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SU(4) symmetry for strongly correlated electrons: Kondo and mixed-valence effects in terms of
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The concept of dynamical symmetries is used for formulation of the renormalization group approach to the
Kondo effect in the Anderson model with repulsive and attractive interaction U in the Kondo and mixed valence
regimes. It is shown that the generic local dynamical symmetry of the Anderson Hamiltonian is determined
by the SU (4) Lie group. The Anderson Hamiltonian is rewritten in terms of the Gell-Mann matrices of fourth
rank, which form the set of group generators and the basis for construction of the irreducible vector operators
describing the excitation spectra in the charge and spin sectors. The multistage Kondo screening is interpreted
as a consecutive reduction of local SU (n) dynamical symmetries from SU (4) to SU (2). It is shown that the
similarity between the conventional Kondo cotunneling effect for spin 1/2 in the positive U model and the Kondo
resonance for pair tunneling in the negative U model is a direct manifestation of implicit SU (4) symmetry of
the Anderson/Kondo model. The relations between the local SU (4) dynamical symmetry and the global SO(4)
symmetry in the Hubbard model are discussed in brief.
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I. INTRODUCTORY REMARKS

In the 60’s and 70’s, when the basic concepts of dynamical
symmetries have been formulated and elaborated,1–6 only few
physical realizations of these symmetries could be found in
the realm of existing quantum mechanical objects (see Refs. 7
and 8 for a review). One may mention the hydrogen atom9–11

and the harmonic oscillator in various spatial dimensions12–14

as systems for which the study of their dynamical symmetries
revealed additional facets of excitation spectra and response
to external fields. Rapid progress in the nanotechnology
and nanophysics during the two recent decades significantly
extended the field of applicability of these concepts and
enriched the theory with some new ideas.

Contemporary nanophysics15–19 deals with the artificial
structures that consist of a finite number of electrons confined
within a tiny region of space, where the energy spectrum of
electrons is discrete. As a result, such objects can be treated as
“zero-dimensional” artificial atoms or molecules with spatially
quantized discrete states, well defined symmetry, and control-
lable electron occupation. Besides, modern technologies allow
fabrication of devices where a “natural” atom or molecule
is spatially separated from the rest of a device, so that the
physical properties of an individual atom or atomic cluster
may be studied experimentally.

In this paper, we analyze the dynamical symmetries that
arise in a framework of group theoretical approach to a few-
electron nanosystem S with definite symmetry GS in a contact
with a macroscopic system B (“bath” or “reservoir”). Due to
this contact, the symmetries of the system S and the corre-
sponding conservation laws are violated. If the contact between
two systems is weak enough, the dynamics of interaction may
be described in terms of transitions between the eigenstates of
a system S belonging to different irreducible representations
of the group GS generated by the operators which obey the al-
gebra gS . If the operators describing transitions between these
eigenstates together with generators of the group GS form the
enveloping algebra dS for the algebra gS , one may say that

the system S possesses a dynamical symmetry characterized
by some group DS . The dynamical symmetry group technique
offers mathematical tools for the unified approach to quantum
objects, which allows one to consider not only the spectrum
of a system S, but also its response to external perturbation
violating the symmetry GS and various complex many-body
effects characterizing the interaction between the system S
and its environment B. We discuss a general algorithm of
dynamical symmetry group approach to the system B + S

and its practical application to the single-electron tunneling in
complex quantum dots and single-molecule transistors. This
tunneling is described in the framework of Anderson model
with repulsive and attractive interaction between the confined
electrons.

It will be shown that the dynamical symmetry group de-
scribing all transitions between the spin and charge states in the
subsystemS (e.g., quantum dot under Coulomb blockade) with
variable occupation numbers N = 0,1,2 is the semisimple Lie
group SU (4). The basic matrix representation for the genera-
tors of this group is formed by 15 Gell-Mann matrices of 4th
rank. The Anderson Hamiltonian describing electron tunneling
between the dot and the bath will be rewritten in terms of
these matrices. To demonstrate this formalism afoot, we will
reinterpret the renormalization group (RG) approach to the
Anderson-Kondo problem20–24 in terms of reduced dynamical
SU (n) symmetries. Both the high energy/weak coupling RG
description of T matrix and the low-energy/strong coupling
Bethe ansatz for scattering matrix25,26 may be formulated in
terms of corresponding Gell-Mann operators. The well-known
duality of Kondo effect in the Anderson model with repulsive
and attractive interaction27,28 also stems from the internal
structure of the Gell-Mann matrices. Then we discuss the
manifestations of SU (4) dynamical symmetry in the mixed
valence regime with completely suppressed spin excitations.
Finally, we will show that the Gell-Mann operators are hidden
in the regular states forming the basis for the Bethe-Ansatz
solution of the one-dimensional Hubbard chain.29
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II. HUBBARD OPERATORS GENERATING THE
SPECTRUM OF NANOOBJECT

Following the definition used in Ref. 11, we define the
dynamical symmetry group DS as a Lie group of finite
dimension characterized by the irreducible representations
that act in the whole Hilbert space of eigenstates |lλ〉 of the
Schrödinger equation

Ĥ |lλ〉 = El|lλ〉 (2.1)

describing the quantum system S. Here, l is the index of
irreducible representation and λ enumerates the lines of this
representation. The projection operators

X
λμ

(l) = |lλ〉〈lμ| (2.2)

play the central part in the procedure of construction of
irreducible representations l of the group of Schrödinger
equation GS . The basic property of these operators is given by
the equation

X
λμ

(l) |l′ν〉 = δll′δμν |lλ〉 . (2.3)

One may add to the set (2.2) the operators

X
λμ

(ll′) = |lλ〉〈l′μ|, (2.4)

which project the states belonging to different irreducible
representations (l �= l′) of the group GS one onto another.
These operators may be also used for construction of the
Lie algebras dS generating the spectrum of eigenstates of
the Schrödinger equation and transitions between these states.
Unifying the notations |lλ〉 = �〉, we obtain the commutation
relations

[X��′
,Ĥ ] = (E�′ − E�)Ĥ . (2.5)

The right-hand side of Eq. (2.5) turns into zero provided the
states � and �′ belong to the same irreducible representation
of the group GS

The operators X�1�2 have been exploited by J. Hubbard
as a convenient tool for description of elementary excitations
in strongly correlated electron systems (SCES). His seminal
model of interacting electron motion in a narrow band, known
now as the Hubbard model30–33 was the first microscopic
model of SCES for which the conventional perturbative
approach based on the Landau Fermi liquid hypothesis turned
out to fail. Now the realm of SCES is really vast, and the
most of artificial nanostructures in fact belong to this realm.
In particular, complex quantum dots under strong Coulomb
blockade are typical examples of short Hubbard chains or
rings.

If a closed algebra dS exists for the set of Hubbard operators
(2.2) and (2.4), then one may state that the system described
by the Hamiltonian (2.1) possesses the dynamical symmetry
DS . This algebra is conditioned by the norm∑

�

X�� = 1 (2.6)

and by the commutation relations for the operators X�1�2 .
In the general case, these relations may be presented in the
following form:33

[X�1�2 ,X�3�4 ]∓ = X�1�4δ�2�3 ∓ X�3�3δ�1�4 . (2.7)

The “general case” implies that the Fock space includes the
states that may belong to different charge sectors, i.e., changing
the state �1 for the state �2 means changing the number of
fermions N�2 → N�1 in the many-particle system. If both
N�1 − N�2 and N�3 − N�4 are odd numbers (Fermi-type
operators), the plus sign should be chosen in Eq. (2.7). If
at least one of these differences is zero or an even number
(Bose-type operators), one should take the minus sign.

Thus the operators X��′
form a closed algebra. In par-

ticular, the Hubbard operators for the Hubbard model form
the Sp l(2,1) superalgebra (2.7) which has been used, e.g.,
for construction of solutions of the reduced version of the
original Hubbard model, namely, for the 1D t-J model.34,35

In this paper, we discuss another possibility of using the
operators X��′

in the studies of excitation spectra in SCES. If
the Hamiltonian of such system has the form Ĥ = Ĥ0 + Ĥ ′,
where the spectrum E� of correlated electrons described by
the Hamiltonian Ĥ0 is exactly known, the Hubbard operators
describing the interlevel transitions provide a convenient tool
for construction of the algebras generating the dynamical
symmetry group DS0 of the Schrödinger operator (Ĥ0 − E)
or the resolvent operator R̂ = (Ĥ0 − E)−1. Usually, the per-
turbation term Ĥ ′ also contains some generators of DS0. This
perturbation either conserves or violates the local dynamical
symmetry, and in some special cases it incorporates DS0
to another (global) dynamical symmetry DSg . All three
possibilities will be exemplified below.

The generators of the group DS0 are certain linear combi-
nations of operators X��′

. The Hubbard operators also may
be used for construction of irreducible tensor operators O(r)

(scalars, r = 0, vectors, r = 1, and tensors r = 2,3, . . .) that
transform along the representations of the group DS0:

O(r)
� =

∑
��′

〈�|O(r)
� |�′〉X��′

. (2.8)

Here, the index � stands for the components of irreducible
tensor operator of the rank r . On one hand, it is clear that the
operators X��′

generate all the eigenstates of the Hamiltonian
Ĥ0 from any given initial state �′. On the other hand, the
components of the operatorO(r) form their own closed algebra,
which characterizes the dynamical symmetry group provided
the Hamiltonian Ĥ0 possesses such symmetry. Having in mind
the application of this technique to the geometrically confined
nano-objects, we restrict ourself by the discrete eigenstates.

The Clebsch-Gordan expansion (2.8) is the basic equation
that allows one to treat the dynamical symmetries of nano-
objects in a systematic way. The principal difference between
the dynamical symmetries of SCES and those of integrable
models is that in the latter case, the spectrum of the object
and its dynamical symmetries are known exactly, while in
the former case, as a rule, only some part of excitation spectra
(usually its lower part) may be found analytically and classified
by symmetry. This means that one may judge about the
dynamical symmetry of the spectrum only within the definite
energy interval E . Respectively, the characteristic energy scale
may be different for different problems.

Our main subject is the Kondo effect in quantum dots
described by the Anderson Hamiltonian.36,37 The hierarchy
of the energy scales in this problem is well known.38,39 The
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Kondo effect arises as a result of orthogonality catastrophe in
the Anderson model,40 where the conduction electrons in the
Fermi sea of metallic electrodes play part of the subsystem
B and the strongly correlated electrons in the quantum dot
represent the subsystem S. The largest energy scales in the
Anderson model are the width of conduction band D in the
subsystem B and the energy of Coulomb blockade Q in
the subsystem S. The electrons confined in the nano-object
(quantum dot) are characterized by the ionization energy εi .
Next in the hierarchy of energies are the tunneling amplitude V

and the tunneling rate � = πρ0V
2 characterizing the process

of electron tunneling through the potential barrier, which
separates two subsystems. Here, ρ0 is the density of electron
states at the Fermi level εF of the electron liquid in the leads.
The Kondo effect arises in the single-electron tunneling regime
under the restrictions of strong Coulomb blockade Q. In this
regime, the charge transport between the source and drain
electrodes constituting the subsystem B is realized as the
electron cotunneling, where an electron from the source may
tunnel into the dot S only provided another electron leaves the
dot for the drain. Cotunneling, which arises in the fourth order
in V , is characterized by the energy J . Finally, the energy scale
of Kondo effect EK ∼ √

D� exp(−1/ρ0J ) characterizes the
crossover from the weak coupling regime J 
 1 to the strong
coupling, where J is enhanced due to the multiple creation
of low-energy electron-hole pairs in the leads in the process
of cotunneling. The Kondo energy also scales the excitations
above the ground “Kondo-singlet” state.38,39 The hierarchy of
all these energies is

D,U � εi � V � � � J � EK. (2.9)

An effective way to describe the crossover from the weak
to the strong coupling Kondo regime is the renormalization
group (RG) approach.20–24 In this method, the renormalization
of parameters εi,�,J in Eq. (2.9) in the course of reduction of
the energy scale E from high energies ∼D,U to low energies
still exceeding EK is calculated. Our purpose is to describe this
procedure in terms of dynamical symmetries that change in the
course of reduction of the energy scale E . It was noticed that the
multistage Kondo screening predetermines the nonuniversal
features of the Kondo tunneling in the quantum dots with even
occupation.41–43 In that case, the relevant dynamical symmetry
groups are SO(n) with n = 4–8.43,44 In this paper, we will
show that this language is useful already in the studies of the
“ordinary” Kondo effect for quantum dots with odd electron
occupation N characterized by spin 1/2. The relevant Lie
groups are SU (n) with n = 3,4.

III. DYNAMICAL SYMMETRIES IN THE ANDERSON
MODEL FOR QUANTUM DOTS

As was mentioned above, the dynamical symmetries of
confined electrons in the quantum dot S are revealed in its
interaction with the “Fermi bath” B of conduction electrons.
The Anderson Hamiltonian describing the coupling between
two subsystems reads

Ĥ = Ĥd + Ĥb + Ĥdb, (3.1)

where three terms describe the nano-object, the Fermi bath,
and their coupling, respectively. The term Ĥdb in general case

includes the direct coupling (quantum tunneling of electrons
between two subsystems), the direct interaction of Coulomb
and exchange nature, and the indirect (kinematic) interaction
induced by the tunneling. If the symmetry of nano-object is
well defined, the Hamiltonian Ĥd may be diagonalized by
means of projection operators (2.2), and the generators of dy-
namical symmetry group (2.8) arise in the interaction term Ĥdb

in combination with the operators describing the excitations in
the Fermi bath. These symmetries cannot be treated in the same
way as the symmetries of the integrable systems discussed
in the monographs, Refs. 7, 8, and the references therein,
because the interaction not only activates the symmetry DS of
the nano-object but also involves the charge, orbital, and spin
degrees of freedom of the bath. This principal difference was
pointed out in Ref. 43, where the quantum tunneling through
an artificial molecule (double quantum dot) with even electron
occupationN = 2 in presence of the many-particle interaction
of Kondo type was described by means of the generators of
the SO(4) group.

To take the dynamical symmetries explicitly in the cal-
culations of excitation spectra and in the studies of spin
and charge transport in nano-object, one should adhere to
the following paradigm:45 (1) when diagonalizing Ĥd use
the projection operators in accordance with Eqs. (2.1)–(2.5);
(2) construct the operators X��′

, which describe transitions
between all the states in the “supermultiplet” of eigenstates of
Ĥd belonging both to the same and to the different irreducible
representations of the symmetry group GS of the Hamiltonian
Ĥd and determine the relevant closed algebra generating the
dynamical symmetry group DS ; (3) rewrite Ĥdb in terms of
the configuration change operators (2.4) belonging to adjacent
charge sectors N → N ± 1; (4) when projecting the original
Anderson Hamiltonian (3.1) on the subspace of low-energy
states 〈�̄| . . . |�̄〉 by means of the Schrieffer-Wolff (SW)
transformation46 or its generalizations, express the Hubbard
operators that arise in this transformation via the generators
of corresponding dynamical symmetry group using expansion
(2.8).

To demonstrate this paradigm in action, let us consider the
textbook example of a cell that may contain zero, one, or two
electrons with zero orbital moment. The Hamiltonian of this
toy model,

Ĥd = εd

∑
σ=↑,↓

d†
σ dσ + Und↑nd↓, (3.2)

is nothing but the single-site Hamiltonian describing the
elementary cell of the nondegenerate Hubbard model30 with
variable occupation number N = 0,1,2 (“Hubbard atom”).
Using definition (2.4) of the Hubbard operator, we rewrite Ĥd

in the universal form

Ĥd =
∑
�

E�X��, (3.3)

where � = 0,σ,2 and the energy levels E� are

E0 = 0,E↑ = E↓ = E1 ≡ εd,E2 = 2εd + U. (3.4)

It is convenient to arrange the energy levels in accordance
with the available charge and spin sectors [see Fig. 1(a)]. The
arrows connecting the levels E� and E�′ correspond to the
Hubbard operator X��′

and its complex conjugate.
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FIG. 1. (a) Scheme of the energy levels for a Hubbard atom
with the SU (4) dynamical symmetry describing transitions between
the states with occupation N = 0,1,2. (b) The same for a reduced
spectrum with the SU (3) dynamical symmetry describing transitions
between the states with N = 0 or 2 and N = 1. The Bose-like
transitions with even δN = 0, ± 2 are marked by the dashed arrows,
the Fermi-like transitions with odd δN = ±1 are marked by the solid
arrows.

This scheme visualizes the Fermi-like and Bose-like op-
erators (solid and dashed lines, respectively), which obey the
commutation relations (2.7). There are 15 Hubbard operators
describing transitions in this four-level system. The complex
matrices of 4th rank describing the transitions between all
four levels represent the Lie group SU (4), and the Hubbard
operators performing these transitions may be regrouped into
the basic matrices of this group, known as the Gell-Mann
matrices λ1 − λ15 (see Appendix). Thus the generic dynamical
symmetry of Hubbard atom that is realized within the energy
interval E ∼ U,D is SU (4).

Reduction of the energy scale to the interval εi < E 
 U

results in quenching the doubly occupied levels. We remain
with a three-level symmetry, and the dynamical symmetry
reduces from SU (4) to SU (3) [see Fig. 1(b)]. The algebra
generating this group contains eight Gell-Mann matrices of the
3rd rank λ1 − λ8 and the same number of Hubbard operators.
Relations between the matrix of Hubbard operators and the
Gell-Mann matrices for this group are also presented in
Appendix. Further reduction of the energy interval E 
 εi

results in complete suppression of charged sectors N �= 1, so
that we are left only with spin states σ = ↑,↓. In this limit,
the dynamical symmetry is the same as the symmetry of the
Hubbard atom, and the corresponding Lie group is SU (2).

Mathematically, nontrivial dynamical symmetries are de-
scribed by semisimple groups, and the groups SU (n) with
n > 2 belong to this type of Lie groups. If the states in the
Fock space for the Hubbard atom are ordered as

̄4 = (↑ ↓ 0 2), (3.5)

then the first three Gell-Mann matrices, λ1–λ3, are related
to the spin states in the charge sector N = 1. Next nine
matrices, λ4–λ12, describe transitions between the adjacent
charge sectors, (N = 1) ↔ (N = 0,2), and the last three

matrices, λ13–λ15, connect the charge sectors N = 0 and
N = 2 (see Appendix).

It is expedient to rewrite the original Hamiltonian (3.3) in
terms of the generators of the group SU (4) in the case where
all four eigenstates (3.4) shown in Fig. 1(a) are taken into
account, and in terms of the SU (3) generators in the case when
the polar states with N = 2 are frozen out [see Fig. 1(b)]. In
the full space ̄4, we obtain by means of Eq. (A2),

Ĥ
SU (4)
d = E0

4

(
1 − 4√

3
X8

)
+ E1

2

(
1 + 2√

3
X8 + 2√

6
X15

)
+ h

2
X3 + E2

4
(1 −

√
6X15). (3.6)

Here, the notation Xρ is used for the Gell-Mann matrices λρ

defined in the Fock space (3.5). The Zeeman term hSz acting
in the charge sector N = 1 is also added. In the reduced Fock
subspace,

̄3 = (↑ ↓ 0 ) or (↑ ↓ 2 ), (3.7)

the Hamiltonian of the Hubbard atom rewritten with the use
of Eq. (A4) acquires a quite compact form:

Ĥ
SU (3)
d = E0

3
(1 −

√
3X8) + E1

3
(1 +

√
3X8) + h

2
X3.

(3.8)

The Hubbard atom is a minimal model that can be used
for the description of a quantum dot with variable occupation
N coupled with the bath by means of the tunneling channel.
The equilibrium occupation of the dot may be changed by
means of injection of an electron or a hole from the metallic
reservoir.15 This occupation fluctuates dynamically due to the
single electron tunneling (SET) between the dot and the leads.
The Coulomb blockade parameter Q plays the same part as the
Coulomb repulsion U in the original Hubbard model. In the
general case of, say, planar quantum dot, the energy spectrum
of a quantum dot contains many discrete states without definite
angular symmetry. Only the highest occupied (HO) and the
lowest unoccupied (LU) states are involved in single electron
tunneling through such quantum dot. The Hamiltonian of
subsystem S in the Hamiltonian (3.1) has the form

Ĥd =
∑

j

εj d
†
jσ djσ + Ĥint + Q

(
ndot − vgCg

e

)2

. (3.9)

Here, the index j enumerates the levels bottom-up. Ĥint is the
electron-electron interaction in the quantum dot. Usually, the
self-consistent Hartree term is included in the definition of
discrete levels εj , and the relevant contribution to Ĥint is the
exchange between the electrons occupying different levels of
a neutral quantum dot. Q = e2/2C is the capacitive energy of
the dot, ndot = ∑(ext)

jσ d
†
jσ djσ is the number of extra electrons

or holes that are injected in the dot due to tunneling described
by the Hamiltonian Ĥdb,

Ĥdb =
∑
l=s,d

∑
jkσ

(Wljd
†
jσ clkσ + H.c.). (3.10)

Corrections to the capacitive energy take into account the
capacitance of the gate Cg and the gate voltage vg . If the
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hierarchy of the energy scales

Q > (δε,J ) � Wlj (3.11)

takes place (δε is the interlevel spacing between the HO and
LU states, J is the exchange coupling constant), then one may
assert that the charge transfer through the quantum dot occurs
in the SET regime.

Variation of the energy spectrum and the occupation of the
quantum dot as a function of a gate voltage is exemplified
in Fig. 2. The “Hubbard parabolas”30–33 represent the energy
Eel(N ) of the isolated quantum dot with the Hamiltonian (3.9).
Three subsequent diagrams for the occupation N = 1 show
the asymmetric configurations with quenched zero and two
electron occupation (the side diagrams) and the configuration
with particle-hole symmetry (the middle diagram). The single-
particle excitations are the addition and extraction energies
E(N ) − E(N ∓ 1) that should be compared with the chemical
potential of the bath (the Fermi energy)—see the lower panel
of Fig. 2.

It is natural to rewrite the Anderson Hamiltonian in such
a way that the addition energies appear explicitly in the zero-
order terms (3.6) and (3.8). In order to do this, we express the
Hubbard Hamiltonian (3.6) and the tunneling term Hdb,

Hdb =
∑
kσ

(tkd
†
kσ ckσ + H.c.), (3.12)

via the operators from the triads (A3), which are connected
with the original Hubbard operators X��′

acting in the space
(3.5) by the following relations:

T+ = X↑↓, T− = X↓↑, Tz = X↑↑ − X↓↓,

V+ = X↑0, V− = X0↑, Vz = X↑↑ − X00,

U+ = X↓0, U− = X0↓, Uz = X↓↓ − X00,
(3.13)

W+ = X↑2, W− = X2↑, Wz = X↑↑ − X22,

Y+ = X↓2, Y− = X2↓, Yz = X↓↓ − X22,

Z+ = X02, Z− = X20, Zz = X00 − X22.

Equations (3.13) realize the general expansion scheme (2.8)
for the irreducible vector operators in the group SU (4). The
triad �T is nothing but the set of spin 1/2 operators (S+,S−,2Sz,)
acting in the charge sector N = 1. The triad �Z describes the
two-particle excitations (N = 0 ↔ N = 2) with the energy

E20 = E(N = 2) − E(N = 0). (3.14)

The rest four triads describe ionization of the Hubbard atom
with N = 1 addition and extraction energies

E10 = E(N = 1) − E(N = 0),
(3.15)

E12 = E(N = 1) − E(N = 2).

These operators enter the Anderson Hamiltonian correspond-
ing to the Hubbard parabolas of Fig. 2.

The Hamiltonian Ĥ
SU (4)
d may be expressed via the z

components of irreducible vectors (3.13) by means of the
following relations:

Qz = Vz + Uz = X11 − 2X00,

Pz = Wz + Yz = X11 − 2X22, (3.16)

2Zz = Qz − Pz = 2(X22 − X00)

0 1 20 1 2

εF

ds

0 1 2

FIG. 2. (Upper panel) Variation of the energy of the quantum dot
Eel(N ) as a function of the gate voltage. (Lower panel) corresponding
variation of addition energies for electron and hole excitations relative
to the Fermi level in the leads. See the text for further discussion.

[see also Eq. (A5)]. The completeness condition (2.6) reads

X00 + X11 + X22 = 1, X11 =
∑

σ

Xσσ . (3.17)

We find from Eqs. (3.16) and (3.17) the following:

X00 = 1
4 − 1

8 (3Qz − Pz), X22 = 1
4 + 1

8 (Qz − 3Pz),

X11 = 1
2 + 1

4 (Pz + Qz). (3.18)

Using Eqs. (3.13), (3.16) and (3.17), we rewrite creation
and annihilation operators as well as the occupation number
operators for the dot electrons in terms of the Gell-Mann
operators for SU (4) group:

d
†
↑ = V+ + Y−, d

†
↓ = U+ − W−,

(3.19)
nd = X↑↑ + X↓↓ + X22 = 1 + 1

2 (Qz − Pz) = 1 + Zz.

Then the general SU (4) configurations (the first and the
third parabolas in Fig. 2) are described by the Hamiltonian

Ĥ SU (4) = 2E1 + E0 + E2

4
· G0 + h

2
· Tz

+ E10

4
· Qz + E12

4
· Pz + E20

4
· Zz, (3.20)

where G0 is the unit Gell-Mann matrix in the Fock
space ̄4, Eij = Ei − Ej are the addition/extraction energies
(3.14)/(3.15). Thus the operators Pz/4, Qz/4, Zz/4, and Tz/2
describe in the unified way all Fermi- and Bose-like excitations
shown in Fig. 1(a). In the degenerate case E0 = E2 ≡ Ee

(second parabola in Fig. 2), this Hamiltonian reduces to

Ĥ
SU (4)
d = E1 + Ep

2
· G0 + h

2
· Tz + E1e

4
· (Qz + Pz).

(3.21)

The tunneling term Ĥdb also may be expressed via the
generators of SU (4) group, namely, via the ladder operators:

Ĥ
SU (4)
db =

∑
k

tk(V† + Y†)ck↑ + (U† − W−)ck↓ + H.c..

(3.22)
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In the strongly asymmetric situations (the side configura-
tions in Fig. 2, where the excitation E01 is soft, whereas the
excitation E21 is frozen out or vice versa), the symmetry of the
dot is reduced from SU (4) to SU (3). Respectively, the system
(3.18) reduces to

X00 = 1

3
− Qz

3
, X11 = 2

3
+ Qz

3
, (3.23)

or, in terms of operators U,V,

X↑↑ = 1

3
+ 2Vz − Uz

3
, X↓↓ = 1

3
+ 2Uz − Vz

3
. (3.24)

The Anderson Hamiltonian acting in the space ̄3 has the
form

Ĥ
SU (3)
d = 2E1 + E0

3
· G0 + E10

3
· (Uz + Vz) + h

2
· Tz,

(3.25)

Ĥ
SU (3)
db =

∑
k

tk[(V+ck↑ + U+ck↓) + H.c.]. (3.26)

Thus the operators describing the charge Hubbard excitations
in the SU (3) subspace ̄3 (3.7) are �U and �V, whereas the spin
excitations are described by the conventional spin operator
�S = �T/2.

The dynamics of charge and spin excitations in this case
is predetermined by the commutation relations for the group
generators. The operators O belonging to the same subgroup
(triad) commute in accordance with the standard SU (2)
relations

[Oz,O±] = ±2O±,[O+,O−] = Oz. (3.27)

The nonzero commutation relations between the operators
belonging to different triads ensure complex dynamical prop-
erties of Hubbard-like SCES:

[U±,V∓] = ±T∓, [U±,Vz] = ∓U±,
(3.28)

[Uz,V±] = ±V±, [Uz,Vz] = 0.

Respectively, the nonzero anticommutation relations are

{U+,U−} = 2 + Vz − 2Uz

3
,

(3.29)

{V+,V−} = 2 + Uz − 2Vz

3
.

Then the excitations in the charge sector are described by the
Green functions, which may be found directly from equations
of motion for the generators of SU (3) group,

Gv = 〈〈V−(t)V+(0)〉〉,Gu = 〈〈U−(t)U+(0)〉〉. (3.30)

Respectively, the excitations in the spin sector are given by the
Green functions

Gs = 〈〈S−(t) · S+(0)〉. (3.31)

Here, the double brackets stand for thermal averaging and
time-ordering operations specified for the retarded, advanced,
or causal Green function. These functions can be easily
found in the atomic limit where only the term Ĥ

SU (3)
d is

retained. Solving equation of motion for the “Fermi-like”
Green functions that describe excitations in the charge sector,

one gets by means of the commutation and anticommutation
relations (3.28) and (3.29):

Gv(ω) = i

2π

(2 + 〈Vz〉 − 2〈Uz〉)/3

ω − εd

,

Gu(ω) = i

2π

(2 + 〈Uz〉 − 2〈Vz〉)/3

ω − εd

. (3.32)

Using the definitions (3.23) and (3.24), we see that the
numerators in the Green functions (3.32) are nothing but
the averages 〈X00〉 + 〈X↑↑〉 and 〈X00〉 + 〈X↓↓〉, so that these
functions are indeed the atomic Green functions for the
Hubbard model33 rewritten in terms of the generators of the
SU (3) group.

The “Bose-like” Green function Gs that describes the
excitations in the spin sector in the atomic limit has the usual
form

Gs = i

2π

〈Sz〉
ω − h

. (3.33)

To summarize the results obtained in this section, we stress
once more that the dynamical symmetry of four-level system
in the phase space ̄4 (3.5) is indeed the local symmetry of the
Anderson Hamiltonian, which allows the unified description
of the evolution SU (4) → SU (3) → SU (2) accompanying
reduction of the energy scale E due to freezing of charge
degrees of freedom (first partial then complete in accordance
with Figs. 1 and 2). The phase space reduces appropriately
[̄4 → ̄3 → ̄2 = (↑,↓)]. In all cases, the local Hamilto-
nian contains the z components of the group generators, and
the perturbation includes the ladder operators. Respectively,
the zero-order Green functions (3.32) and (3.33) describe the
local excitations with the residues proportional to the averages
of the same z components. Just these “bare” Green functions
form the basis for various diagrammatic techniques elaborated
for SCES.47

IV. IRREDUCIBLE REPRESENTATIONS FOR SU(n)
DYNAMICAL SYMMETRIES OF HUBBARD ATOM

As was noticed in the sixties,4 various families of hadrons
are classified in accordance with the irreducible representa-
tions of SU (3) group (see also Ref. 48). In particular, 18
baryons form two multiplets corresponding to representations
D(11) (the octet of baryons with spin 1/2) and D(30) (the
decuplet of baryons with spin 3/2). The octet of spinless
mesons also transforms along the representation D(11). The
higher representations of the SU (3) group are realized in
the physics of strong interaction because these “composite”
particles possess not only the spin and charge but also the
isospin and hypercharge quantum numbers, and the SU (3)
symmetry characterizes the latter variables. The elementary
particles obeying the SU (3) symmetry are the colored quarks.
The SU (3) symmetry in the hadron multiplets under strong
interaction is satisfied only approximately due to existence
of electro-weak interaction, so that this symmetry may be
treated as a dynamical symmetry in the original sense of this
notion.

The Hubbard atom with frozen doubly occupied states
possesses only two quantum numbers, namely, spin and
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charge. Therefore the multiplet of Hubbard states is described
by the lowest irreducible representation D(10) of the SU (3)
group. To construct this representation, one should recollect
that the two of eight Gell-Mann matrices can be diagonalized
simultaneously. Following Ref. 48 and basing on the Hamil-
tonian (3.25), we choose the representation with diagonal
matrices Tz/2 and Qz/3. Then the set of allowed states is
defined by the two integer numbers λ,μ so that the eigenstates
are determined as

MT = λ + μ,MQ = λ − μ

3
. (4.1)

The whole set of eigenstates form a two-dimensional triangular
lattice on the plane (MT ,MQ). Each irreducible representation

Dλ̄μ̄ is marked by the indices λ̄,μ̄ corresponding to the state
with the maximum eigenvalue M̄Q and the maximum value
of M̄T possible at this M̄Q. Then, the rest states forming
this irreducible representation are constructed by means of
the ladder operators T±,U±,V± acting on the state |M̄Q,M̄T 〉.

This procedure results in construction of the stars of basis
vectors �Dλμ and the polygons connecting the points generated
by the ladder operators subsequently acting on the point
(M̄Q,M̄T ). In the case of baryon family, the corresponding
multiplets are the hexagon with doubly degenerate central
point for representation D(11) and the triangle with ten point in
its vertices and on its sides for representation D(30). In the case
of Hubbard atom, the multiplet is represented by a triangle (see
Fig. 3) labeled in accordance with the state with the highest
quantum numbers λ = 1,μ = 0, which corresponds to the state
|N ,σ 〉 = |1,↑〉 of the Hubbard atom.

Two remaining components of the multiplet ̄3 may be
generated from the state |1,↑〉 by means of the ladder operators
T− = X↓↑ and V− = X0↑. First of these operators corresponds
to the “Bose-like” excitation with spin 1, and the second one is
the “Fermi-like” excitation with spin 1/2. The triangle D(10) is
closed by means of the operator U+ = X↓0. The interrelations
between the values of the parameters λ,μ, the eigenvalues MT

and MQ of the operators Tz/2 and Qz/3, and the eigenvalues
|�〉 of the Hubbard Hamiltonian are presented in the following

0 1−1 MT

MY

(−1,1/3) (1,1/3)

1

−1

(0,−2/3)

V

T

U+

−

−

FIG. 3. Irreducible representation D(10) for the set ̄3.

table:

λ μ MT MQ �

1 0 1/2 1/3 ↑
0 −1 −1/2 1/3 ↓
−1 1 0 −2/3 h

(4.2)

[see Eq. (A5)]. Here, the notation “h” is used for the hole state
|�〉 = |0〉.

Thus we see that the dual nature of the Hubbard operators
manifested in the superalgebra with the commutation relations
(2.7) allows one to use them for construction of the generic
SU (3) algebra formed by the operators with the commutation
relations (3.27) and (3.28).

Like in the case of baryons and mesons, this symmetry is
violated due to interaction with other subsystems. In our case,
this is the Fermi bath B. The source of this interaction is the
tunneling coupling given by the Hamiltonian Ĥ

SU (3)
db .

Generalization of this description for the SU (4) group is
straightforward. In this case, the phase space for the irreducible
representations is defined by the eigenvalues of the operators
Pz, Qz, Tz, and the lowest irreducible representation of this
group D(100) is represented by a triangular pyramid in this 3D
space. Three indices of the representation D(λμν) determine the
eigenvalues MT , MQ, MP of the operators Tz/2, Qz/4, Pz/4 :

MT = λ + μ − ν

2
, MQ = λ − μ + ν

4
, MP = λ − μ − ν

4
.

(4.3)

The relations between the values of the parameters λ,μ,ν, the
eigenvalues of the z components of the SU (4) group generators
and the eigenvalues |�〉 of the Hubbard Hamiltonian are
summarized in the following table:

λ μ ν MT MQ MP MZ �

1 0 0 1/2 1/4 1/4 0 ↑
0 −1 0 −1/2 1/4 1/4 0 ↓
−1 0 −1 0 −1/2 0 −1/4 h

0 1 1 0 0 −1/2 1/4 d

(4.4)

Here, “d” stands for |�〉 = |2〉. The table includes also the
eigenvalues Mz = ν/4 of the operator Zz/4, which is the
combination of two other operators, Mz = (MQ − MP )/2
[see Eq. (3.16)]. Due to above mentioned duality of SU (4)
group, the three eigenvalues MZ,MQ,MP are involved in the
negative-U model.

V. TWO-STAGE RENORMALIZATION GROUP FOR SU(3)
AND SU(4) ANDERSON HAMILTONIAN

In this section, we will see how the hierarchy of dynamical
symmetries of the Hubbard atom manifests itself in the RG
evolution of the Anderson-Kondo problem. The RG method
is based on the idea of renormalization of model parameters,
which are relevant at low energy as a result of the change
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of the scale of high-energy excitations.22 If the model is
renormalizable, any such parameter P (ε) may be represented
as

P (ε) − P [(1 + κ)ε] = −κεP ′(ε), (5.1)

where κ is positive infinitesimal and the prime stands for the
derivative. The quantity −κεP ′(ε) is the contribution to P (ε)
from the high-energy states, which are to be integrated out,
preserving the form of P (ε) but changing its scale.

Having in mind the definition of dynamical symmetry for
correlated electrons presented in Sec. III, we see that the RG
method is intimately related to the dynamical symmetries.
First, the RG procedure reshuffles the energy states of the
system B + S, and second, in the process of renormalization,
the energy scale reduces and this reduction results in successive
freezing out high-energy states of subsystem S, which, in
turn, means reduction of dynamical symmetry of its energy
spectrum. Adopting this approach, we immediately notice the
inevitability of the three- or two-stage RG procedure as a direct
consequence of several energy scales inherent in the Anderson
model and the dynamical SU (n) symmetry of its excitation
spectrum with n = 4 or 3.

A. Model with Hubbard repulsion, U > 0

Taking as an example the first of three Hubbard parabolas
in Fig. 2, we see that in this case the highest-energy scale
is the addition energy E ∼ εd + Q − εF . The corresponding
generators of SU (4) group are �W and �Y. The next energy
scale E ∼ εF − εd is the extraction energy, and the relevant
generators are �U and �V. The lowest-energy scale E 
 t2/εd is
introduced by the second-order cotunneling processes from the
dot to the leads, which are accompanied by the spin flips in
the dot and creation of the low-energy electron-hole pairs in the
leads. The vector operator �T is responsible for these processes.
In other words, we arrive at the renowned Jefferson-Haldane-
Anderson renormalization group (RG) procedure.23,24 Basing
on the symmetry analysis of preceding section, the RG
procedure may be described in terms of the generators of
SU (4) group and its subgroups with the reduction of the
symmetry SU (4) → SU (3) → SU (2) following the reduction
of the energy scale E .

Instead of renormalization of the energy levels E� used
in the original “poor man’s” theory,24 we may use the
advantages of the Gell-Mann representation and turn directly
to renormalization of excitations entering the denominators of
the Green’s functions. Let us rederive, for example, the scaling
equations for the two stage RG SU (3) → SU (2) realized
in the limit U → ∞ in these new terms. In the Anderson
model, the change of the energy scale in Eq. (5.1) means the
contraction of the electron bandwidth D → D − δD in Ĥb.
The renormalized quantities are the self-energies �η(ε) of the
Green functions (3.30) and (3.31), η = u,v,s. The tunneling
Hamiltonian (3.26) gives the second-order self-energy part for
the Green functions Gv,Gu (3.32),

εd = E10 + �

π

∫ D

0

dε

E10 − ε
, (5.2)

where

� = �u = �v = π
∑

k

|tk|2δ(εF − εk)

is the spin-independent tunneling rate. The transformation
(5.1) applied to Eq. (5.2) results in the Jefferson-Haldane
scaling equation23,24

dεd

dD
= �

πD
(5.3)

with the scaling invariant

ε∗
d = εd + �

π
ln

(
πD

�

)
. (5.4)

Thus the evolution of the resonance level is determined by
the vectors �U and �V operating in the charge subsectors of the
group SU (3). The same second-order processes generate the
four-tail vertices ∼ V+U−c

†
k↓ck′↑, U+V−c

†
k↑ck′↓, etc. Using

the commutation relations (3.28), these vertices are combined
in the conventional Schrieffer-Wolff exchange interaction

HSW = J �S · �s, (5.5)

where �s = N−1 ∑
kk′ c

†
k′σ τ̂ ck′σ ′ is the local spin operator for

conduction electrons, τ̂ is the the vector of Pauli matrices, and
J | ∼ tkF

|2/E10 is the indirect Kondo exchange. The scaling
equations for this Hamiltonian may be derived by means of
the Anderson’s RG procedure.

In the symmetric configuration (middle parabola in Fig. 2),
the Jefferson-Haldane-Anderson scaling theory is in fact
the manifestation of reduction of the dynamical symmetry
SU (4) → SU (2) in which the charge excitations represented
by the vectors ( �W,�Y,�U,�V) are frozen out in the process
of renormalization and the subgroup �T describing the spin
degrees of freedom in the charge sector N = 1 represents
the low-energy part of the spectrum responsible for the
Kondo singularities. Five vectors of six triads available in the
Gell-Mann set are involved in this two-stage procedure.

B. Model with Hubbard attraction, U ′ < 0

Another choice of 15 linearly independent generators of
the SU (4) dynamical symmetry is possible in the case where
instead of the spin degeneracy of the ground state with N = 1
the charge degeneracy of the two singlets with N = 0,2 is
realized. Such a possibility arises in the negative U Anderson
model.27,28,49 In this configuration, the vector �T is excluded
from the renormalization procedure due to quenching of
the sector N = 1 at low energies. Instead, the vector �Z is
involved in formation of the Kondo singularities. The attractive
interaction between the electrons in the nano-object in this
model stems from the strong electron-phonon interaction.
Starting with the Anderson-Holstein model where the phonon
subsystem is represented by the single Einstein mode with the
energy �0, one may perform the canonical transformation,50

which transforms the electron-phonon interaction into the
polaron dressing exponent for the electron tunneling rate,
the polaron shift of discrete electron levels and the phonon
mediated electron-electron interaction. The latter renormalizes
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FIG. 4. (Upper panel) inverted Hubbard parabolas for the nega-
tive U Hubbard atom in the cases of empty and doubly occupied
shells. The interlevel transitions are described by the operators
generating the SU (4) dynamical group. (Lower panel) single-electron
levels corresponding to the transitions shown by the arrows in the
upper panel (see the text for further explanation).

the Hubbard interaction term in the Anderson Hamiltonian:

U ′ = U − 2λ2�0. (5.6)

Here, λ is the electron-phonon coupling constant. In the limit
of strong electron-phonon coupling, the energy gain due to the
phonon mediated interaction overcomes the energy loss due
to the Hubbard repulsion, and one comes to the case U ′ < 0.
The negative U model may be realized in the single electron
molecular transistors.51–56 The interaction (5.6) should be
included in the term Ĥd , so that in the negative U case,
the Hubbard parabolas for the energy spectrum are reversed
relative to the usual shape shown in the middle configuration
of Fig. 2. The “turned over” diagrams corresponding to the
two nearly symmetric configurations shown in Fig. 4.

Like in the positive U case, the transitions between the
levels in the Hubbard supermultiplet are described by the
operators (3.13) generating the SU (4) dynamical symmetry
group. We consider here the configurations, where the singlet
states |�〉 = |0〉,|2〉 are degenerate or nearly degenerate, and
the spin doublet |�〉 = |↑〉,|↓〉 is an excited virtual state in
the cotunneling processes. The two configurations presented
in Fig. 4 correspond to the empty and completely filled
two-electron shell of the Hubbard atom. They are connected
by the particle-hole symmetry transformation, so it is enough
to discuss one of them.

We will show below that the negative U Anderson model
may be formally mapped on the positive U model, by means
of the multistage RG method, which generalizes the Jefferson-
Haldane-Anderson procedure20,23,24 mentioned above. In the
positive U case, after freezing out the high-energy excitations
E01 and E21 corresponding to injection of a hole or of
an electron into the singly occupied quantum dot at the
Jefferson-Haldane stage of the renormalization, one arrives
at the Anderson stage of Kondo screening of spin excitations

in the sector N = 1 described by the vector operator �T. In
the negative U model, the spin excitations are exponentially
suppressed from the very beginning. After freezing out the
charge excitations E10 and E12 generated by the operators
�U,�V, �W,�Y, we are left only with the two-particle charge
excitations E20 generated by the operator �Z.

Since the Jefferson-Haldane stage of the RG procedure is
realized exactly in the same way as in the positive U Anderson
model, we concentrate on the second stage, where the SU (4)
dynamical symmetry group is reduced to its SU (2) subgroup
represented by the triad �Z. These operators act in the subspace
̄2 = (0,2). The effective SW Hamiltonian in this subspace
reads

Ĥcotun = N
J⊥
2

(Z+B− + Z−B+) + NJ‖ZzBz, (5.7)

where the components of the vector �Z are presented in the
last line of the system (3.13). The components of the vector �B
defined in the space of two-particle itinerant excitations are

B+ = N−1
∑
kk′

c
†
k↑c

†
k′↓, B− = N−1

∑
kk′

ck↓ck′↑,

Bz = N−1
∑
kk′

(c†k↑ck′↑ − ck′↓c
†
k↓) = N−1

∑
kk′

∑
σ

c
†
kσ ck′σ − 1.

(5.8)

These operators obey the SU (2) commutation relations

[B+,B−] = Bz,[Bz,B
±] = ±2B±. (5.9)

The transversal part of the Hamiltonian (5.7) describes the
tunneling of singlet electron pairs between the leads and the
molecule, whereas its longitudinal part stems from the band
electron scattering on the charge fluctuations.

Thus the Hamiltonian of two-electron tunneling is formally
mapped onto the anisotropic Kondo Hamiltonian27,28,51 (see
Fig. 5). The origin of this anisotropy is the polaron dressing of

J ||

Z
_

0(2) 0(2)

Zz zB

J_|

0 2

Z+B

0 2 0

Z B

−−

+ − Z B− +

02

Z
_ +

2

Z+BB

0 2 2

Z

0 0 2
Z+ZzBz B

__

B
_+ BZz z

FIG. 5. RG diagrams in the space ̄2 = (0,2). (Upper panel)
the bare vertices J⊥ for the two-electron tunneling and J‖ for the
charge scattering. (Lower panel) the diagrams for the second-order
renormalization of these vertices. Solid lines stand for the conduction
electron states, dashed lines denote the charge states of the molecule.
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tunneling matrix elements.51 This dressing is different for the
two-electron cotunneling and the electron scattering coupling
parameters in the Hamiltonian (5.7). In the strong electron-
phonon coupling limit, (λ/�0)2 = S � 1,

J⊥
J‖

= 〈2|0〉 ∼ e−2(λ/�0)2
. (5.10)

The eventual source of this anisotropy is the overlap between
the phonon wave functions for a molecule in the charge states
N = 0 and 2, i.e., the Huang-Rhys factor S.

In a framework of the Anderson RG scaling procedure,
this means that the renormalization diagrams for the two
models are the same, namely, the diagrams in the first and the
second columns of Fig. 5 are mapped on the longitudinal and
transversal components of the Kondo exchange Hamiltonian
(5.5). The mapping procedure implies the substitution �S → �Z,
�s → �B. The scaling equations, which follow from these
equations are the same as for the conventional anisotropic
Kondo model,20 namely,

dj‖
dη

= −j 2
⊥,

dj⊥
dη

= −j⊥j‖ (5.11)

(ji = ρ0Ji). In the case of strong anisotropy (5.10), the solution
of this system gives for the Kondo temperature the following
equation:51

TK ∼
(

j⊥
j‖

)1/j‖
∼ D̄ exp

[
− π�0

2�

(
λ

�0

)4]
. (5.12)

The last equation in (5.12) is valid in the limit of strong
electron-phonon coupling S � 1. Generally, the polaron nar-
rowing of the tunneling rate results in a noticeable decrease of
TK in comparison with its value for the conventional Kondo
effect.

We have demonstrated in this section that the dynamical
symmetry is the same for the negative and positive U

Anderson models. However, in spite of the formal similarity
between the effective Hamiltonians for the single electron
cotunneling and the electron pair cotunneling, the background
physics is different in two versions of the Anderson model.
In the positive U Anderson model, the tunneling in the
middle of the Coulomb window arises exclusively due to
the many-body Abrikosov-Suhl resonance. In the negative U

model, the resonance conditions for the two-electron tunneling
arise at E02 = 0 irrelatively to the many body particle-hole
screening mechanism, so that the zero bias anomaly in the
tunneling conductance exists already at T � TK as well as
the finite bias anomaly at E02 �= 0.54–56 One may say that
the Anderson orthogonality catastrophe40 responsible for the
many-body Kondo-like screening at low T only enhances
the two-electron tunneling resonance already sharpened due
to nonorthogonality of the phonon clouds measured by the
Huang-Rhys factor (5.10). The finite difference E02 �= 0 in the
negative U model is equivalent to the finite magnetic field in
the positive U model: it results in the appearance of two split
finite bias peaks in the tunneling conductance.

Having in mind all these differences, one may state
that the multistage RG procedure reveals the hierarchy of
reduced dynamical symmetries SU (4) → SU (3) → SU (2) in
the Anderson model both with the Hubbard repulsion for

odd occupation and with the Hubbard attraction for even
occupation.

VI. MIXED-VALENCE REGIME

Let us apply the SU (n) symmetry analysis to the mixed
valence (MV) regime where in accordance with Haldane’s
classification,24 the scaling invariant of the RG theory (5.4)
satisfies the condition |ε∗

d − εF | � �. The MV regime is the
basic configuration, where the SU (4) symmetry is a genuine
symmetry of the ground state |0〉 and the excitations |�e〉
related to the “impurity” center. This means that the interlevel
transitions shown in Fig. 1 are involved in formation of |0〉
and |�e〉 both in the weak and the strong coupling regimes.25,26

Indeed, in the trivial case of U = 0,εd − εF < 0, we start
with the doubly occupied dot, N = 2, and completely filled
Fermi sphere of the reservoir, so that the actual interlevel
transitions are E21 = E2↑ = E2↓ = εd − εF . The ground state
of the system is spin singlet due to the Pauli principle, and
the structure of the spectrum is described in terms of Friedel
resonances for two spin projections. The wave functions of the
excitations with extra electron may be found exactly:

|�↑〉 = D−1/2

[
(V+ + Y−) +

∑
k

Akc
†
k↑

]
|0〉,

(6.1)

|�↓〉 = D−1/2

[
(U+ − W−) +

∑
k

Akc
†
k↓

]
|0〉

(D is the normalization factor). At finite U , the excitation
spectrum may be found as a result of diagonalization of
the scattering S matrix by means of the Bethe ansatz
procedure. The elements of this matrix are determined by
the Schroedinger equation for the two electron singlet states
with the eigenvector,25 which can be rewritten in terms of the
generators of SU (4) group:

|�〉 =
{ ∫

dx1dx2A(x1,x2)c†↑(x1)c†↓(x2)

+
∫

dxB(x)[c†↑(x)(U+ − W−)

− c
†
↓(x)(V+ + Y+)] + CZ−

}
|0〉, (6.2)

so that the ladder generators of SU (4) group are involved.
Here, the vacuum state is defined as an empty dot and the
filled Fermi sphere.

Of course, these excitations are complex many-body states.
According to the exact solution, local charge excitations
(holons) are singlet 2e holes dressed by the electron back-flow,
so that the effective charge of spinless holon is e. Respectively,
spinons are complex excitation where a spinful electron is
dressed by the back-flow, which exactly compensates its charge
but leaves intact its spin.26 In the mixed valence regime, the
spectral densities of charge and spin excitations are centered
around zero and strongly overlapped, while in the Kondo
regime, the spinon and holon spectra are separated from each
other by the energy gap. The ladder operators from the triad
T formally do not enter expansion (6.2) but in fact they are
involved in formation of the many-particle ground state and
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FIG. 6. (Left) Energy level scheme for quantum dot with occu-
pation N = 1 in a contact with fully spin polarized metallic leads.
(Right) The same for N = 2.

low-energy excitations via the higher ordering rescattering
processes due to the commutation relations (3.28).

In situations, where the spin-flip excitations described by
the vector T are frozen at low energies for some physical
reason, the mixed-valence state involves only the operators
U,V,W,Y from the charged sector. An example of such
situations is a quantum dot in a tunneling contact with
half-metallic (fully spin-polarized) leads (see Fig. 6).

In these systems, the gap for the spin-flip processes exists in
the ferromagnetic leads due to full polarization of conduction
electrons. The molecular field in the leads induces “stray”
magnetic field in the dot due to mutual interpenetration of the
wave functions (tunneling hybridization tk in the Hamiltonian
Ĥdb, see, e.g., Ref. 57). This field, in turn, polarizes the dot.
As a result, at large enough U , the level εd occupied by spin
up electron is hybridized with majority spin in the band εk↑,
whereas the empty level εd + U is hybridized with the empty
band εk↓, and the spin-flip processes are strongly suppressed
at energies ω � �. Due to this suppression, the excitations
described by the vectors U and V are not interlaced. Then, in
accordance with the RG approach, the low-energy properties
of the system are determined by the energy scale E ∼ εt − εd ,
and the Dyson equation for the excitations in the V sector may
be solved exactly. The result for the dot Green functions is

Gv(ω) = i

2π

(2 + 〈Vz〉 − 2〈Uz〉)/3

ω − E10 − �v(ω)
,

(6.3)

where

�v(ω) = �↑
π

∫ εt dε

ω − ε
(6.4)

[cf. (5.2)]. Here, the real and imaginary parts of the self energy
�v(ω) describe the Friedel shift and damping of the resonance
level E10 → εd + i�↑ (see the left panel of Fig. 6). We see
that the dot states retain their SU (3) symmetry.

Even more fundamental statement may be formulated in
the case, where the renormalized level shifts to the energy
gap58,59 (see Fig. 6, right panel). In this case, corresponding to
the charge sector N = 2 the canonical transformation for the
discrete states may be offered:60,61

W̃− = W− cos γ↓ + C
†
↓Kw

sin γ↓
γ↓

(6.5)

with

C†
σ =

∑
k

c
†
kσ , Kw = 2 + Wz − 2Yz

3
. (6.6)

The coefficients in this transformation are predetermined by
the energy dependence of the self-energy

�w(ω) = �↓
π

∫
εb

dε

E21 − ε
(6.7)

in the discrete part of the spectrum,

tan2 γ↓ = −d�w(ω)

dω

∣∣∣∣
ω=ε↓

. (6.8)

The position of the renormalized level εd↓ = Ẽ12 in the energy
gap is determined by the integral equation

ε̃d↓ = εd + Ũ + �w(εd↓). (6.9)

Not only the “atomic” energy level is renormalized in Eq. (6.9),
but also the Coulomb repulsion is reduced due to charge
transfer between the dot and the leads, U → Ũ . Due to the
same charge transfer the actual occupation of dot is nd < 2 (see
Fig. 6, right panel) and nd < 1 (see Fig. 6, left panel) provided
the level width �↓ > εF − εb and �↑ > εF − εd , respectively.

The last example of mixed valence solution in a half-metal
with discrete level ε̃d↓, where the Kondo correlations are
completely suppressed, demonstrate especially distinctly that
the SU (3) symmetry is indeed the intrinsic symmetry of the
Anderson model. As a result of tunneling (or hybridization)
charge transfer between the dot (or impurity), a sort of
“pseudoatom” arises, where the dot electron wave functions
are extended into the regions where itinerant electrons reside,
but the basic SU (3) symmetry of the Hamiltonian Ĥd remained
unperturbed as a result of transformation (6.5).

VII. SU(4) DYNAMICAL SYMMETRY FOR THE
HUBBARD LATTICE

As is known,29,62,63 the eigenstates of the Hubbard model on
a bipartite lattice may be classified along the representations
of the SO(4) group. It is instructive to trace how this global
symmetry of the Hubbard lattice is related to the local SU (4)
dynamical symmetry of a Hubbard atom with the Hamiltonian
Ĥdm on a site m. We will discuss this correlation by the example
of the integrable Hubbard chain model with the Hamiltonian

ĤHub =
L∑

m=1

(Ĥdm + td†
mσdm+1) (7.1)

under conditions of particle-hole symmetry, εd − εF = U/2
(central column in Fig. 2). Here, the number of sites L in the
chain is even and the cyclic boundary conditions L + 1 = 1
are adopted.
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One may find the Casimir operator commuting with all
generators of SU (4) group (3.13) acting at each site m, namely,

Cm = �T2
m + �U2

m + �V2
m + �W2

m + �Y2
m + �Z2

m = 9

2
G0. (7.2)

Each term in this sum as well as the operators Pz, Qz,
Tz commute with the Hamiltonian Ĥdm. Two operators
commuting with the Hubbard Hamiltonian on a bipartite lattice
may be introduced. These are the operators of the full spin and
the η spin, generating SU (2) spin and SU (2) charge subgroups
of the semisimple group SO(4) → SU (2) × SU (2)/Z2. Both
these operators may be expressed in terms of the generators of
local SU (4) symmetry. In case of the 1D Hubbard chain, these
expressions read

Sα =
L∑

m=1

d†
mσ τα

σσ ′dmσ ′ = 1

2

L∑
m=1

Tα
m (7.3)

(α = ±,z, τα are the corresponding Pauli matrices),

η+ =
L∑

m=1

(−1)m+1d
†
m↑d

†
m↓ =

L∑
m=1

(−1)m+1Z+
m,

η− =
L∑

m=1

(−1)m+1dm↓dm↑ =
L∑

m=1

(−1)m+1Z−
m, (7.4)

ηz =
L∑

m=1

(nm↑ + nm↓ − 1) = 1

2

L∑
m=1

Zz
m.

The group generators �S and �η act in the subspaces {↑,↓}
and {0,2} of the full Fock space, respectively. They commute
with the Hubbard chain Hamiltonian and form two Casimir
operators �S 2 and �η 2. The operators belonging to each of two
triades �S and �η obey the Pauli-like commutation relations, and
[Sα,ηβ] = 0.

This spin-charge separation of the variables, is character-
istic also for the excitation spectrum. In particular, the Bethe
ansatz solution of the problem uses the set of states with N

electrons and M down spins. This solution may be constructed
by means of the well defined procedure using the operators
(7.3) and (7.4), which act on the state |ψk,λ〉 with given charge
momentum k, spin rapidity λ and the highest weight of the total
spin, so that S+|ψk,λ〉 = 0, Sz|ψk,λ〉 = 1

2 (N − 2M)|ψk,λ〉 (cf.
the choice of the state |M̄Q,M̄T 〉 in the previous section). The
set of regular Bethe ansatz states has the following structure:

|ψk,λ,α,β〉 = (ζ †)α(η†)β |ψk,λ〉. (7.5)

Here, the vector �ζ with the components ζ∓ = S±, ζ z = −Sz

is the contravariant partner of the vector �S.
Thus we see that the excitation spectrum of the Hubbard

chain may be constructed by means of the generators of local
dynamical SU (4) symmetry of the Hubbard atom. Apparently,
this statement is valid in a more general context; for example,
the Ward identities connecting the vertex functions and the
Green functions on a bipartite Hubbard lattice63 are derived
by means of the same generators �S and �η.

The last example reflects the duality of the triads �S and �Z,
which was mentioned above. Due to this immanent duality of
SU (4) operators acting in 4, the negative U Hubbard model

may be treated by means of the same tools as the positive U

model similarly to the Anderson Hamiltonian.

VIII. CONCLUDING REMARKS

In this paper, we have shown that the “atomic” part Ĥd of
the Anderson and Hubbard Hamiltonians may be treated as
a four-level system in the mixed charge-spin space 4 (3.5),
so that the interlevel transitions induced by the tunneling term
Ĥdb activate the implicit SU (4) dynamical symmetry of the
model. In many cases, this symmetry is manifested only at high
energies, whereas at low energies, only one or two subgroups
of the full SU (4) group survive in the low-energy part of
excitation spectra. The form of the Hamiltonian Ĥd (3.21),
(3.25) demonstrates explicitly that the Gell-Mann matrices of
the 4th and 3rd rank provide the natural tool for treating the
excitations in the Fock spaces 4 and 3, respectively. The
Casimir operator for the group SU (4) is given by Eq. (7.2), so
that neither the local spin, nor the local charge of a “Hubbard
atom” are good quantum numbers in the general case of
an interacting system S + B. One may say that the basic
properties of SCES described by the Hubbard and Anderson
Hamiltonians are characterized not only by the conventional
symmetry of these Hamiltonians but also by the dynamical
symmetry of excitation spectra.

The Gell-Mann representation for SCES with zero-order
Hamiltonian Ĥd (3.2) transformed into Eq. (3.21) or (3.25)
allows one to describe directly the excitation spectra in
charge and spin sectors within the unified formalism based on
calculations of the self-energy diagrams for the renormalized
Green functions (3.32) and (3.33). Of course, the non-Abelian
Gell-Mann algebras like (3.27) and (3.28) make difficult any
practical calculations based on the Feynman diagrammatics
that appeals to the Wick’s theorem (see, e.g., Ref. 47). In
order to restore simple Feynman rules, various bosonization
and fermionization procedures for the generators (3.13) may
be chosen.64–67 For example, the slave boson factorization for
the group SU (3) reads

V+ = f
†
↑h, V− = f↑h†, Vz = f

†
↑f↑ − h†h,

U+ = f
†
↓h, U− = f↓h†, Uz = f

†
↓f↓ − h†h, (8.1)

Tα
σσ ′ = f †

σ τα
σσ ′fσ ′hh†,

where f †
σ and h† are chargeless spin-fermion operators and

spinless boson (holon) operators, respectively. The toll for this
factorization is the necessity to project out the nonphysical
states with zero and two fermions. The vertices also become
more complicated. In particular, the two-tail vertices in the
tunneling Hamiltonian (3.26) transform into the three-tail
vertices ∼f †

σ hckσ . Then the temptation arises to introduce the
mean field decoupling ∼〈h〉f †

σ ckσ or, at least, to consider spin
fermion and holon as two independent dynamical variables.
It was noticed68 that such decoupling violates the gauge
invariance U (1) of the Hamiltonian. In order to restore this
invariance, one has to ascribe a charge gauge phase to charge-
less spin fermions. We conclude from above consideration
that such decoupling also violates the SU (3) symmetry of the
Anderson and Hubbard models. In particular, it is seen from
the structure of the zero-order Hamiltonian Ĥd that E10 is the
eigenstate of the operator Qz, which fixes not the holon and
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spin-fermion occupation numbers but their difference

Vz + Uz =
∑

σ

nf σ − 2nh (8.2)

[see Eqs. (3.25), (4.2), and (8.1)].
J. Hubbard in his pioneering papers30–33 warned us against

decoupling the single-site correlations in the Green functions
containing the X operators. One may say that the mean-field
decoupling of Hubbard operators is a crude violation of
this commandment, which breaks the intrinsic symmetry of
strongly correlated electron systems and results in multiple
artifacts in description of these quantum objects. We hope
that the use of Gell-Mann representation will pave the way
for construction of diagrammatic techniques free from such
shortcomings. Besides, the simple form of the Anderson
Hamiltonian in Gell-Mann representation, (3.21)–(3.26) may
facilitate formulation of low-energy field theories, especially,
for the system with charge-spin separation.

We considered in this paper only the dynamical symmetries
of nondegenerate Hubbard atom. Similar approach may be
used for the models including orbital variables (double quan-
tum dots and two-well traps, in general). In that case, one deals
with the spin �σ and pseudospin �τ variables, and the interlevel
transitions also obey the SU (4) dynamical symmetry groups.69

If the two-trap well is occupied by the spinless objects

(e.g., cold atoms), the corresponding dynamical symmetry
is SU (3).70 In these situations, the Gell-Mann matrices do
not reflect the nature of excitation spectra, and other matrix
representations of SU (n) groups should be used. But in all
cases, the group generators may be constructed by means of
appropriate Hubbard operators.

The general picture of dynamical symmetries includes not
only the nano-objects with local SU (n) symmetries in the
subspaces n with variable occupation numbersN but also the
objects with local symmetries SO(n) existing in the subspaces
�n = {S,T ,EiS,EiT } with fixed even N , where S and T are
spin singlet and spin triplet and EiS and EiT are various singlet
and triplet charge transfer excitons, respectively. Numerous
physical manifestations of these symmetries are described in
Ref. 71.

APPENDIX: GELL-MANN MATRICES AND HUBBARD
OPERATORS

Here, we summarize for the sake of convenience some
properties of the Gell-Mann matrices of 4th rank and their re-
alization in the Hubbard and Anderson models. The canonical
form of these matrices describing the symmetry of four-level
systems is

λ1 =

⎛⎜⎜⎜⎝
0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ , λ2 =

⎛⎜⎜⎜⎝
0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ , λ3 =

⎛⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ , λ4 =

⎛⎜⎜⎜⎝
0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ ,

λ5 =

⎛⎜⎜⎜⎝
0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

⎞⎟⎟⎟⎠ , λ6 =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

⎞⎟⎟⎟⎠ , λ7 =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

⎞⎟⎟⎟⎠ , λ8 = 1√
3

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

⎞⎟⎟⎟⎠ ,

(A1)

λ9 =

⎛⎜⎜⎜⎝
0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

⎞⎟⎟⎟⎠ , λ10 =

⎛⎜⎜⎜⎝
0 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 0

⎞⎟⎟⎟⎠ , λ11 =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

⎞⎟⎟⎟⎠ , λ12 =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 −i

0 0 0 0

0 i 0 0

⎞⎟⎟⎟⎠ ,

λ13 =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎠ , λ14 =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0

⎞⎟⎟⎟⎠ , λ15 = 1√
6

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

⎞⎟⎟⎟⎠ ,

(see, e.g., Ref. 72). First eight matrices contain the 3rd rank Gell-Mann operators of the SU (3) group as submatrices. The
operators λ9–λ15 generate transitions between the triplet and the fourth level.

Each nonzero matrix element in λi represents one of the Hubbard operators X��′
acting in the space 4 (3.5). Using this

mapping, we find the inverse representation of Hubbard operators via the Gell-Mann matrices:

X↑0 = 1

2
(λ4 + iλ5), X0↑ = 1

2
(λ4 − iλ5), X↓0 = 1

2
(λ6 + iλ7), X0↓ = 1

2
(λ6 − iλ7)/2,

X2↑ = 1

2
(λ9 − iλ10), X↑2 = 1

2
(λ9 + iλ10), X2↓ = 1

2
(λ11 − iλ12), X↓2 = 1

2
(λ11 + iλ12),

X↑↓ = 1

2
(λ1 + iλ2), X↓↑ = 1

2
(λ1 − iλ2), X20 = 1

2
(λ13 − iλ14), X02 = 1

2
(λ13 + iλ14),
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X↑↑ = 1

4

(
1 + 2λ3 + 2√

3
λ8 + 2√

6
λ15

)
, X↓↓ = 1

4

(
1 − 2λ3 + 2√

3
λ8 + 2√

6
λ15

)
,

X00 = 1

4

(
1 − 4√

3
λ8 + 2√

6
λ15

)
, X22 = 1

4
(1 −

√
6λ15). (A2)

One may construct a subgroup SU (2) of the group SU (n) for any 2D subspace of the effective Fock space. There are three
such “triads” grouped in three vectors �T, �U, and �V for the group SU (3) with the symmetry operations acting in the 3D space ̄3

(cf. Ref. 48). Adding fourth dimension provides three more vectors �W, �Y, and �Z representing the generators of the group SU (4)
together with the first three vectors:

T± = 1

2
(λ1 ± iλ2), Tz = λ3, U± = 1

2
(λ6 ± iλ7), Uz = 1

2
(−λ3 +

√
3λ8),

V± = 1

2
(λ4 ± iλ5), Vz = 1

2
(λ3 +

√
3λ8), W± = 1

2
(λ9 ± iλ10), Wz = 1

2

(
λ3 + 1√

3
λ8 + 4√

6
λ15

)
, (A3)

Y± = 1

2
(λ11 ± iλ12), Yz = 1

2

(
− λ3 + 1√

3
λ8 + 4√

6
λ15

)
, Z± = 1

2
(λ13 ± iλ14) , Zz = 1√

3
(−λ8 +

√
2λ15).

The operators T± and Tz from the first triad in the set (A3) describe the spin-flip excitations in the homopolar subspace N = 1
of the Hubbard atom. The operators Z± and Zz from the last triad may be used in the description of excitations in the two-particle
sector N = {0,2} of the Hubbard and Anderson models. The operators forming the triads �U and �V intermix the states from the
charge sectors N = 0 and 1, and the operators �W and �Y do the same for the sectors N = 2 and 1 [see Eq. (3.13)].

In many physical applications, the reduced Anderson and Hubbard Hamiltonians with U → ∞ are exploited. In this limit,
the doubly occupied state |2〉 is completely suppressed. In the appropriately reduced Fock space ̄3 (3.7) possessing the SU (3)
symmetry, the system (A2) transforms into

X↑0 = 1

2
(λ4 + iλ5), X0↑ = 1

2
(λ4 − iλ5), X↓0 = 1

2
(λ6 + iλ7), X0↓ = 1

2
(λ6 − iλ7)/2,

X↑↓ = 1

2
(λ1 + iλ2), X↓↑ = 1

2
(λ1 − iλ2), X↑↑ = 1

2

(
2

3
+ λ3 + 1√

3
λ8

)
, X↓↓ = 1

2

(
2

3
− λ3 + 1√

3
λ8

)
, (A4)

X00 = 1

3
(1 −

√
3λ8).

Within each triad the standard Pauli commutation relations (3.27) for the components are valid. The commutation relations
between the operators from different subgroups are described by more complicated structure factors.48 These relations in our
case may be derived from the general commutation relations (2.7) for the Hubbard operators (see the main text).

Two diagonal matrices entering the Hamiltonian (3.20) are

Qz =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

⎞⎟⎟⎟⎠ , Pz =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −2

⎞⎟⎟⎟⎠ . (A5)

[see also Eq. (4.4)].
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