the quantum size effects, which have strongest impact on the
1 and 2 ML films.
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FIG. 2. (Color online) The antisymmetric part σ s
A,yx(k) of the

k-resolved contributions to the SHC (in arbitrary units) for (a) 1 ML,
(b) 2 ML, (c) 3 ML, (d) 4 ML, and (e) 32 ML Au(111) films with Pt
impurities as adatoms (left) and in the surface layer (right). For the
thin films, the subband contributions αn, going from outer to inner
Fermi lines, are given.

To clarify the peculiar situation of the gigantic SHA for
1 ML and its constant sign for the 2 ML system (Fig. 1),
we performed auxiliary calculations for Cu and Ag fcc(111)

TABLE I. The spin Hall angle for 1 and 2 ML of Cu, Ag, and
Au fcc(111) films with Pt impurities in the adatom (“a”) and surface
layer (“s”) positions.

Host system Cu Ag Au

1 ML “a” − 0.180 − 0.182 − 0.129
“s” 0.097 0.061 0.029

2 ML “a” − 0.030 − 0.035 − 0.009
“s” 0.011 0.002 − 0.006

films with the same number of monolayers. Table I shows a
comparison of the corresponding α for the three hosts. For both
thicknesses, one can see a clear trend of decreasing SHA for the
impurities in the surface layer position going from Cu to Au.
This is in agreement with the results obtained for substitutional
Pt impurities in the related bulk noble metals.18 The reason is
the reduced difference between the spin-orbit coupling of the
Pt impurity and the replaced host atom going from Cu to Au.
The negative sign of α for impurities in the surface layer of the
2 ML Au film can be explained in this context with Fig. 2, right
column. One can see that for thicker films only a few Fermi
lines show negative contributions. Consequently, the sign of
their total SHA is well defined and positive. For the 2 ML film
just two subbands appear and contribute with opposite sign to
the total α. Which of the contributions is dominating depends
on the system. While for the 2 ML Cu and Ag films the sign
of the SHA for the surface layer impurity position is positive
and provided by the outer Fermi line, the negative sign was
obtained for Au due to the dominant contribution from the
inner Fermi line.

Now we focus on the 1 ML Au film with Pt adatoms, which
provides a SHA of about 13% (Fig. 1). In fact, an enhancement
of α for thin films with impurities in the adatom position
could be generally expected. The skew-scattering contribution
to the SHE is caused by the spin-orbit interaction modulated
by impurity atoms.18 This modulation is particularly large
for adatoms since they provide strong potential gradients.
However, the gigantic SHA is only obtained for the 1 ML
film among all considered thicknesses. Even higher values of
α (≈18%) are found for 1 ML Cu and Ag films (Table I), but
nothing similar is seen for 2 ML films. Thus, the enhancement
of the SHA looks like a particular property of the 1 ML
films. To elucidate this phenomenon, we performed additional
calculations for several films neglecting interband transitions
in Eq. (1). The corresponding results for the SHC for four
Au films with Pt adatoms are shown in Table II. Obviously,
for each film the SHC is significantly increased, neglecting
interband transitions. The same result was found for Cu and
Ag films.

TABLE II. Spin Hall conductivity [(μ
 cm)−1] for four dif-
ferent thicknesses of Au(111) films with Pt adatoms neglecting
and including interband transitions (IT). The impurity density is
1.4 × 1013 cm−2 (1 impurity atom per 100 film unit cells).

Film thickness 1 ML 2 ML 3 ML 4 ML

Neglecting IT − 0.095 − 0.094 − 0.15 − 0.046
Including IT − 0.095 − 0.0076 − 0.0072 − 0.0074
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The fact of increased SHC without interband scattering is
obtained for any impurity position within all the considered
films. To understand its physical meaning, one can employ the
relation of different subbands labeled by n to the corresponding
bulk quantum number kz. In these terms an interband transition
is connected with a certain out-of-plane scattering which
reduces σ s

yx .
In agreement with experiment6 and other calculations19

our results show an increase of the SHE due to reduced
film thickness and existing surface. However, quantitative
agreement with the experiment is not achieved, since the
gigantic SHA of about 12% was measured for a much thicker
film of 10 nm (∼40 ML).

IV. CONCLUSION

We investigated the influence of quantum confinement on
the skew-scattering contribution to the SHE by means of

first-principles calculations. We show that the strength of the
penomenon can be tuned by both the impurity position within
a metal film and its thickness. For the particular situation of
fcc Au(111) films with Pt impurities, the SHA practically does
not exceed the bulk value besides the case of adatoms. They
can reverse the sign of the SHE in comparison to substitutional
impurities and provide a SHA up to 18% for 1 ML noble metal
films. The origin of the gigantic SHE is attributed to lacking
interband transitions for the one-monolayer films.
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