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Field-theoretical approach to Anderson localization in 2D disordered fermionic systems of chiral symmetry
classes (BDI, AIII, CII) is developed. Important representatives of these symmetry classes are random
hopping models on bipartite lattices at the band center. As was found by Gade and Wegner two decades
ago within the sigma-model formalism, quantum interference effects in these classes are absent to all orders
of perturbation theory. We demonstrate that the quantum localization effects emerge when the theory is treated
nonperturbatively. Specifically, they are controlled by topological vortexlike excitations of the sigma models.
We derive renormalization-group equations including these nonperturbative contributions. Analyzing them, we
find that the 2D disordered systems of chiral classes undergo a metal-insulator transition driven by topologically
induced Anderson localization. We also show that the Wess-Zumino and Z2 θ terms on surfaces of 3D topological
insulators (in classes AIII and CII, respectively) overpower the vortex-induced localization.
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I. INTRODUCTION

Disorder-induced metal-insulator transitions represent a
fundamental concept of modern condensed matter physics.
The principal mechanism of this phenomenon is Anderson
localization1 due to quantum interference between different
trajectories of electron propagation in a disordered medium.
As was realized in the seventies by Thouless and Wegner,2,3

the problem of Anderson localization is closely connected
to the scaling theory of critical phenomena. Several years
later, Abrahams and coauthors formulated the scaling theory
of localization4 describing the problem in terms of a flow of
the dimensionless conductance g with the system size L. This
phenomenological theory was put on a solid basis by Wegner5

who discovered the field-theoretical description of Anderson
localization in terms of a nonlinear sigma model. The latter is
an effective field theory of the problem, capturing all essential
properties of the system including its symmetry and topology.
The crucial importance of the topological aspect was first
demonstrated by Pruisken in the framework of the quantum
Hall effect.6 The field-theoretical (sigma model) formulation
of the problem underpins the notion of universality of critical
behavior at metal-insulator transitions, i.e., its independence
of microscopic details of the electron motion. Over the years,
the sigma model permitted the great progress in understand-
ing localization phenomena including, in particular, critical
behavior,5,7,8 energy level and wave function statistics,7,9

symmetry classification,10 interaction (most prominently 2D
metal-insulator transition) and nonequilibrium effects,11–14

theory of unconventional disordered superconductors,15 and
classification of topological insulators and superconductors.16

Recent years have witnessed increasing interest and sig-
nificant progress in the field of the Anderson localization.
Development of the complete symmetry classification of
disordered systems10 is one of most important advances. It
has been realized that underlying symmetries and topologies
induce a remarkable variety of the types of infrared (long-

distance, low-temperature) behavior, including, in particular,
critical phases and quantum phase transitions between metallic
and insulating states.8 Experimental discoveries of graphene17

and of topological insulators18–20 have given an additional
boost to the field. Disordered Dirac fermions in graphene in
the absence of valley mixing and surface states of disordered
topological insulators and superconductors are characterized
by sigma models with Wess-Zumino or θ terms, ensuring a
topological protection from localization.8,16,21

The full symmetry classification of disordered fermion
systems8,10 includes three families of symmetry classes:
conventional (Wigner-Dyson), chiral, and superconducting
(Bogoliubov-de Gennes). In this paper, we will consider
localization properties of 2D chiral models. A characteristic
feature of these systems is the chiral symmetry of the
underlying Hamiltonian H = −CHC−1, where C2 = 1. It is
convenient to use the block structure such that C is represented
by the third Pauli matrix τz; then the Hamiltonian acquires a
block off-diagonal form,

H =
(

0 h

h† 0

)
. (1)

One-dimensional disordered systems with chiral symme-
try were studied in Ref. 22. An effective field-theoretical
description—nonlinear sigma model—for chiral Hamiltonians
with randomness was developed in Refs. 23 and 24. Spectral
properties of chiral random matrix ensembles were discussed
in the context of mesoscopic transport and quantum chromo-
dynamics in Refs. 25 and 26.

A standard realization of a chiral system is provided by a
bipartite lattice model (i.e., containing two sublattices) with
random hopping between the sublattices and no diagonal
disorder. The Hamiltonian of such a model at the band center
is manifestly block off-diagonal in the sublattice space. In
analogy with Wigner-Dyson classes, there are three chiral
classes: chiral unitary (AIII), chiral orthogonal (BDI), and
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chiral symplectic (CII) classes. The class AIII describes chiral
systems with broken time-reversal symmetry, which may be
due to magnetic flux (random or homogeneous) through the
lattice plaquettes. The classes BDI and CII are characterized,
in addition to the chiral symmetry, by time-reversal invari-
ance, H = KHT K−1, where the unitary matrix K satisfies
K2 = ±1. For the chiral orthogonal class BDI, one has
K2 = 1; in the standard representation K = 1. For the chiral
symplectic class CII, which corresponds to the case of broken
spin rotation symmetry (usually due to spin-orbit interaction),
K2 = −1; in the standard representation K = iσy , where σy

is the second Pauli matrix in the spin space. Thus, in the
standard form, random Hamiltonians of the chiral classes have
block off-diagonal structure and consist of complex, real, and
real quaternion entries for the classes AIII, BDI, and CII,
respectively.

Realizations of 2D chiral classes arise naturally when one
models the disordered graphene at the Dirac point.27 Specif-
ically, the chiral symmetry occurs if the dominant disorder
is of random-hopping character. An important example is the
random magnetic flux, either genuine or effective (due to lattice
corrugations) in which case, the system belongs to the chiral
unitary class AIII. Another possible realization is provided by
graphene with vacancies. A vacancy can be modeled by cutting
all lattice bonds adjacent to the vacated site, so that vacancies
represent a special type of bond disorder. This model is in the
chiral orthogonal symmetry class BDI. If an external magnetic
field is applied to graphene with vacancies, the time-reversal
symmetry is broken and the system falls into the class AIII.
Taking into account the spin-orbit interaction (in the absence
of magnetic field) brings the system into the chiral symplectic
symmetry class CII.

Clearly, the above symmetry analysis is not specific for
graphene (hexagonal lattice) but is equally applicable to a
random-hopping model on any other bipartite lattice (e.g., the
square lattice) at the band center. The analysis of Anderson
localization in the chiral classes performed in the present work
is equally applicable to all such models.

A remarkable property of the three chiral symmetry classes
in 2D is the exact absence of weak localization corrections to
all orders in the perturbation theory.24 At the same time, when
the disorder is strong enough, the transition to insulating state
is inevitable. Indeed, consider a tight-binding Hamiltonian
on a 2D bipartite (e.g., square or honeycomb) lattice. Let us
introduce disorder by randomly cutting the lattice bonds. (As
discussed above, this model belongs to the chiral orthogonal
class BDI.) Classically, this is the standard percolation model
with bond disorder. When the concentration of removed
bonds reaches the critical value [1/2 for square lattice and
1 − 2 sin(π/18) ≈ 0.65 for honeycomb lattice], the system
becomes disconnected and undergoes the classical percolation
transition to the insulating state. Obviously, the conductivity of
such a system (defined in the limit of the infinite system size)
is zero. It is well known that, in Wigner-Dyson symmetry
classes, such a classical percolation transition is preceded by
the Anderson metal-insulator transition. Specifically, due to
quantum interference, the conductivity of a quantum system
becomes zero at the point where classically it would still
conduct (the remaining bonds are still percolating). Does this
happen also for models of chiral classes? The exact absence

of quantum-interference effects to all orders24 suggests that
the answer is negative. However, numerical simulations in
Refs. 28 and 29 do show a quantum localization transition in
chiral classes. These papers explored numerically models with
continuous disorder that are always conducting classically and
yet found a metal-insulator transition. Thus there appears to
be a contradiction between the absence of localization in the
sigma-model analysis of Ref. 24 and the numerical results.
This contradiction is resolved in the present paper.

We will show below that, while the analysis of Ref. 24 is
fully correct to all orders of perturbation theory, the quantum
interference effects do emerge in the sigma-model field theory
when one considers nonperturbative effects related to topolog-
ically nontrivial, vortexlike excitations. The field-theoretical
analysis of the quantum localization in chiral classes requiring
a systematic study of such nonperturbative effects constitutes
the subject of the paper.

Nonperturbative effects caused by vortices were considered
in the works of Berezinskii30 and Kosterlitz and Thouless31 in
the context of planar 2D ferromagnet (XY model) and 2D
superfluid flow. These systems are characterized by a U (1)
field (the direction of magnetization and phase of the conden-
sate wave function, respectively) and exhibit the temperature-
driven Berezinskii-Kosterlitz-Thouless (BKT) phase transition
between quasiordered (ferromagnetic or superfluid) and disor-
dered (paramagnetic or normal fluid) phases caused by vortex
unbinding. Renormalization group (RG) analysis of this phase
transition was first developed by Kosterlitz.32 Alternative
descriptions of the same systems are provided by the Coulomb
gas (see Ref. 33 for a review) and sine-Gordon models. RG
equations for the sine-Gordon model, equivalent to Kosterlitz
RG, were derived in Ref. 34 in the one-loop order and later
in Ref. 35, with the two-loop accuracy. We will show that in
analogy with the BKT physics, vortices drive the localization
transition in chiral classes. However, the emerging theory is
more complicated and the character of transition is essentially
different, since the symmetry group of the localization problem
is different from U (1).

The layout of the paper is as follows. In Sec. II, we present
the general structure of the sigma model for chiral symmetry
classes, outline the proof of the absence of perturbative weak
localization corrections, and identify the mechanism of non-
perturbative effects. The general background-field formalism
for the renormalization of the sigma model is developed in
Sec. III and then applied to the calculation of perturbative
corrections in Sec. IV. In Sec. V, we construct the vortex
excitations and explore their effect on the conductivity. For this
purpose, we derive a set of RG equations on the conductivity σ ,
Gade-term coupling c (controlling the behavior of the density
of states), and the vortex fugacity y. Its analysis reveals a metal-
insulator transition. Therefore we show that the chiral classes
do exhibit quantum interference effects—the weak localization
and the Anderson transition—driven by topological excitations
in the sigma model. In Sec. VI, we develop an alternative
approach to nonperturbative renormalization in class AIII. This
approach is based on a mapping of the original sigma-model
with vortices onto a dual theory which has a character of
generalized sine-Gordon theory. Section VII is devoted to
the interplay of this topological localization with further
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TABLE I. List of chiral symmetry classes including correspond-
ing compact sigma-model manifolds, symmetry constraints on the Q

matrix, and the dimensionalities D of the target spaces. Parameter
s in the last column is introduced to normalize the conductivity in
Eq. (3).

Class Manifold Q matrix D s

AIII U (N ) No restriction N2 1
CII U (N )/O(N ) Q = QT N (N + 1)/2 2
BDI U (N )/Sp(N ) Q = CQT C N (N − 1)/2 2

possible topological properties of 2D chiral-class systems: the
Wess-Zumino term in class AIII and the Z2θ term in class
CII. These terms in the sigma models emerge when the 2D
systems are realized on surfaces of 3D topological insulators
of the corresponding symmetry classes. We show that the
vortex-induced topological localization becomes inefficient
in the presence of such terms. The latter thus ensure the
topological protection of the system from localization. Our
results are summarized in Sec. VIII. Some technical details
are presented in two Appendices.

II. PRELIMINARIES

Very generally, localization properties of a disordered
system are described by the nonlinear sigma model field
theory. We will use the fermionic replica version of the sigma
model. (Alternatively, the same analysis can be performed
within the supersymmetry approach; we choose the replica
formalism here since in this case, the presentation turns out
to be physically more transparent.) The sigma-model target
space is a compact symmetric space, see Ref. 8 for a review.
For the three chiral classes, the field Q(r) is a unitary matrix
taking values in the symmetric spaces listed in Table I. The size
of the Q matrix, N , is determined by the number of replicas;
in the end, one should take the replica limit N → 0. In each
of the classes CII and BDI, the Q matrix obeys a certain linear
constraint. These constraints can be represented as Q = Q̄,
where the “bar” operation is defined in the following way:

Q̄ =
{

QT , CII,

CQT C, BDI.
(2)

In the class BDI, C is a skew-symmetric matrix such that
C2 = 1. In the standard parametrization of the model, the
number of replicas N is even and includes the spin degree
of freedom while the matrix C is the σy Pauli matrix acting in
the spin subspace.

The distinguishing feature of the three manifolds of chiral-
class sigma models is that the corresponding tangent spaces
possess a unit generator commuting with all other (traceless)
generators. This generator corresponds to the U (1) part of the
corresponding symmetric space. The presence of this special
generator allows an additional Gade term in the sigma model
action:24

S[Q] = −
∫

d2r

8πs
[σ Tr(Q−1∇Q)2 + c(Tr Q−1∇Q)2]. (3)

The parameter σ is the dimensionless conductivity of the
sample (measured in units e2/πh) and c multiplies the Gade

term. The bare value of c is of order 1. The integer s takes
values 1 or 2 depending on the symmetry class (see Table I).

Let us decompose Q according to Q = eiφU with det
U = 1. The overall phase φ is exactly the U (1) degree
of freedom characteristic for sigma models of the chiral
symmetry classes. The action (3) takes the form

S[Q] =
∫

d2r

8πs
[N (σ + Nc)(∇φ)2 + σ Tr(∇U−1∇U )]. (4)

We see that variables φ and U decouple and that the action is
quadratic in φ. This means that the prefactor σ + Nc of the
(∇φ)2 term is not renormalized. In the replica limit N → 0,
the absence of localization corrections to σ follows, which is
the result of Gade and Wegner.24

The above argument for the absence of the renormalization
of conductivity has, however, a caveat. Specifically, the action
for the variable φ is not strictly Gaussian in view of the compact
U (1) nature of this degree of freedom. The group U (1) is
not simply connected allowing for topological excitations—
vortices. Fluctuations of the matrix Q involving vortices yield
corrections to σ + Nc via the BKT30,31 mechanism. These
corrections break the replica symmetry and thus invalidate
the Gade and Wegner argument. Our goal is to analyze the
effect of vortices on the renormalization of the chiral-class
sigma models. We will start with the general background field
formulation of the renormalization. Then we will consider both
perturbative and nonperturbing (due to vortices) contributions
to the RG equations.

III. BACKGROUND FIELD FORMALISM

Very generally, renormalization of the sigma model can
be implemented in the framework of the background field
formalism.36,37 Following this approach, we first separate slow
and fast parts in the matrix Q. The former is referred to as
the background field. Then the partition function is integrated
over the fast part of Q yielding the effective action for the
background field. This effective action has the same sigma-
model form with the renormalized parameters σ and c.

In order to renormalize the action (3), we parametrize Q =
V̄ Q̃V , where Q̃ is the fast field of the same symmetry as Q and
unitary matrices V and V̄ represent the slow background field.
In the symmetry class AIII, matrices V and V̄ are independent,
while for the other two chiral classes, they are related by
Eq. (2). After integrating out Q̃, the effective action involves
only the gauge invariant combination of slow fields Q′ = V̄ V .
It is convenient to introduce the following notations for the
gradients of the slow field:

A = ∇V V −1, Ā = V̄ −1∇V̄ . (5)

Matrices A and Ā are related by Eq. (2) in classes CII and
BDI.

We start the renormalization group analysis with the action
S0[Q] given by Eq. (3) with bare parameters σ0 and c0.
Upon substitution Q = V̄ Q̃V , the action decomposes into four
terms:

S0[Q] = S0[Q′] + SL[Q̃] + S
(1)
int [V̄ ,V ,Q̃] + S

(2)
int [V̄ ,V ,Q̃].

(6)
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The first term, S0[Q′], is the bare action for the slow
background field Q′ = V̄ V . It can be represented as

S0[Q′] = −
∫

d2r

8πs
{σ0 Tr(Ā + A)2 + c0[Tr(Ā + A)]2}. (7)

The action for the fast field SL[Q̃] is given by the same Eq. (3)
with bare parameters σ0 and c0 but includes also the mass term,

SL[Q̃] = S0[Q̃] − σ0

8πsL2

∫
d2r Tr(2 − Q̃ − Q̃−1). (8)

The mass ∼1/L is introduced to ensure that the matrix Q̃

contains only fast degrees of freedom. At the same time,
we will assume that the slow fields V and V̄ change very
little on the distances of the order of L. It is important
that the mass term is symmetric on the manifold of Q̃; this
will guarantee that the renormalized action involves only the
gauge-invariant combination V̄ V and retains the full symmetry
of the sigma model. Finally, the terms in the action representing
the interaction between the slow and fast modes read

S
(1)
int = −

∫
d2r

4πs
[σ0 Tr(∇Q̃Q̃−1Ā + Q̃−1∇Q̃A)

+ c0 Tr Q̃−1∇Q̃ Tr(Ā + A)], (9)

S
(2)
int = σ0

∫
d2r

4πs
Tr[ĀA − Q̃−1ĀQ̃A]. (10)

Integrating e−S[Q] over fast modes Q̃, taking the logarithm
of the result, performing the gradient expansion, and retaining
the terms with two spatial derivatives (i.e., up to second order
in A and Ā), we obtain the effective action for the slow field:

S[Q′] = S0[Q′] + 〈S(2)
int

〉− 1
2

〈[
S

(1)
int

]2〉
. (11)

Here 〈· · ·〉 denotes the averaging over Q̃ with the weight
e−SL[Q̃]. Note that the average 〈S(1)

int 〉 is linear in the gradients of
the slow variables and is hence zero. The renormalizability of
the sigma model implies that the effective action for the slow
field Q′ has the form of Eq. (7) with the bare parameters σ0 and
c0 replaced with their renormalized values σ and c. Using this
fact, we will assume three particular forms of the background
field and thus establish the renormalized parameters in terms
of Q̃ integrals for all three symmetry classes.

The D-dimensional sigma-model target space is generated
by D − 1 traceless Hermitian generators and one generator
proportional to the unit matrix. In the classes CII and BDI these
generators are subject to an additional symmetry constraint
T = T̄ . We normalize the generators as Tr T aT b = δab. The
traceless generators of the sigma-model manifold obey the
following Fierz identities:

∑
a

T a
ij T

a
kl =

⎧⎪⎨
⎪⎩

δilδjk − 1
N

δij δkl, AIII,
1
2 (δilδjk + δikδjl) − 1

N
δij δkl, CII,

1
2 (δilδjk + CikCjl) − 1

N
δij δkl, BDI.

(12)

Assume the background field of the form A = Ā = iJT

with some constant vector J and T being one of the D − 1
traceless generators of the sigma-model manifold. Substituting
this background field into Eq. (11), averaging over directions
of J, and comparing the prefactors of J2 in the left-hand and

right-hand sides of the equation, we find the renormalized
conductivity in the form

σ = σ0 − σ0

4A

∫
d2r Tr〈[Q̃,T ][Q̃−1,T ]〉

+ σ 2
0

32πsA

〈[ ∫
d2r Tr[∇Q̃,Q̃−1]T

]2〉
. (13)

Next, we assume a pure gauge background field such that
A = −Ā = iJt . The matrix t is now one of generators of the
stabilizer group, U (N ), O(N ), and Sp(N ), for the classes AIII,
CII, and BDI, respectively. These generators obey the second
Fierz identity

∑
a

taij t
a
kl =

⎧⎪⎨
⎪⎩

δilδjk, AIII,
1
2 (δilδjk − δikδjl), CII,
1
2 (δilδjk − CikCjl), BDI.

(14)

Such a gauge background field corresponds to the constant
Q′ = 1 and hence the left-hand side of Eq. (11) vanishes.
Averaging over directions of J, we obtain the following Ward
identity:

0 = σ0

4A

∫
d2r Tr〈[Q̃,t][Q̃−1,t]〉

+ σ 2
0

32πsA

〈[ ∫
d2r Tr[∇Q̃,Q̃−1]t

]2〉
. (15)

We sum up identities (13) with all generators T and add
identities (15) with all possible matrices t . With the help of
the Fierz identities (12) and (14) and using the properties
Q = Q̄ in the classes CII and BDI, we obtain the renormalized
conductivity

σ = σ0 + σ 2
0

D − 1

(
B1 − B2

N

)
. (16)

Here, we have introduced the averages

B1 =
∫

d(r − r′)
8πs

〈Tr(Q̃−1∇Q̃)r (Q̃−1∇Q̃)r ′ 〉, (17)

B2 =
∫

d(r − r′)
8πs

〈Tr(Q̃−1∇Q̃)r Tr(Q̃−1∇Q̃)r ′ 〉. (18)

Finally, consider the background field of the form A = Ā =
iJ1/

√
N generated by the unit matrix. This field configuration

brings into play both the kinetic and the Gade terms of the
action. After averaging over directions of J, we obtain the
identity

σ + Nc = σ0 + Nc0 + (σ0 + Nc0)2

N
B2. (19)

With σ from Eq. (16), this yields the following expression for
the renormalized coupling c:

c = c0 − σ 2
0 B1

N (D − 1)
+
[

σ 2
0

D − 1
+ (σ0 + Nc0)2

]
B2

N2
. (20)

Equations (16) and (20) represent renormalization of σ and
c in the most general form. The averages B1,2 implicitly depend
on the infrared scale L set by the mass term in the fast field
action (8). The RG flow equations are obtained in the standard
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way by taking the derivative of Eqs. (16) and (20) with respect
to ln L and replacing σ0 and c0 in the right-hand side of these
equations with the running L-dependent values σ and c of the
couplings.

IV. PERTURBATIVE RENORMALIZATION

In the previous section, we have developed the background
field formalism and reduced the renormalization of the sigma
models of chiral classes to the calculation of the correlators
(17) and (18). The matrix Q̃ belongs to the corresponding
sigma-model manifold and averaging is performed with the
statistical weight determined by the action (8). We will now
perform this averaging using a saddle point method. The saddle
point approximation is justified in the limit σ0 
 1. We start
with the spatially uniform saddle point Q̃ = 1. Note that the
mass term in the action (8) is minimized by this, rather than
any other, constant value of Q̃. Expansion in the vicinity of the
spatially uniform saddle point yields perturbative contributions
to the renormalized couplings. As we are going to explain,
such perturbative correction to σ vanishes, in the replica limit
N → 0, in all orders of the perturbation theory for all three
chiral classes. We will then proceed by including a nonper-
turbative contribution from saddle configurations containing
a vortex-antivortex dipole. We will show that this yields a
nonzero result.

We parametrize the fast field Q̃ = 1 + iW − W 2/2 +
O(W 3) by a Hermitian matrix W subjected to the linear
constraint W = W̄ in classes CII and BDI. Let us decompose
W in generators of the corresponding symmetric space: W =
w01/

√
N +∑a waT

a . Expanding Eq. (8) to the second order
in W , we obtain the Gaussian action

SL[W ] =
∫

d2r

8πs

{
(σ0 + Nc0)(∇w0)2 + σ0L

−2w2
0

+ σ0

∑
a

[
(∇wa)2 + L−2w2

a

]}
. (21)

This action yields the following propagators of the components
of W :

〈w0(q)w0(−q)〉 = 4πs

(σ0 + Nc0)q2 + σ0L−2
, (22)

〈wa(q)wa(−q)〉 = 4πs

σ0(q2 + L−2)
. (23)

Within the perturbative calculation, the average B2 is
identically zero since it involves only the U (1) component
of Q̃; specifically, Tr Q̃−1∇Q̃ = i

√
N∇w0. Consequently, B2

vanishes, B2 ∝ q2〈w0(q)w0(−q)〉q→0 = 0, that implies that
σ + Nc is not renormalized, see Eq. (19). This cancellation
of B2 is the essence of the Gade-Wegner argument24 for the
absence of weak localization corrections to conductivity. We
will see later that the saddle points involving vortices yield a
nonvanishing contribution to B2.

Contrary to B2, the average B1 is nonzero already on
the perturbative level. We will calculate it within the one-
loop approximation. Rewriting Eq. (17) in the momentum
representation, expanding in the components of W , and

applying the Wick theorem, we find

B1 =
∫

q2 d2q

32π3s
[〈Wij (q)Wkl(−q)〉〈Wjk(q)Wli(−q)〉

−〈Wij (q)Wjk(−q)〉〈Wkl(q)Wli(−q)〉]. (24)

We have dropped the term ∼q2〈W 2〉|q→0. The absence of
such a term is justified by the finite mass in the action (21) and
hence a finite limit of the W propagator at q → 0. Using the
decomposition of W in generators T and the propagators (22)
and (23), we obtain B1 in the form

B1 =
∫ � s q3 dq

2σ 2
0 (q2 + L−2)2

∑
a,b

Tr[T a,T b]2. (25)

Note that the propagator 〈w0w0〉 is canceled in the expression
for B1. The momentum integral is logarithmically divergent
and we have introduced the ultraviolet cutoff � to regularize
this divergence.

Using the appropriate Fierz identity, we calculate the trace
of products of four generators and obtain the result

B1 � N (1 − D)
ln(�L)

σ 2
0

. (26)

Substituting this result and B2 = 0 into Eqs. (16) and (20), we
obtain logarithmic corrections to σ and c that can be recast in
the form of renormalization group equations:

∂σ

∂ ln L
= −N + NO(1/σ ), (27)

∂c

∂ ln L
= 1 + O(1/σ ). (28)

These equations describe the real space scaling with the
running infrared cutoff length L. The higher loop contributions
provide O(1/σ ) terms in the perturbative RG equations. In the
replica limit, renormalization of σ vanishes, in full agreement
with the argument by Gade and Wegner.24

A remarkable feature of the perturbative renormalization in
class AIII is that the right-hand side of Eq. (28) is exactly 1 in
the limit N → 0. Higher loop contributions to β function for c

are proportional to N and vanish in the replica limit.38,39 This
is not the case in the other two chiral symmetry classes. The
exact perturbative RG equations in class AIII can be applied
even when σ is not large. We will use this fact below for
constructing the nonperturbative RG flow diagram.

V. NONPERTURBATIVE RENORMALIZATION

In order to find a correction to conductivity that does not
vanish in the limit N → 0, we have to consider the saddle-point
configurations other than Q̃ = 1. These configurations will
include vortices. Vortices are singular points of the Q matrix
such that the overall phase φ of Q rotates by 2π along any
path going around the vortex.

The sigma-model description with small gradients of Q

breaks down at distances of the order of the mean-free path
from the vortex center. This region, referred to as the vortex
core, should be excluded from the sigma-model action (3).
The contribution of the vortex core to the overall action,
Sv , is not universal and depends on details of the ballistic
electron dynamics inside the core. Generically, Sv ∝ σ0. This
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introduces a new coupling constant in our theory, referred to
as fugacity, y0 = e−Sv , that is the statistical weight associated
with the vortex core.

A. Vortex configurations

Let us construct explicitly the vortex configuration in three
chiral classes. The minimal model of classes AIII and CII with
a single replica reduces to the abelian U (1) model with Q̃ =
eiφ . The same situation occurs in class BDI at the minimum
number of replicas N = 2. In the latter case, the matrix Q̃

retains the 2 × 2 spin structure: Q̃ = eiφ1. In all three models,
the action (8) has the form (we neglect the mass term for
simplicity)

S[Q̃] = K

2π

∫
d2r(∇φ)2, (29)

where we have introduced the stiffness parameter

K =

⎧⎪⎨
⎪⎩

(σ + c)/4, AIII,

(σ + c)/8, CII,

(σ + 2c)/4, BDI.

(30)

Assume a set of vortices with positions ri and charges
(vorticities) ni = ±1. Such a configuration creates the gradient
of φ given by

∇aφ(r) = εab

∑
i

ni∇b ln |r − ri |. (31)

Indeed, this field φ satisfies the equation of motion ∇2φ = 0
with additional condition of 2πni winding of φ around every
vortex. The mass term in the action (8), which we have
temporarily neglected in Eq. (29), requires φ = 0 at infinity.
This is only possible if the system of vortices is neutral:∑

i ni = 0. Thus the simplest allowed configuration of vortices
is a vortex-antivortex pair, i.e., a dipole. Configurations with
more than two vortices or vortices with higher winding
numbers have lower statistical weight and can be safely
neglected.

Let us consider an individual dipole with vortex and an-
tivortex at positions r1,2. The separation between these points,
m = r1 − r2, will be called the dipole moment. Substituting
Eq. (31) into Eq. (29), we find the action for the dipole:

Sm = 2Sv + 2K ln(�|m|). (32)

Here, � is the ultraviolet cut-off of the order of inverse radius
of the vortex core. The action 2Sv associated with two vortex
cores is explicitly added. We see that the action of the dipole
grows logarithmically with increasing m. This is true provided
the dipole is smaller than the infrared length L. For larger
dipoles, the mass term will modify the dipole saddle point,
and the action will grow linearly with m. Thus we conclude
that the infrared cutoff L in the Q̃ theory effectively limits the
maximum allowed size of a dipole.

Let us now consider a general situation with arbitrary
number of replicas. In class AIII, we place the dipole in the
first replica and represent the matrix Q̃ as

Q̃m = 1 + |p〉(eiφ − 1)〈p|. (33)

TABLE II. List of spaces spanned by equivalent dipole configu-
rations. Volumes of these spaces are denoted by Vp .

Class Null space Vp

AIII CPN−1 πN−1/�(N )
CII RPN−1 πN/2−1/�(N/2)
BDI HPN−1 πN−2/�(N )

Here, |p〉 = {1,0,0, . . .} is the N -component vector in the
replica space. We can generate other dipole configurations
with the same action (32) by moving and rotating the dipole
in the real space, which changes just the function φ, and also
by rotations Q̃m → V̄ Q̃mV in replica space with spatially
constant unitary matrices V and V̄ . The mass term in Eq. (8)
requires Q̃m = 1 at infinity and thus restricts the matrices
by V̄ V = 1. Such unitary rotations lead to the same form
of Q̃m given by Eq. (33) with an arbitrary N -dimensional
complex unit vector |p〉. Thus equivalent dipole configurations
in replica space span the manifold CPN−1 = U (N )/U (N −
1) × U (1) = S2N−1/S1.

In class CII, additional constraint V̄ = V T applies, see
Eq. (2). As a result, allowed rotations generate an arbitrary unit
real vector |p〉 with N components. The corresponding space
is RPN−1 = O(N )/O(N − 1) × O(1) = SN−1/S0. Finally, in
class BDI, the constraint (2) leads to the unit vector |p〉
composed of N/2 real quaternions. The corresponding man-
ifold is HPN/2−1 = Sp(N )/Sp(N − 2) × Sp(2) = S2N−1/S3.
The spaces of equivalent dipole configurations are listed in
Table II together with their volumes Vp. In all three chiral
symmetry classes, Vp = O(N ) in the replica limit N → 0.

B. Derivation of RG equations

The contribution of the dipole to the correlation functions
B1,2 of the fast field Q̃ is found by substituting Q̃ = Q̃m

from Eq. (33) into Eqs. (17) and (18) and calculating the
Gaussian integral of quadratic fluctuations around the dipole
saddle point. The result has the form

B
dip
1,2 = �4

∫
d2R d2m

Z′
dip

Z0
Vp B̃

dip
1,2 e−Sm . (34)

Here, Sm is the action (32) associated with the dipole, Z′
dip and

Z0 are the partition functions of quadratic fluctuations near the
dipole configuration and near the trivial uniform minimum of
the action, respectively. Zero modes related to rotations of the
dipole in replica space are excluded from the determinant Z′

dip;
they yield the volume Vp of the space of equivalent dipoles,
see Table II. Zero modes related to the position R of the center
of mass of the dipole and nearly zero modes related to the
dipole size m are excluded from Z′

dip as well and are taken
into account in Eq. (34) via integration over the corresponding
collective coordinates. The factor �4 arises when the partition
sum over positions of vortex and antivortex, with the core size
∼1/�, is replaced by the integral over R and m. (Appearance
of this factor is clear on dimensional reasons.) Finally,
the pre-exponential factors B̃

dip
1,2 are given by expressions inside

angular brackets in Eqs. (17) and (18) evaluated on Q̃m from
Eq. (33).
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The two vortices forming the dipole are located at R ± m/2.
From Eqs. (31) and (33), we obtain

Q̃−1
m ∇μQ̃m = −i∇μφ(r) |p〉〈p|

= −iεμν∇ν ln

∣∣∣∣r − R − m/2

r − R + m/2

∣∣∣∣ |p〉〈p|. (35)

In order to calculate B̃
dip
1,2, we substitute this expression into

Eqs. (17) and (18). Afterwards, Eq. (34) is used to find
B

dip
1,2. The projective property of the matrix (35) and the trace

structure of Eqs. (17) and (18) imply the relation

B
dip
2 = uB

dip
1 , (36)

where we have introduce the notation u = Tr |p〉〈p|. In the
classes AIII and CII, u = 1, while in the class BDI we have
u = 2. The quantity u can be interpreted as the minimal value
of the number of replicas N allowed by the symmetry.

In view of the identity (36), it suffices to calculate B
dip
1 .

When the dipole position is fixed, the integrand in Eq. (17)
depends explicitly on both r and r′ rather than on their
difference only. The uniformity is restored after integration
over R in Eq. (34). Thus we will carry out the integration over
the dipole positions first.

Equations (17), (34), and (35) combine into

B
dip
1 = −uVp

8πs
�4
∫

d2p
Z′

dip(p)

Z0
e−Sm

∫
d(r − r′) d2R

×∇ ln

∣∣∣∣r − R − m
2

r − R + m
2

∣∣∣∣∇′ ln

∣∣∣∣r′ − R − m
2

r′ − R + m
2

∣∣∣∣ . (37)

By construction, gradients in Eq. (37) act on r and r′.
Equivalently, we can assume that both gradients act on R.
Integrating by parts and using the identity ∇2 ln |R| = 2πδ(R),
we get rid of the R integral. Subsequent integration over r − r′
yields

B
dip
1 = −uπ2

2s
Vp�4

∫ L

�−1
dm m3

Z′
dip(p)

Z0
e−Sm . (38)

Let us now analyze the determinant factor Z′
dip/Z0. The

major part of the excitations near the dipole minimum of the
action have wave lengths in the interval between �−1 and m.
These modes, living in the relatively slow “background field”
created by vortices, lead to perturbative renormalization of the
parameters entering the dipole action Sm, in accordance with
Eqs. (27) and (28). The rest of the determinant provides a
nonuniversal factor dependent on the details of the ultraviolet
regularization or, equivalently, on the inner structure of the
vortex core. We do not assume any particular ultraviolet
cutoff but instead will include all nonuniversal factors in the
definition of the vortex fugacity y. Using Eq. (32), we represent
the dipole contribution to B1 in the following form:

B
dip
1 ∝ −Vpe−2Sv�

∫ L

�−1
dm (�m)3−2K(m). (39)

All numerical factors omitted in this expression remain finite
in the replica limit N → 0.

In order to find the dipole contribution to RG equations for
σ and c, we express the derivative of B

dip
1 in terms of fugacity,

∂B
dip
1

∂ ln L
= −Ny2

u σ
. (40)

All uncontrolled numerical prefactors are now hidden in the
definition of y:

y(L) ∝ √Vp/N e−Sv (�L)2−K(L). (41)

Note that the ratio Vp/N remains finite in the replica limit.
Taking derivatives of the Eqs. (16) and (20) and using the
identity (36), we readily obtain the dipole contribution to the
RG equations in terms of fugacity y. Adding the perturbative
corrections from Eqs. (27) and (28), we get the result

∂σ

∂ ln L
= −N −

⎧⎨
⎩

σy2

1+N
, AIII, BDI,

σy2

1+N/2 , CII,
(42)

∂c

∂ ln L
= 1 − cy2

(
2 + Nc

σ

)
−
⎧⎨
⎩

σy2

1+N
, AIII, BDI,

σy2

2+N
, CII.

(43)

Renormalization of fugacity follows from Eq. (41). Differen-
tiating with respect to ln L and then taking the limit �L → 1,
we obtain

∂y

∂ ln L
= (2 − K)y. (44)

This equation is expressed in terms of the stiffness parameter
K defined in Eq. (30). Renormalization of K follows from
the other two RG equations (42) and (43). In the replica limit
N → 0, the equations for σ and K acquire the form

∂σ

∂ ln L
= −σy2, (45)

∂K

∂ ln L
=

⎧⎪⎪⎨
⎪⎪⎩

1
4 − 2Ky2, AIII,

1
8 − 2Ky2 + σy2

16 , CII,

1
2 − 2Ky2 − σy2

4 , BDI.

(46)

From this result, we see that vortices provide negative
localizing correction to the conductivity. In a good metallic
sample with σ 
 1 and exponentially small (in σ ) fugacity
y, vortices are bound in tiny dipoles. The overall negative
correction to conductivity remains finite at long-length scales
since the fugacity rapidly decreases in the course of renormal-
ization. With lowering the starting value of conductivity and
increasing fugacity, larger dipoles come into play and negative
correction to σ is more pronounced. When both σ and y are
of order 1, the phase transition occurs. Our RG equations are
not quantitatively accurate in this limit but can be used for a
qualitative description of the transition.

C. Vortex-driven localization

Let us study in more detail the RG equations in class AIII.
As was mentioned in the end of Sec. IV, Eqs. (45) and (46) are
exact to all orders in the 1/σ loop expansion. The only assump-
tion used in deriving these equations is y � 1. Let us neglect
this assumption for a moment and treat the RG equations as if
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FIG. 1. (Color online) Schematic RG flow near the metal-
insulator transition in the symmetry class AIII according to Eqs. (44)
and (46).

they were exact. Another feature of the symmetry class AIII is
the partial separation of variables. Renormalization of K and
y is independent of σ . This allows us to study the 2D flow in
the K-y plane. The flow is depicted in Fig. 1. The diagram
contains one unstable fixed point at the position K = 2,
y = 1/4. The black line passing through this point separates
the two stable phases of the system. Below this line, the flow is
directed towards y = 0 and K → ∞. This part of the diagram
corresponds to metallic phase. With vanishing fugacity, renor-
malization of conductivity stops at some finite value, while
the stiffness K keeps increasing solely due to renormalization
of the Gade parameter c. In the metallic phase, the system
rapidly approaches the regime described by the Gade sigma
model without vortices. The finite contribution of the dipoles
can be included into bare parameters of this sigma model.

Above the critical line, fugacity y increases indefinitely,
which signifies vortex unbinding. This phase is analogous to
the high-temperature disordered phase in the BKT problem
and corresponds to the insulating state of the sample. Indeed,
according to Eq. (45), the conductivity flows all the way
to zero with growing y. Perturbative RG equations rapidly
become inaccurate in this limit and cannot be used deep in the
insulating phase. Nevertheless, using analogy with the BKT
transition, we conclude that the distinction between metal and
insulator states is robust.

RG equations (44)–(46) were derived assuming small value
of the fugacity (and large value of σ in classes CII and BDI).
This means that the metal-insulator transition fixed point lies
at the border of the applicability region of these RG equations.
The theory is not quantitatively controllable in the vicinity of
the fixed point but the overall qualitative picture of the RG flow
and, in particular, the very presence of the unstable fixed point
should be correct. Numerical simulations of electron transport
in 2D chiral disordered systems would provide a quantitative
estimate of the critical properties of the localization transition.

We have found a fixed point of the metal-insulator transition
at σ = 0. This signifies the absence of minimal metallic
conductivity in the considered problem. In a realistic
disordered chiral system, the bare value of fugacity is related
to the Drude conductivity by an exponential law ln y ∝ −σ .
This means that the critical state is achieved when both y

and σ are of order unity. Hence the Anderson transition will
normally happen at σ ∼ 1. The exact critical value of σ

depends on microscopic details of a particular realization of
the disordered system.

In the next section, we present an alternative framework for
the derivation of nonperturbative renormalization equations
for the chiral class AIII. (We expect that a generalization of
this approach to other chiral classes is possible as well but it
requires further work.)

VI. CLASS AIII AND GENERALIZED
SINE-GORDON THEORY

A. Sigma model and duality transformation

The group nature of the sigma-model target space for the
class AIII allows us to develop yet another description of
vortices, bearing analogy with the sine-Gordon theory of the
BKT transition.33 To construct such a description, we first
work out a dual representation of the AIII sigma model. The
inclusion of vortex excitations turns out to be straightforward
within this approach.

As a starting remark, let us note that for any field Q(r) of
unitary matrices one can define an associated two-component
vector field:

h = −iQ−1∇Q. (47)

The components of h are Hermitian N × N matrices. Con-
versely, given a vector field h with Hermitian entries and
the value of the unitary matrix Q at a single point, one can
reconstruct Q in the whole plane by integrating the system of
equations

∇μQ = iQhμ. (48)

The solution of Eq. (48), if exists, is automatically a unitary
matrix field. Examining the cross-derivatives of Q, we find
that the compatibility condition for the system (48) is given by

Fμν ≡ ∇μhν − ∇νhμ + i[hμ,hν] = 0. (49)

Quite remarkably, the integrability constraint (49) can be
viewed as a requirement of vanishing field-strength tensor for
the non-Abelian “gauge field” h.

We thus come to the conclusion that the matrix field Q is
in one-to-one correspondence with the vector field h subject
to the integrability constraint (48). In particular, the grand
partition function of the sigma model can be represented as

Z =
∫

DQe−S[Q] =
∫ {∏

r

d2h(r) δ[Fxy(r)]

}
e−S[h], (50)

where the action functional is quadratic in h, cf. Eq. (3):

S[h] =
∫

d2r

8π
[σ Tr h2 + c (Tr h)2]. (51)

A straightforward inspection shows that the integration mea-
sure over h in Eq. (50) is indeed flat.

The functional δ function in Eq. (50) can be resolved by the
integration over an auxiliary Hermitian matrix field �

Z =
∫

Dh D�e−S[h,�], (52)

S[h,�] = S[h] + i

∫
d2r Tr(�Fxy). (53)
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Since the action S[h,�] is quadratic in h, we can easily
perform the integration over h. As a result, we obtain a
dual representation of the AIII sigma model in terms of the
matrix �:

Z =
∫

Dμ(�)e−S[�], (54)

S[�] = 2π

σ + Nc

∫
d2r (∇θ0)2

+2π

σ
(δμν + iεμν)

∫
d2r (∇μθa)gab(θ )(∇νθb). (55)

Here we have introduced a decomposition � = θ0/
√

N +∑N2−1
a=1 θaT

a of the matrix � over the generators of U (N ).
Further, gab is a (N2 − 1) × (N2 − 1) matrix given by

g = (1 − 4πZ/σ )−1, Zab =
N2−1∑
c=1

θcfabc, (56)

where fabc = −i Tr T a[T b,T c] are the structure constants of
the su(N ) algebra. The measure of functional integration
over � in Eq. (54) is Dμ(�) =∏r det{g[�(r)]} d�(r). Since
(g + gT )/2 = ggT can be regarded as the metric tensor of the
model, we recognize that the integration measure is consistent
with the metric.

By construction, the model defined in Eqs. (54) and (55) is
fully equivalent to the original AIII sigma model. In particular,
the two theories should obey identically the same perturbative
renormalization group. In Appendix A, we verify this fact
explicitly within a one-loop calculation.

So far, we were completely neglecting the vortex excita-
tions. To include them into the theory, one must realize that
integrability condition Eq. (49) can be slightly relaxed. Indeed,
as discussed above, a single vortex centered at the origin of
the coordinate frame is described by the Q matrix

Q = 1 + |p〉(eiφ − 1)〈p|. (57)

Here, φ is the polar angle and |p〉〈p| projects onto some unit
vector |p〉 in the replica space. The corresponding h field has
only the azimuthal component hφ = |p〉〈p|/r and the field-
strength tensor assumes the form

Fxy(r) = 2πδ(r)|p〉〈p|. (58)

A straightforward generalization of Eq. (58) to the case of
an arbitrary collection of vortices and antivortices located at
points ri and characterized by projectors |pi〉〈pi | reads

Fxy(r) = 2π
∑

i

ηiδ(r − ri)|pi〉〈pi |, ηi = ±1. (59)

We now repeat the treatment leading to the construction
of the dual sigma-model representation (54) and (55) but this
time taking into account vortex configurations, i.e., replacing

the constraint Fμν = 0 by Eq. (59). This yields

Z =
∫

Dμ(�)e−S[�]
∞∑

n=1

(�2y0)n

n!

×
∑

ηi=±1

n∏
i=1

∫
d2ri d|pi〉 exp[2πiηi〈pi |θ (ri)|pi〉]

=
∫

Dμ(�)e−S[�]−Sy [�]. (60)

Here, y = e−Sv is the bare value of fugacity, integration
with respect to |pi〉 is performed over all complex vectors
of unit length with natural integration measure, and the
vortex-induced correction to the action reads

Sy[�] ≡ −2y�2
∫

d2r d|p〉 cos 2π〈p|�(r)|p〉. (61)

The action of the dual theory given by a sum of Eqs. (55) and
(61) constitutes the central result of this section. It provides
a convenient starting point for the generation of the RG
equations (including nonperturbative contributions) for the
sigma model of class AIII.

B. RG analysis

We are now in a position to explore the RG flow of the AIII
sigma model from the point of view of the dual representation.
In the minimal model of class AIII, the U (1) sigma model,
Eqs. (55) and (61) reduce to the standard sine-Gordon action

S[�] + Sy[�] =
∫

d2r

[
2π

σ + c
(∇θ0)2 − 2y�2 cos 2πθ0

]
,

(62)

and we recover the BKT renormalization group. Let us now
explore the contribution of vortices to RG equations in a
general situation N �= 1. As in the BKT theory, we will do
this perturbatively in the vortex fugacity y0. We neglect for a
while the nonlinear terms in S[�], i.e., replace S[θ ] by

S0[θ ] = 2π

∫
d2r

[
(∇θ0)2

σ + Nc
+
∑

a

(∇θa)2

σ

]
. (63)

Following the standard procedure, we decompose the fields
� into the fast and slow modes � = �< + �>, with the fast
modes �> populating a thin shell in momentum space �′ ≡
� − �� < |k| < �. The action functional becomes

S[�> + �<] = S0[�<] + S0[�>] + Sy[�<] + S1[�<,�>],

(64)

where

S1[�>,�<] = Sc[�>,�<] + Ss[�>,�<], (65)

Sc(s)[�>,�<] = −2�2y

∫
d2r d|p〉Uc(s)(r,|p〉), (66)

Uc(r,|p〉) = [cos 2π〈p|�>(r)|p〉 − 1]

× cos 2π〈p|�<(r)|p〉, (67)

Us(r,|p〉) = − sin 2π〈p|�>(r)|p〉 sin 2π〈p|�<(r)|p〉. (68)
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It is easy to see that to the first order in y the interaction
term S1 generates the correction to fugacity itself governed
by the RG equation [the stiffness parameter K was defined in
Eq. (30)]:

∂y

∂ ln �/�′ = (2 − K)y. (69)

We now turn to terms of the second order in fugacity.
We observe that, strictly speaking, the action of our model
does not preserve its form under the RG transformations. For
example, let us consider the contribution to the action due to
the interaction Sc:

�Sc[�<] = −1

2

〈〈
S2

c

〉〉 = −2�4y2
∫

d2R d2r d|p1〉 d|p2〉
×〈〈Uc(R+,|p1〉)Uc(R−,|p2〉)〉〉, (70)

where R± = R ± r/2. The gradient expansion of the slow
fields leads to

�Sc[�<] = −�4y2
∫

d2R d2r d|p1〉d|p2〉 (X+ + X−),

×〈〈cos 2π〈p1|�>(R+)|p1〉
× cos 2π〈p2|�>(R−)|p2〉〉〉, (71)

with

X± = cos 2π [〈p1|�<(R)|p1〉 ± 〈p2|�<(R)|p2〉]

×
[

1 ± r2

4
〈p1|∇�<(R)|p1〉〈p2|∇�<(R)|p2〉

]
. (72)

We see that the RG flow generates terms of the form
cos 2π [〈p1|�<|p1〉 ± 〈p2|�<|p2〉] corresponding to the cre-
ation of two vortices (for plus sign) or a vortex and antivortex
(for minus sign) sitting at the same point and characterized
by the projectors |p1〉〈p1| and |p2〉〈p2|. While the former
process is irrelevant in RG sense, the latter one can be even
more relevant perturbation than the initial cos 2π〈p|�<|p〉
term if vectors |p1〉 and |p2〉 are sufficiently close. However,
these terms are suppressed by additional power of fugacity
y � 1 as compared to the original vortex term, and we neglect
them. Clearly, this neglect is not justified in the region y ∼ 1
where the fixed point governing the transition is located. At
the same time, the theory we are developing is quantitatively
controllable only at y � 1. Discarding the above terms should
not lead to any qualitative changes in the RG flow.

We are only interested in the most important y2 terms, i.e.,
those that produce contributions to renormalization of σ and
K and are thus responsible for the localization transition. To
obtain them, we approximate the correction (71) to the action
of the slow fields by

�Sc[�<] = 2πκ�4y2
∫

d2R d|p〉 〈p|∇�<(R)|p〉2

×
∫

d2r r2 〈〈cos 2π〈p|�>(R+)|p〉
× cos 2π〈p|�>(R−)|p〉〉〉. (73)

Here, κ is a numerical coefficient. Averaging now over the fast
fields and singling out the contributions of the first order in

��, we get

�Sc[�<] = 2πκ
��

�
K2y2

∫
d2R d|p〉 〈p|∇�<(R)|p〉2.

(74)

(We have absorbed an additional numerical coefficient into κ .)
Noting that for arbitrary matrices A and B,∫

d|p〉〈p|A|p〉〈p|B|p〉 = Vp

N (N + 1)
(Tr A Tr B + Tr AB),

(75)

we finally get

�Sc[�<] = 2πκ
��

�

Vp

N (N + 1)
K2y2

×
⎡
⎣(n + 1)(∇θ0

<)2 +
N2−1∑
a=1

(∇θa
<)2

⎤
⎦ . (76)

Comparing now Eq. (76) with the Gaussian action (63), we
conclude that integration over the fast modes has generated
corrections to σ and c given by

�σ = −κ
y2K2σ 2

�(N + 2)

��

�
, (77)

�c = −κ
y2K2

�(N + 1)

��

�

(
σ 2

N + 1
+ 2σc + Nc2

)
. (78)

So far, we were neglecting non-Gaussian terms in the
action S[�]. When taken into account, they will induce the
perturbative renormalization of the parameters of the model
and, in particular, lead to the appearance of the scale-dependent
σ and c in Eqs. (77) and (78). Apart from this, the higher-order
terms do not affect our analysis: a straightforward calculation
shows that in our approximation the interaction term �Ss does
not produce corrections of order y2. Combining Eqs. (69),
(77), and (78), we obtain a system of RG equations for the
AIII sigma model:

∂σ

∂ ln L
= −N − y2K2σ 2

�(N + 2)
, (79)

∂K

∂ ln L
= 1 − N

4
− y2K2

�(N + 1)

(
2σ 2

N + 1
+ 2σc + Nc2

)
,

(80)

∂y

∂ ln L
= (2 − K)y. (81)

These equations are equivalent to those obtained in Sec. V
up to subleading terms. To make this equivalence appar-
ent, we redefine the fugacity parameter according to y →
(y/K)

√
�(N + 1)/σ . This amounts to changing the (un-

controlled) pre-exponential factor in the exponentially small
quantity y. After such a rescaling, the RG equations (42)–(44)
are reproduced.

VII. TOPOLOGICAL TERMS

In previous sections, we discussed localization within the
Gade-Wegner sigma model, Eq. (3), of three chiral classes.
Now we will consider the situations when the sigma-model
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action is augmented with an additional topological term. The
topology of the sigma-model target spaces allows (in two
dimensions) inclusion of the Wess-Zumino term in class AIII
and the Z2 θ term in class CII. We will demonstrate below that
these extra terms (arising in models of random Dirac fermions
of the corresponding symmetries) crucially affect localization
properties. Specifically, we show that vortex excitations do not
appear when a topological term is present.

A. Class AIII with Wess-Zumino term

The field of the sigma model of class AIII is a unitary
matrix Q(r) ∈ U (N ), with r belonging to the 2D coordinate
space. In our analysis, we consider only field configurations
with the Q matrix taking some fixed value at spatial infinity.
(Otherwise the sigma-model action inevitably diverges due to
gradient terms.) This allows us to compactify the coordinate
space making it equivalent to a two-sphere. The compactified
real space S2 can be viewed as a surface of a three-dimensional
solid ball and we introduce the radial coordinate τ such that
τ = 1 at the surface (i.e., in the physical 2D space) and τ = 0
in the center of the ball. The matrix Q can be continuously
extended to the interior of the ball such that

Q(r,τ ) =
{
Q(r), τ = 1,

const , τ = 0.
(82)

This extension is always possible since the second homotopy
group of the target space is trivial, π2(U ) = 0.

In terms of the extended matrix Q(τ ), the Wess-Zumino
term acquires the form

SWZ[Q] = ik

12π
εμνλ

∫
dτ d2r

× Tr(Q−1∇μQQ−1∇νQQ−1∇λQ). (83)

The integrand in this expression explicitly depends on the
values of Q at τ �= 1, i.e., away from the physical 2D
space. However, the variation of the Wess-Zumino action can
be represented as an integral of a three-dimensional vector
divergence:

δSWZ[Q] = ik

4π
εμνλ

∫
dτ d2r∇μ

× Tr(Q−1δQQ−1∇νQQ−1∇λQ)

= ik

4π

∫
d2r Tr(Q−1δQ[Q−1∇xQ,Q−1∇yQ]).

(84)

Thus the actual value of the Wess-Zumino term is determined
only by the physical values of Q at τ = 1 up to a constant.
This constant does not change with small variations of Q

away from the physical 2D space but takes different values for
topologically distinct extensions of Q in the third dimension.
These nonequivalent extensions are classified by the third
homotopy group π3(U ) = Z. For any two extensions the values
of the Wess-Zumino term differ by 2πik times an integer
number. Thus the Wess-Zumino theory is well defined for any
integer value of k.

Introducing vortices in the Wess-Zumino theory is prob-
lematic. In order to avoid the singularity in the center of a
vortex, we exclude a small region of the vortex core from our

physical space. This introduces a boundary in the problem and
Q is not a constant along this boundary. As a result, the 2D
physical space cannot be compactified to the two-sphere. Thus
the construction of the Wess-Zumino term, involving extension
to the third dimension, becomes ill defined.

One naive way to overcome this difficulty is to use a
local 2D representation of the Wess-Zumino term.40 As was
discussed above, the Wess-Zumino term actually depends only
on the values of Q in the physical space. Using any explicit
parametrization of the unitary matrix Q by a set of coordinates
ψi , the Wess-Zumino term can be written as a 2D integral of a
suitable skew-symmetric differential form λij :

SWZ[Q] = ik εμν

∫
d2r λij [ψ(r)]∇μψi∇νψj . (85)

In this local representation, one can integrate the differential
form over a finite physical space with boundary. Such a
construction is, however, unsatisfactory because it violates
the global gauge symmetry of the system. Indeed, the Wess-
Zumino action (83) is manifestly invariant under the global
transformation Q → ULQUR parameterized by two constant
unitary matrices UL,R . However, the local density of the
Wess-Zumino term, Eq. (85), is not invariant under global
rotation of fields. Instead, the tensor λij transforms as

λij → λij + ∂βj

∂ψi

− ∂βi

∂ψj

, (86)

where a set of functions β(ψ) encodes the information about
UL and UR . The local expression for the Wess-Zumino term
changes by an integral of a total derivative:

SWZ → SWZ + 2ik εμν

∫
d2r ∇μ(βj∇νψj ). (87)

If the model is considered on a manifold without a boundary,
the above integral vanishes and the Wess-Zumino term is
indeed invariant under the gauge transformation. If, however,
the real space integration is performed over a bounded region,
the integral in Eq. (87) yields the circulation of βj∇ψj

along the boundary and may become nonzero. This signifies
the breakdown of the gauge symmetry at the boundary.

In order to understand better the boundary effects in
the Wess-Zumino theory, we will resort to the disordered
fermion problem yielding the class AIII sigma model with the
Wess-Zumino term. The typical example is given by disordered
massless Dirac fermions with random vector potential. The
Hamiltonian of such a model has the form

H =
(

0 px − ipy + a

px + ipy + a†

)
. (88)

Here, a is a random complex-valued matrix acting in the
auxiliary flavor space. The only symmetry of the Hamiltonian
is the chiral symmetry H = −τzHτz. Since the spectrum of
the Hamiltonian is unbounded, it appears to be impossible
to introduce the boundary condition (a classically forbidden
region for massless Dirac fermions) preserving the chiral
symmetry. In order to model a hole in the sample, one has
to add an additional mass term mτz to the Hamiltonian and
consider the limit of large m. Such a term explicitly breaks
the chiral symmetry. In the corresponding sigma model, the
Q matrix at the hole boundary will be restricted to the
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manifold MA = U (N )/U (N/2) × U (N/2) of class A. Such
a boundary condition will maintain only the diagonal part
of the global gauge symmetry UL = U−1

R . This also forbids
the vortex excitations inside the hole since MA is simply
connected. Thus we see that the short distance regularization
(making a small hole), needed to introduce a vortex in the
sigma model, breaks the chiral symmetry and does not allow a
vortex excitation. We conclude that vortices are incompatible
with the Wess-Zumino term in the action of class AIII.

The model of massless Dirac fermions in a random mag-
netic field, described by the Hamiltonian (88) is exactly solv-
able. The coupling constant characterizing the vector potential
strength is exactly marginal, so that the model possess a line of
fixed points. A remarkable property of this problem is that the
system never gets truly localized, however, strong the disorder
is. In particular, the conductivity is equal to e2/πh for any
disorder. Therefore the absence of the localizing vortex contri-
bution in the corresponding sigma model is consistent with the
known exact solution of the underlying fermionic problem.

Let us illustrate the incompatibility of vortices and Wess-
Zumino term in a more explicit way. We will construct an
extension of the sigma-model manifold such that the theory
will be well-defined inside the vortex core while all the
symmetries are preserved. Let us extend the Q matrix by one
row and one column embedding U (N ) into SU(N + 1). We
will associate a mass M with the extra degrees of freedom
suppressing them away from a vortex core. Explicitly, consider
the following action for the extended unitary matrix Q:

S[Q] = −
∫

d2r

8π

[
σ Tr(Q−1∇Q)2 + M2 Tr(QRQ−1R)

+c − σ

4
(Tr RQ−1∇Q)2

]
+ SWZ[Q]. (89)

Here, the matrix R of the form

R =
(−1 0

0 1N×N

)
(90)

is introduced to single out the off-diagonal elements in the first
row and first column of Q. These elements are made massive
by the second term of the action (89).

Away from vortices the matrix Q contains only the soft
modes arranged as follows:

Q
soft

=
(

det Q−1 0
0 Q

)
. (91)

The lower right diagonal block is nothing but the unitary
matrix Q, while the upper left diagonal element is fixed
such that det Q = 1. With such a form of Q, the action (89)
coincides with the standard AIII class sigma-model action
(3) with a Wess-Zumino term added. At the same time, the
group SU(N + 1) is simply connected hence the vortices are
topologically trivial configurations in the extended model.
Inside a vortex core, massive elements of Q become nonzero
and provide an overall smooth field configuration. The size
of the core is determined by the competition between energy
loss due to the mass M and energy gain due to avoiding large
gradients. This yields the core size ∼√

σ/M .
Within the extended model, we can examine the inner

structure of the vortex core. Assume for simplicity that the

vortex occurs in the first replica, i.e., the corresponding unit
vector is |p〉 = {1,0, . . . ,0}. The whole vortex configuration,
including the core, will involve only the upper-left 2 × 2 block
of the matrix Q. This block is an SU(2) matrix and we can
explicitly parametrize it by three angles in the following way:

Q =
⎛
⎝ cos θe−iφ i sin θe−iχ 0

i sin θeiχ cos θeiφ 0
0 0 1N−1×N−1

⎞
⎠. (92)

Far from the vortex core, the angle θ vanishes and the matrix
Q acquires the form (91); it is independent of χ . Going around
the vortex, angle φ rotates by 2π . In the center of the vortex
θ = π/2 and Q is independent of φ but explicitly depends on
χ . Using the ansatz (92), we can minimize the action (89).
The symmetry of vortex allows us to fix parameter φ equal to
the polar angle and χ constant. We see that the vortex core
acquires an inner U (1) degree of freedom, χ , which is beyond
the sigma model and is effective only in the extended theory.
The action is minimized by a proper θ (r) dependence.

The Wess-Zumino term is responsible for the imaginary
part of the action. We can calculate this imaginary part without
solving for θ (r) dependence. Let us consider the variation of
the Wess-Zumino term with respect to spatially constant χ .
Upon substitution of Eq. (92) into Eq. (84), we obtain

δSWZ[Q] = ikδχ

2π

∫
d2r sin 2θ (∇xθ∇yφ − ∇yθ∇xφ)

= ikδχ [sin2 θ (r = ∞) − sin2 θ (r = 0)] = −ikδχ.

(93)

Thus the value of the Wess-Zumino term explicitly depends
on χ .

The imaginary part of the action makes vortex fugacity
complex. The parameter χ that determines the phase of the
complex fugacity, is an internal degree of freedom of the vortex
core. Calculating the partition function of the system, we have
to integrate over χ for each vortex. Once the action contains the
Wess-Zumino term, i.e., k �= 0, such an integration will exactly
cancel the statistical weight of each vortex making fugacity
effectively zero. This once again demonstrates that the Wess-
Zumino model of class AIII does not allow vortex excitations.

B. Class CII with Z2 θ term

Let us now consider the system of symmetry class CII.
The topology of the target manifold admits the Z2 topological
term. It is related to the homotopy group π2(U (N )/O(N )) =
Z2. One particular realization of the symmetry class CII is
provided by the disordered massless Dirac Hamiltonian of the
form Eq. (1) with

h =
(

px − ipy a

−a∗ px + ipy

)
. (94)

Here, a is a random n × n matrix with complex entries. The
block h obeys symplectic constraint h∗ = σyhσy . In other
words, h is an n × n matrix of real quaternions. Thus the
Hamiltonian built from h indeed belongs to the symmetry
class CII.
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The derivation of the sigma model for the disordered
system described by the Hamiltonian (1) and (94) is outlined
in Appendix B. The action of the model has the standard
form (3) with an additional Z2 topological term when n is
odd. This topological term can be expressed in the form very
similar to the Wess-Zumino term (83). Specifically, we have
to continuously extend the Q matrix to the auxiliary third
dimension τ according to Eq. (82). Then the topological term
can be written in the form of Eq. (83) with k = n. Since the
second homotopy group of the target manifold is nontrivial,
the extension (82) is not always possible within the target
space of class CII. In fact, it is only possible for topologically
trivial configurations of Q(r). To apply the Wess-Zumino
construction to a general field configuration, we will assume
that away from the physical 2D space, at τ �= 1, Q is any
unrestricted unitary matrix from U (N ), while for τ = 1, it
is unitary and symmetric hence belongs to the coset space
U (N )/O(N ) of the class CII.

Similarly to the class AIII, the value of the Wess-Zumino
term is actually determined by the physical part of Q at τ = 1,
which is a unitary symmetric matrix. The variation of the
Wess-Zumino term with small variations of Q is given by
Eq. (84). Using the property Q = QT and transposing the
argument of the trace in the last line of Eq. (84), we see that
the variation changes sign and hence is identically zero. This
proves that such a Wess-Zumino term in the class CII possesses
the main property of the theta term: it depends only on the
topology of the field configuration.

Apart from the class of topologically trivial configurations,
there is only one extra nontrivial class. In other words,
the homotopy group π2 = Z2 implies existence of localized
topological “excitations,” Z2 instantons. They are their own
“antiparticles;” configuration of two such instantons is topo-
logically trivial, i.e., the instantons can be brought close to each
other and annihilate by an appropriate continuous transforma-
tion of Q. In order to prove that the Wess-Zumino term (83),
being constant in each topological class, distinguishes between
them, it suffices to evaluate it for one particular nontrivial
instanton configuration.

Let us consider the minimal model Q ∈ U (2)/O(2). [In
fact, in this case the homotopy group π2 = Z is richer than
in the general case N > 2 and the theory possesses usual
Z instantons similar to, e.g., O(3) vector sigma model.] In
fact, it is sufficient to consider an even smaller target space
SU(2)/O(2) since the determinant of Q anyway drops from
the Wess-Zumino term (83). We parametrize the SU(2) matrix
by three angles in the following way:

Q =
(

cos θ cos χe−iφ i sin θ cos χ + sin χ

i sin θ cos χ − sin χ cos θ cos χeiφ

)
. (95)

The symmetry condition Q = QT fixes χ = 0 in the physical
2D space. For the instanton, we can assume that φ is equal to
the polar angle, while θ depends only on the radial coordinate
and changes continuously from −π/2 in the center of the
instanton to π/2 at infinity. Extending to the third dimension,
we will assume χ to change from 0 at τ = 1 to either π/2 or
−π/2 at τ = 0. Any of these two values uniquely fixes the
whole matrix Q(τ = 0).

Wess-Zumino action (83) can be explicitly written in the
parametrization (95) as

SWZ[Q] = ik

π
εμνλ

∫
d2r dτ cos θ cos2 χ∇μθ∇νφ∇λχ.

(96)

For the instanton configuration, θ and χ depend on r and
τ , respectively, while φ is the polar angle. Calculating the
integral, we obtain

SWZ[Q] = ∓ iπk

2
[sin θ (r = ∞) − sin θ (r = 0)] = ∓iπk.

(97)

The two signs in this expression correspond to the two
extensions χ (τ = 0) = ±π/2. For an odd value of k, the
instanton action acquires a nontrivial imaginary contribution.
Thus the Wess-Zumino term indeed plays the role of a θ

term yielding iπk times the topological charge of the field
configuration.

Once the explicit form of the Z2 topological term is
established, we can discuss its interplay with vortices. We have
already argued that the Wess-Zumino term in the sigma model
of class AIII makes vortex excitations ineffective. Similar
arguments can be applied to the class CII with the topological
term since it has the same structure as the Wess-Zumino
term. The only difference in the class CII is an additional
constraint related to the time-reversal symmetry. Namely, the
statistical weight of any field configuration of the class CII
sigma model must be real. Equivalently, the imaginary part
of the sigma-model action must be an integer multiple of iπ .
It is the topological term that provides this imaginary part.
Consider an extension of the model from U (N )/O(N ) up to
SU(N + 1)/O(N + 1). Such an extension is given by, e.g.,
Eq. (89) with an additional symmetry constraint Q = QT .
The vortex configuration in this extended model has the form
Eq. (92) with the angle χ taking either 0 or π value. Thus
the internal U (1) parameter associated with the vortex in
the symmetry class AIII becomes a Z2 degree of freedom
in the class CII. The two vortex configurations with χ = 0
and π differ by an iπ term in the action, cf. Eq. (93).
Thus summation over the two values of this internal degree
of freedom effectively annihilates vortex contribution to the
partition function of the system.

The above discussion is based on the specific form of the
extended model (89) describing the vortex core. In fact, we
can lift this restriction and show that a vortex possesses an
internal Z2 degree of freedom without assuming any particular
structure of its core. Consider a vortex configuration in the
class CII sigma model. We suppose that some additional
massive degrees of freedom become relevant in the center
of the vortex and once they are taken into account the field
configuration is continuous. The extended model must possess
the time-reversal symmetry characteristic for the class CII.
Hence the statistical weight in the extended model is real
and the action is real up to an integer multiple of iπ . Let
us now create a small instanton far from the vortex center.
This will change the imaginary part of the action by π . Within
the extended theory, we can bring the instanton close to the
vortex center and “hide” it inside the core by a continuous field
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KÖNIG, OSTROVSKY, PROTOPOPOV, AND MIRLIN PHYSICAL REVIEW B 85, 195130 (2012)

transformation. Since the imaginary part of the action takes
only discrete values, this transformation will not remove an
extra iπ from the action related to the instanton. We have thus
demonstrated the existence of two topologically distinct vortex
solutions in the extended theory with opposite signs of their
statistical weights. Since there is no other general distinction
between these two solutions, the real parts of their action must
be equal. This once again shows that the total statistical weight
of a vortex configuration is zero if the underlying sigma model
contains the Z2 topological term.

To conclude, additional topological terms in the sigma
model of both AIII and CII symmetry classes suppress forma-
tion of vortices and thus prevent the system from localization.

VIII. SUMMARY AND OUTLOOK

In this paper, we have developed a field-theoretical (sigma-
model) approach to Anderson localization in 2D disordered
systems of chiral symmetry classes (AIII, BDI, CII). A
remarkable feature of sigma models for these classes is that
the quantum interference effects leading to renormalization of
conductivity (and thus to Anderson localization) are absent to
all orders of perturbation theory. We have shown that Anderson
localization does exist within these models and is governed by
a nonperturbative mechanism. Specifically, the localization is
due to topological excitations—vortices—of the sigma model
field. We have derived the corresponding renormalization
group equations which include nonperturbative contributions.
Analyzing them, we find that the 2D disordered systems of
chiral classes undergo a metal-insulator transition driven by
topologically induced Anderson localization.

While the mechanism of the localization transition—
proliferation of vortices—bears an analogy with the
Berezinskii-Kosterlitz-Thouless transition in systems with
U (1) symmetry, our RG equations are essentially different.
The reason for this is a more complex structure of the theory:
it is characterized by three coupling constants (conductivity
σ , Gade coupling c, and fugacity y) instead of two couplings
of the BKT transition theory (spin stiffness and fugacity). As
a result, the fixed point governing the transition turns out to
be at nonzero fugacity. For this reason, the critical behavior at
the transition cannot be determined in a controllable way. The
one-loop analysis suggests that this behavior is of power-law
type (i.e., is more similar to the critical behavior at Anderson
transitions in conventional classes rather than to that at BKT
transition).

For the chiral unitary class AIII, we have presented an
alternative derivation of the renormalization group based on a
mapping of the sigma model onto a dual theory. The latter has
the form of a generalized sine-Gordon theory.

We have also considered 2D disordered systems formed
on surfaces of 3D topological insulators of chiral symmetry
classes AIII and CII. In this case, the sigma model is
supplemented by a term of topological origin: the Wess-
Zumino term for the class AIII and Z2 θ term for the class
CII. We have shown that such terms overpower the effect of
vortices, thus ensuring the protection of surface states against
the vortex-induced Anderson localization.

Our work opens perspectives for research in a number of
important directions. Below, we briefly discuss several of them.

First, it would be very interesting to investigate the
metal-insulator transition in chiral classes and the associated
critical behavior numerically. Remarkably, this issue is almost
unexplored by now. This is in stark contrast with conven-
tional symmetry classes (i.e., symplectic class metal-insulator
transition and unitary class quantum Hall transition in 2D,
orthogonal class transition in 3D etc.) where very detailed
studies have been carried out. Since we are dealing here with
noninteracting systems in a relatively low (2D) dimensionality,
a sufficiently accurate numerical analysis is expected to be
feasible. Recent numerical progress41 in the investigation
of critical properties of metallic chiral systems at a small,
finite energy (breaking the chiral symmetry) supports this
expectation. It would be also interesting to simulate the sigma
model directly. This would allow to verify the importance
of topological excitations for localization and to test our
predictions. Such an approach can be implemented within
supersymmetric version of the sigma model with Grassmann
degrees of freedom integrated out.42

Second, it remains to develop a dual, sine-Gordon-like
theory of the transition, analogous to that presented in
Sec. VI for class AIII, for the other two chiral classes.
Furthermore, we feel that geometric aspects of sigma-model
renormalization within this dual formalism deserve a more
thorough investigation.

Third, a natural question arises concerning the metal-
insulator transitions in chiral classes in 3D (and higher
dimensionalities). We expect that also there the transition will
be driven by topological excitations, namely, vortex lines.

Fourth, in analogy with Z vortices studied above, 2D sigma
models of two classes, AII and DIII, allow for Z2 vortices.
The difference is that these two classes do show quantum
interference effects on the perturbative level. Therefore, in
contrast to the chiral classes, the vortices in classes AII and DIII
will not constitute the only driving mechanism of Anderson
localization but rather will contribute to renormalization of
conductivity along with perturbative terms.

Fifth, interaction effects play an important role in low-
dimensional systems and may strongly affect the nature
of the metal-insulator transition. Two-dimensional Dirac
fermions subjected to short-range interaction exhibit the Mott
transition43 unlike the noninteracting case when the system
remains metallic. It would be very interesting to investigate
the interplay of interaction and vortices in systems with chiral
symmetry.

Finally, we close with a more general comment. The
importance of topological aspects of field theories of dis-
ordered systems was recently emphasized in the context of
topological insulators.16,21 There, a possibility of emergence
of a Wess-Zumino term or Z2 θ term in the corresponding
dimensionality and symmetry class signals the existence of
a topological insulator phase. There is at present a growing
appreciation of the fact that the topological properties of
sigma-model manifolds may crucially affect the physical
observables even for those combinations of dimensionalities
and symmetries than do not allow for topological insulators.
In particular, a recent work44 has shown that a particular
symmetry of local density of states distributions holds for
sigma models (and thus for critical points) of five symmetry
classes (A, AI, AII, C, CI) but does not hold for the remaining
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five (AIII, BDI, CII, D, DIII). The distinct feature of the
latter five classes is the presence of U (1) or O(1) subgroup
in the sigma model target space M leading to a nontrivial
topology: π1(M) = Z for chiral classes (AIII, BDI, CII) and
π0(M) = Z2 for Bogoliubov-de Gennes classes D and DIII.
It is worth emphasizing that these topologies render these five
classes topological insulators in 1D. Equivalently, models of
these symmetry classes may support eigenstates with exactly
zero energies.26 As the paper Ref. 44 showed, the same
U (1) and O(1) degrees of freedom that are responsible for
topological insulator properties in 1D, in fact, crucially affect
the multifractal spectra at higher dimensionalities. The present
work shows that the U (1) topology of sigma-model manifolds
of chiral classes is also responsible for Anderson localization
in these classes in 2D (and likely also in higher dimensions).
Earlier, the authors of Ref. 45 argued that the O(1) = Z2

degree of freedom of the sigma model is responsible for
localization in class D in two dimensions. Thus it turns out
that the importance of topological aspects of field theories of
disordered systems goes well beyond that expected on the basis
of classification of topological insulators. Full ramifications of
these observations remain to be understood.
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APPENDIX A: PERTURBATIVE RENORMALIZATION
IN DUAL REPRESENTATION

The purpose of this Appendix is to illustrate the equivalence
of the model (54) and (55) to the original AIII sigma
model by a one-loop perturbative renormalization. Within this
calculation we can ignore the Gaussian field θ0 in Eq. (55)
(since renormalization of this sector is trivial on the pertur-
bative level) and concentrate on the renormalization of the
non-Abelian sector of the theory parametrized by fields θa

with a = 1, . . . N2 − 1. To make more explicit the possibility
of a loop expansion controlled by the parameter σ 
 1, it is
also convenient to rescale θa by a factor σ/4π . The action of
the model acquires now the form

S[θ ] = σ

8π
(δμν + iεμν)

∫
d2r (∇μθa)gab(θ )(∇νθb), (A1)

g(θ ) = [1 − Z(θ )]−1, Zab(θ ) =
N2−1∑
c=1

θcfabc. (A2)

The renormalization of the theory can now be carried out
in the standard manner. We split the fields θa into the fast
and slow components, θ = θ< + θ̃>. We should then expand
in the fast fields up to the second order and integrate them out.
It proves convenient to perform the change of fast variables

θ> = g(θ<)θ̃> so that the decomposition of θ into the fast and
slow fields reads

θ = θ< + (1 − Z<)θ>. (A3)

Here, we introduced for notational brevity Z< ≡ Z(θ<). This
change of integration variables cancels the contribution of the
nontrivial integration measure Dμ(θ ) to the renormalization
group equations and guarantees the absence of linearly
diverging diagrams in one-loop calculation. Denoting also
Z(θ>) by Z>, we have

∇θ = (1 + Z>)∇θ< + (1 − Z<)∇θ>, (A4)

Z(θ ) = Z< + Z> + [Z>,Z<]. (A5)

This implies that the quadratic-in-θ> contribution to the action
reads S2 = S

(0)
2 + δS2,

S
(0)
2 = σ

8π

∫
d2r ∇θT

>∇θ>, (A6)

δS2 = σ (δμν + iεμν)

8π

∫
d2r [∇μθT

> (1 + Z<)

+∇μθT
<g<Z>Z<] [∇νθ> + g<(2 − Z<)Z>g<∇νθ<]

−S
(0)
2 . (A7)

Performing now the expansion in δS2, averaging over fast
fluctuations, and retaining only the logarithmically diverging
contributions, we find the correction to the action functional
of the slow fields:

�S = N

8π
ln

�

�′ (δμν + iεμν)

×
∫

d2r ∇μθT
< [2g + 3g2]∇νθ< . (A8)

We can recast the action for the slow fields into the original
form by correcting the conductivity σ → σ̃ and switching to
the rescaled filed θ̃

σ̃ = σ

(
1 − N

σ
ln

�

�′

)
, (A9)

θ̃ = θ

(
1 + 3N

σ
ln

�

�′

)
. (A10)

[Note that, after the rescaling, the factor 1/(1 − Z) should be
expanded to the first order in 1/σ , which is the accuracy of the
one-loop calculation.] We see now that the dual model defined
by Eqs. (54) and (55) reproduces the correct renormalization
of the conductivity σ .

APPENDIX B: CHIRAL SIGMA MODEL
FOR MASSLESS DIRAC FERMIONS

In this Appendix, we outline the derivation of the sigma
models for the massless Dirac Hamiltonians of AIII and CII
symmetries. Apart from demonstrating the consequences of
the chiral symmetry in the sigma-model language, we will
also discuss possible topological terms. Such terms frequently
appear due to chiral anomaly of the massless Dirac electrons.

1. Class AIII

Let us first consider the AIII symmetry class. A general
chiral Hamiltonian has the block off-diagonal structure (1). We
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consider the following Dirac Hamiltonian of AIII symmetry
[cf. Eq. (88)]:

H =
(

0 p− + a

p+ + a† 0

)
. (B1)

Here, p± = px ± ipy and a is a random complex-valued
matrix of size n × n. Further, we adopt the most standard
model of Gaussian white noise disorder with the correlator

〈a∗
ij akl〉 = α

n
δikδjl . (B2)

Parameter α quantifies the disorder strength and determines
the scattering rate of electrons. Within self-consistent Born
approximation, the scattering rate at the Dirac point (zero
chemical potential) is given by

γ = �e−2π/α, (B3)

where � is the effective band width (maximal allowed energy)
for Dirac Hamiltonian. The self-consistent Born approxima-
tion is valid in the limit n 
 1. This also corresponds to high
Drude conductivity n/π (e2/h) at the Dirac point and justifies
the applicability of the sigma model.

Derivation of the nonlinear sigma model starts with the
replicated action written in terms of fermionic (anticommut-
ing) fields:

S = ( ψ̄a
i φ̄a

i

)( 0 δijp− + aij

δijp+ + a∗
ji 0

)(
φa

j

ψa
j

)
. (B4)

The lower indices i and j take n possible values in the
flavor space, while the upper index a enumerate N replicas.
We proceed with averaging e−S over the random matrix a.
With the help of Eq. (B2), the effective action acquires the
form

S = ψ̄a
i p−ψa

i + φ̄a
i p+φa

j + Sdis, (B5)

Sdis = α

n
ψa

i φ̄b
i φ

b
j ψ̄

a
j . (B6)

The quartic term Sdis is further decoupled with the help of
an auxiliary complex matrix field Q acting in replica space.
This is achieved by adding to the action a term Tr Q†Q and
shifting the Q variable by a suitable quadratic expression in
fermions:

Sdis → Sdis + nγ 2

α

(
Qab + iα

nγ
ψa

i φ̄b
i

)(
Q∗

ab + iα

nγ
φb

j ψ̄
a
j

)

= nγ 2

α
Tr Q†Q − iγ

(
ψ̄a

i Qabφ
b
i + φ̄b

i Q
∗
abψ

a
i

)
. (B7)

Now, we add the rest of the action from Eq. (B5) and then
perform Gaussian integration over fermion fields:

S = nγ 2

α
Tr Q†Q + ( ψ̄i φ̄i )

(−iγQ p−
p+ −iγQ†

)(
φi

ψi

)

→ nγ 2

α
Tr Q†Q − n Tr ln

(−iγQ p−
p+ −iγQ†

)
. (B8)

The next step of the sigma model derivation involves
saddle-point analysis of the above action for Q. The saddle-

point equation is equivalent to the equation of self-consistent
Born approximation with iγQ playing the role of self-energy.
Therefore one particular solution is just the unit matrix
Q = 1. Other solutions can be found by unitary rotating the
fermion fields in the first line of Eq. (B8) such that the p±
terms remain intact. These rotations generate the gauge group
U (N ) × U (N ) rotating Q by the two unitary matrices from left
and right. Thus the matrix Q takes values from the symmetric
subgroup U (N ) × U (N )/U (N ) = U (N ) of the global gauge
group. This establishes the manifold of the class AIII sigma
model.

The sigma-model action is a result of the gradient expansion
of Eq. (B8) with a slowly varying unitary matrix Q. This
gradient expansion should be carried out with care in view
of the chiral anomaly of the Dirac operator under logarithm.
A systematic description of the expansion procedure, in-
cluding the methods to treat the anomaly, can be found, in
particular, in Ref. 15. The result of the gradient expansion
reads

S[Q] = − n

8π
Tr(Q†∇Q)2 + SWZ[Q]. (B9)

This is the standard sigma-model action of class AIII, Eq. (3)
with σ = n and c = 0, with an additional Wess-Zumino
term of the level k = n, see Eq. (83). Appearance of the
Wess-Zumino term is the direct consequence of the chiral
anomaly of the Dirac Hamiltonian. The structure and proper-
ties of the Wess-Zumino term are discussed in the main text,
Sec. VII A.

2. Class CII

Now, we discuss the derivation of the sigma model with
Z2 topological term in the symmetry class CII. Consider the
Hamiltonian [cf. Eq. (94)]

H =
(

0 h

h† 0

)
, h =

(
p− a

−a∗ p+

)
. (B10)

As in the previous case, a is a random complex-valued
matrix of size n. The block h fulfills the symmetry condition
h = σyh

∗σy and hence represents a (operator-valued) real
quaternion matrix. Thus the Hamiltonian (B10) indeed belongs
to the symmetry class CII.

We assume the same Gaussian white-noise distribution
of a as in the previous section, Eq. (B2). Disorder-induced
scattering rate, Eq. (B3), is also reproduced within the self-
consistent Born approximation; Drude conductivity is twice
larger, 2n/π (e2/h), since the Hamiltonian (B10) contains 2n

coupled Dirac fermions.
As in the previous section, we start with the replicated

fermionic action,

S = ( ψ̄ ξ̄ )a
i
hij

(
ψ

ξ

)a

j

+ ( φ̄ ζ̄ )a
i
h∗

ji

(
φ

ζ

)a

j

= �̄a
i p−�a

i + �̄a
i p+�a

i + �̄a
i aij �̄

a
j − �a

i a
∗
ij�

a
j .

(B11)
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Here, we have introduced the doubled fermionic fields

� =
(

ψ

ζ̄

)
, � =

(
ξ̄

φ

)
, �̄ =

(
ψ̄

ζ

)
, �̄ =

(
ξ

φ̄

)
.

(B12)

Starting from the second line of Eq. (B11) and further on,
we assume that the replica index a takes on 2N values
running through N replicas and two components of the
vectors (B12).

We average e−S from Eq. (B11) using the correlator
Eq. (B2) and obtain

S = �̄a
i p−�a

i + �̄a
i p+�a

i + Sdis, (B13)

Sdis = α

n
�b

i �̄a
i �

b
j �̄

a
j . (B14)

These expression are very similar to Eqs. (B5) and (B6). The
only difference is in the order of replica indices in the quartic
term Eq. (B14). As before, we introduce the matrix field Q

and decouple the action according to

Sdis → Sdis + nγ 2

α

(
Qab + iα

nγ
�b

i �̄a
i

)(
Q∗

ab + iα

nγ
�b

j �̄
a
j

)

= nγ 2

α
Tr Q†Q − iγ

(
�̄a

j Qab�
b
j + �̄a

i Q
∗
ab�

b
i

)
. (B15)

Adding the clean part of the action from Eq. (B13) and
performing Gaussian integration over fermion fields, we obtain

the action in the form

S = nγ 2

α
Tr Q†Q + ( �̄i �̄i )

(−iγQ p−
p+ −iγQ∗

)(
�i

�i

)

→ nγ 2

α
Tr Q†Q − n Tr ln

(−iγQ p−
p+ −iγQ∗

)
. (B16)

This result is again very similar with the class AIII expression
(B8). The only difference is that the matrix Q† under the
logarithm in Eq. (B8) is replaced with Q∗ in the present case.
The standard saddle point of the above action is Q = 1. Other
saddle points are generated by rotations of the fermion fields
in the first line of Eq. (B16). As follows from the saddle
point analysis, these rotations should maintain the complex
conjugacy of Q and Q∗ in the argument of the logarithm.
This is achieved by the unitary transformation of the form
� → U�, � → U ∗�, �̄ → �̄U †, �̄ → �̄UT parametrized
by the unitary matrix U of the size 2N . The global gauge
group is thus U (2N ). The saddle manifold is parametrized
as Q = UT U and contains all symmetric unitary matrices,
Q ∈ U (2N )/O(2N ), as it should be for the sigma model of
class CII.

For any symmetric unitary matrix Q, the action (B16) is
identical to Eq. (B8). This means that the sigma-model action
Eq. (B9) obtained by the gradient expansion of Eq. (B8), is
also valid for the symmetry class CII provided the constraint
Q = QT is maintained. With this restriction, the Wess-Zumino
term of the level k = n becomes a Z2 topological term for any
odd n, as we discuss in Sec. VII B.46
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