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Effective interactions in multiband systems from constrained summations
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In correlated electron materials, the application of many-body techniques for the study of interaction effects or
unconventional superconductivity often requires the formulation of an effective low-energy model that contains
only the relevant bands near the Fermi level. However, the bands away from the Fermi level are known to
renormalize the low-energy interactions substantially. Here we compare different schemes to derive low-energy
effective theories for interacting electrons in solids. The frequently used constrained random phase approximation
(cRPA) is identified as a particular resummation of higher-order interaction terms that includes important virtual
corrections. We then propose an adapted functional renormalization group scheme that includes the cPRA, but
also allows one to go beyond the cRPA approximation. We study a simple two-band model in order to explore
the differences between the approximations.
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I. INTRODUCTION

Due to the complexity of many condensed-matter systems,
the derivation of effective low-energy theories has always
represented a core problem of many-particle physics. Often,
these low-energy models are still complicated enough to
provide challenges for a large community of researchers.
For example, in the field of strongly correlated electrons,
understanding the properties of Hubbard, Anderson-impurity,
or Kondo-type models has been a central topic of recent
decades, which has in parts been pursued with very little
material-specific input, and without the necessity or also
possibility to derive the model parameters in theory with
higher precision. However, with a larger toolbox of more
quantitative many-body techniques for solving the low-energy
problem available, a more precise determination (if at all
possible) of effective low-energy models in correlated electron
systems becomes increasingly important. For example, the
recent theoretical research in the iron arsenides makes clear
that details of the effective model are relevant at least for the
gap structure of the leading superconducting instabilities.1–3

Furthermore, in the field of graphene physics, the occurrence
of interesting many-body states might depend on whether the
interaction parameters in a description reduced to the two
lowest π bands exceed certain threshold values.4–7

The constrained random phase approximation (cRPA)8,9

has become a standard tool for deriving interactions in a
localized basis for such effective low-energy few-band models
for solids. Compared to the straightforward Coulomb matrix
elements between the localized Wannier states forming the
low-energy band, which would be the simplest choice as effec-
tive interaction parameters, in the cRPA interband transitions
involving particle-hole pairs with at least one intermediate
particle outside the low-energy range are included as well.
These particle-hole diagrams are then summed up to infinite
order, which usually leads to a significant reduction of the local
Hubbard interaction parameters. In the cRPA procedure, the
particle-hole screening with two intermediate particles in the
low-energy sector is excluded, as these processes should be
dealt with in the solution of the resulting low-energy problem.
In general, the cRPA procedure generates an interaction that

depends on the frequency transfer through the diagrams.10

While this can have some effect on excited states, it is found
that the low-frequency dependence is rather weak such that
working with the low-frequency limit can be considered a good
approximation.9 Furthermore, in contrast with the constrained
local-density approximation11 (cLDA) also used in the field,
the cRPA in general produces orbitally dependent interaction
parameters. This gives one an extra handle to understand
different behaviors in complex multiorbital systems.

The cRPA has been accepted well and is being applied
with appealing results to a growing number of situations (see,
e.g., Refs. 4,12,13). Theoretically, there are, however, various
questions that should be considered in order to understand
better the potential of this approach. First of all, the random
phase approximation can be argued to capture physically
relevant contributions, but a priori there seems to be no
argument why this approximation really captures all important
physics. For the screening of a long-range part of 1/q2

Coulomb interactions (q denotes the wave-vector transfer),
it might be sufficient to focus on the RPA series, as for any
vertex correction one would integrate over a factor 1/q2 at a
vertex, and hence, for any fixed order n in the bare interactions,
the RPA-type bubble sum of order n is the leading term
larger by a factor ∼ ( kF

q
)2.14 Note, however, that the main

field of application of the cRPA is determining the short-range
“Hubbard” part of the interactions, and hence the q → 0 part
will most likely not give the full answer. For general q, if
we ask why other one-loop terms are ignored, there appears
to be no expansion parameter other than the inverse energy
separation between high- and low-energy bands, but this enters
in all one-loop diagrams in a similar way. Likewise, large-N
arguments do not seem applicable, as the Coulomb interaction
does not imply any band-conservation rules. Hence, a central
point of this work is to present a broader framework that
contains more corrections than cRPA, and that allows us to
assess the validity of the cRPA scheme for a given model.

A common strategy for deriving low-energy models are
Wilsonian renormalization group (RG) methods.15,16 Here
the degrees of freedom above a certain energy scale s are
integrated out, leading to an effective action for the remaining
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low-energy modes. With regard to the question which diagrams
should be kept and which can be ignored, RG techniques
for many-fermion systems17–21 have proved very useful, as
they are capable of including all one-loop diagrams and hence
go beyond standard single-channel summation like the RPA.
Therefore, restricted summations can be tested against a more
complete picture that treats all one-loop diagrams on the same
footing. Hence, the obvious strategy in this work is to explore
the use of RG techniques in order to embed the cRPA in
this broader context. We will see that the cRPA is already
a clever extension of the standard truncation that is usually
taken in the RG approach. These ideas will then allow us to
propose improved derivation schemes of low-energy effective
interactions.

This paper is organized as follows. In Sec. II we briefly
reproduce the main equations of the cRPA formalism. Then,
in Sec. III A we contrast this with the standard RG approach
for fermionic low-energy effective theories. In Sec. III B we
identify the cRPA as a particular resummation of terms that
would have been neglected on the standard truncation level of
the RG approach. In Sec. III C we then relate this resummation
to Wick-ordered correlation functions. In Sec. III D we propose
a functional RG (fRG) scheme that includes the cRPA but
also includes many other terms of comparable importance.
In Sec. IV we present a numerical study of a simple model
system that allows us to monitor the differences between the
approximation levels. Finally we conclude in Sec. V with a
brief discussion.

II. CONSTRAINED RANDOM PHASE APPROXIMATION

Here we review the main construction principle of the
constrained random phase approximation (cRPA). For more
information, the reader is referred to the original papers by
Aryasetiawan et al.8 or a recent review by Imada and Miyake.9

The standard setup we consider here is a multiband system
with “low-energy” or “target” bands near the Fermi level
and “high-energy” bands away from the Fermi level. We
assume that the bands have been determined by an ab initio
technique such as density functional theory with local density
approximation (DFT-LDA). Let s be an energy scale that
separates the two band complexes, target, and high-energy
bands. The situation of overlapping bands can also be dealt
with without major changes, but for simplicity we will not
dwell on this issue here.

If interaction effects in the low-energy bands are important,
it will be advantageous to derive a real-space few-orbital
model for these bands, typically employing (maximally)
localized Wannier functions9,22 formed with the low-energy
bands as basis functions. The hopping dispersion between
these orbitals is then obtained from the DFT bands. A first
estimate for the interaction parameters can be obtained by
computing Coulomb and exchange integrals between these
Wannier states. Note that the values obtained this way depend
on the target energy window. A smaller target window usually
corresponds to less localized Wannier orbitals, and will result
in smaller interaction parameters (for comparisons between
pure d-orbital models and more extended dp models in the
iron pnictides (see, e.g., Refs. 12,23). It is, however, clear
that this change arises just from the two different Wannier

bases with a different charge spread of the basis functions
localized on a specific site in the two representations. More
importantly, the kernels e2

|�r−�r ′| of the Coulomb or exchange
integrals lack the effects of virtual excitations into the higher
bands outside the target window. These processes induce,
besides other changes to be discussed below, the screening
that leads to a renormalized Coulomb interaction e2

ε(�r,�r ′,ω)|�r−�r ′ |
with the dielectric constant ε(�r,�r ′,ω) of the fictitious insulator
with the bands near the Fermi level cut out. This screening
is responsible for a potentially significant reduction of the
effective interaction parameters.

The main idea of the constrained RPA is now to include
these virtual processes on the level of the random phase
approximation (assuming that vertex corrections are not overly
important), by renormalizing the bare Coulomb interaction
v(�q) to

V cRPA(q) = v(�q)

1 − Ps(q)v(�q)
. (1)

In this expression, q = (�q,iq0) combines the transferred wave
vector �q and Matsubara frequency iq0, and the polarization
particle-hole bubble Ps(q) only contains contributions with at
least one internal line in the the high-energy bands. Using the
high-energy electron propagator G>s(k), with k = (�k,ik0) for
the fermionic quantum numbers (excluding spin dependencies
and not writing possible band indices), and the low-energy
propagator G<s(k), is it is given by

Ps(q) = 2
∑

k

[G>s(k)G>s(k + q) + G>s(k)G<s(k + q)

+G<s(k)G>s(k + q)]. (2)

The factor of two in front of the wave vector and Matsubara
sum is from the spin sum, assuming spin-rotational invariance.
The first term in the square bracket is the high-energy
polarization involving only bands away from the Fermi level,
while the second and the third term correspond to “mixed”
diagrams with one propagator line away from the Fermi level,
and the other within the low-energy bands (see Fig. 1). If
we consider a simplified setting with just one low-energy
band near the Fermi level and only one high-energy band,
these contributions correspond to interband particle-hole pairs.
From the construction it is clear that Ps(q) should not lead to
any divergences, as all energy denominators contributing at
T → 0 remain finite and at least of order s (i.e., the energy
separation between the Fermi level and the high-energy bands).
However, one should expect a wave vector and frequency
dependence playing a role at q0 ∼ s.9 In our notation, for
iq0 → 0, the partial polarization Ps(q) becomes real and
negative, and therefore the effective interaction V cRPA(�q,0) is
reduced compared to the bare value v(�q). As the mixed terms
G>s(k)G<s(k + q) + G<s(k)G>s(k + q) in Eq. (2) with one
line in the target bands have smaller energy denominators,
the main contributions should come from the mixed diagrams.
In realistic many-band calculations, the reduction factor can
be 0.4 to 0.5 for the π bands of graphene or graphite4 or
even 0.17–0.3 for various low-energy models for iron arsenide
superconductors.12 Of course such strong renormalizations
and their dependence on the material parameters are important
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FIG. 1. (Color online) (a) (Left side) Diagrammatic expression
for the bare interaction v(�q) with the incoming and outgoing quantum
numbers for wave vector and Matsubara frequency k = (�k,ik0) and
spin s. The spin projection is conserved along the short edge of the
box. (Right side) The solid lines denote low-energy propagators, the
dashed lines high-energy propagators. (b) Two types of second-order
corrections, summed together to infinite order in the cRPA. The term
on the left side has two internal high-energy propagators, while on
the right side, in the “mixed” diagram, one internal line is in the
low-energy sector.

input information for any modeling of correlation effects
beyond the DFT.

III. EMBEDDING THE CRPA INTO
THE RENORMALIZATION GROUP

A. Renormalization group approach to effective theories

Here, we outline the renormalization group (RG) approach
to effective theories, in order to see how the cRPA can be
related to this. Focusing on the fermionic case, let us again
consider an energy scale s defining a certain distance to the
Fermi level, and let us assume that s is located in band gaps
between bands near the Fermi level and bands further away
from the Fermi level. Again, this assumption is made mainly
to keep the language simple. In principle, a clear energetic
separation of the bands does not appear to be necessary in this
formalism.

Let us start with the full theory, including all electronic
degrees of freedom. The original partition function shall be
given by the functional integral,

Z =
∫

Dψ e
1
2 ψC−1ψ−V (ψ). (3)

Here, in order to keep the notation lean, we have suppressed
all quantum numbers k = (ik0,�k,σ,b,n), that is, Matsubara
frequency ik0, wave vector �k, spin projection σ = ±1/2, band
index b and Nambu index n for barred or unbarred Grassmann
fields ψ . Correspondingly, the propagator C is an invertible
matrix in this superindex space and ψC−1ψ is a bilinear from
involving summations over all quantum numbers. In the case
of translation symmetry and spin-rotational invariance, only
the part of the propagator that connected barred and unbarred
fields with otherwise same quantum numbers will be nonzero,
and reads

C(k) = 1

ik0 − ε(�k,s,b)
. (4)

The bare interaction V (ψ) is assumed quartic in the fermion
fields to obey the lattice symmetries, and involves various
summations as well.

The underlying strategy for the RG with respect to the band
energy is then to divide the free electron propagator C into
C = Ds + Cs (see, e.g., Ref. 19). Ds is the free propagator for
the low-energy part, which is zero for the high-energy modes
above scale s. This can be achieved by writing

Ds(k) = �[s − |ε(�k,s,b)|]
ik0 − ε(�k,s,b)

. (5)

Here we write a step function �[s − |ε(�k,s,b)|] to restrict
the propagator sharply on the low-energy modes, but other,
smoother choices work similarly. Cs is the propagator for the
high-energy part.

Cs(k) = �[|ε(�k,s,b)| − s]

ik0 − ε(�k,s,b)
. (6)

The Gaussian measure splitting formula (see, e.g., Ref. 19)
leads to (using new Nambu fields λ for the low-energy fields
and η for high-energy fields)

Z =
∫

Dλ e
1
2 λD−1

s λ

∫
dη e

1
2 ηC−1

s η e−V (λ+η). (7)

The second integral is (up to normalization with the free par-
tition function Z0 of the high-energy modes) the exponential
of Polchinski’s effective action19,20,24,25 Vs(λ) for the theory at
scale s, defined by

e−Vs (λ) = Z−1
0

∫
dη e

1
2 ηC−1

s η e−V (λ+η). (8)

The expansion coefficients of Vs(λ) in powers of the low-
energy fields λ are the connected Cs-amputated m-point
correlation functionsV (m)

s . Alternatively, these can be obtained
by constructing tree diagrams out of the one-particle irre-
ducible (1PI) vertices of the high-energy theory above scale s,
with full high-energy propagators on the internal one-particle
reducible lines. In Fig. 2 we show the first terms corresponding
to two-particle, three-particle, and four-particle interactions.

(b)

(a)

(c)

FIG. 2. (Color online) The interaction terms in the low-energy
effective action Seff obtained from integrating out the high-energy
modes above scale s; (a) is the two-particle interaction V (4)

s = S
(4)
eff ,

(b) the three-particle interaction V (6)
s = S

(6)
eff , and (c) the four-particle

interaction term V (8)
s = S

(8)
eff . The circles denote the one-particle-

irreducible (1PI) vertices γ (n)
s from the high-energy problem that

includes all types of 1PI corrections with internal high-energy lines
above scale s only. The tree diagrams in (b) on the right and (c) in the
middle and on the right have single (full) high-energy propagators as
connections.
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Each external leg of these expansion coefficients with quantum
numbers k carries a full high-energy propagator Gs(k) divided
by a bare high-energy propagator Cs(k). While in principle this
dressing may contain interesting physics, we will fully ignore
self-energy corrections in the following and will direct our full
attention on the interaction terms. In this approximation the
external legs are fully amputated, as for the 1PI vertices.

This way, the effective action Ss(λ) of the “low-energy”
fields λ can be obtained,

Z/Z0 =
∫

dλ e
1
2 λD−1

s λ e−Vs (λ) =
∫

dλ e−Ss (λ). (9)

This formula is a well-defined starting point for a detailed
analysis of the low-energy problem, not only using fRG but
also many other many-body approaches. The effect of the
higher-energy degrees of freedom is contained in the expan-
sion coefficients of Vs(λ), that is, the amputated connected
correlation functions at scale s. The λ-field propagators in the
remaining low-energy problem are bounded from above (i.e.,
live exclusively in the low-energy sector). In any perturbative
treatment, only low-energy modes contribute on the internal
lines of the diagrams.

The important point to notice (although maybe obvious to
many readers) is that in general, the expansion of the effective
(inter-)action Vs(λ) does not stop after the fourth power in the
fields λ. In this regard, the effective theory is not necessarily
simpler than the original one, and we will soon come back to
the information hidden in the terms of order higher than four.

In order to be more clear, imagine a two-band situation,
where Cs describes the upper η band (“upstairs”) above the
Fermi level and Ds the lower “λ band” closer to the Fermi
level (“downstairs”). We are interested in downfolding the
model onto the λ band (i.e., we can think of scale s as a
division line between the two bands). If we use Eq. (9), the
renormalizations of the parameters in the λ-band action will
be given by diagrams with only η modes in the upper band
on the internal lines. The contributions with all particles in the
low-energy sector will be collected later in the treatment of the
low-energy model.

This is fine, and may describe some important effects.
However, we might worry where the “mixed” diagrams
renormalizing the four-point functions with one internal
line in the high-energy sector and one in the low-energy
sector have gone. As mentioned before, these diagrams are
potentially more important than those with two internal lines
upstairs, as they have a smaller energy denominator. In the
cRPA formalism, these mixed diagrams are summed up to
infinite order, together with the particle-hole bubbles with two
intermediate lines upstairs. In principle, these diagrams are not
lost in the RG approach. The three-particle interaction term S

(6)
eff

at scale s is obtained in parts by a tree diagram made from two
1PI–four-point vertices γ (4)

s with a high-energy propagator
as the connection [see right term in Fig. 2(b)]. Now, in the
perturbative treatment of this low-energy model, two of the
external lines of the S

(6)
eff will get connected by a low-energy

propagator. This means we have a low-energy propagator and a
high-energy propagator joining the two four-point vertices (see
right term in Fig. 3). This reconstructs the looked-for mixed
diagrams. But obviously, we have to include the higher-order

(b)

(a)

(c)

FIG. 3. (Color online) Resummation of contributions from
higher-order terms in the effective action that recovers the cRPA.
Besides the four-point term in the effective action in (a), specific
contractions of the higher-order terms S

(m)
eff with the four remaining

low-energy legs also are kept. The crossed-out terms are disregarded
on this level. The right term of (b) reconstructs the second-order
mixed term in the cRPA, plus other particle-hole corrections and
particle-particle diagrams, while the right term of (c) brings in the
third-order corrections. Including analogous contributions from S

(m)
eff

with m > 8 and only keeping the RPA-type particle-hole terms allows
one to recover the cRPA summation to infinite order.

interaction S
(6)
eff to capture these effects. This appears to be a

major complication, as most many-body techniques and also
the common wisdom on many-fermion systems are focused on
two-particle interactions only, and inclusion of terms beyond
this order leads to severe complications. Below we will see that
fortunately there is work-around for this problem, and relevant
contributions due the six-point term can be recovered without
having to compute S

(6)
eff explicitly.

B. cRPA as partial resummation

The sketch of the RG approach to the effective theory
made clear that in order to retrieve the mixed particle-hole
terms summed in the cRPA, one apparently has to include
higher-order terms in the effective action. Fortunately, it
is not difficult to see that the cRPA basically resums the
simplest contributions of such higher-order vertices to the
two-particle interaction. Hence at least a part of these higher-
order interactions is captured. This way one circumvents the
treatment of a low-energy theory with more than two-particle
interactions.

In order to understand this construction, let us again
consider the first contributions to the interaction terms in the
effective action, in Fig. 2 and then in Fig. 3. Now, imagine
that we only want to keep two-particle interactions with four
external legs like the first term (a), the 1PI–four-point vertex,
as interaction terms in our effective theory. Dropping all terms
except (a) is the simplest approximation, but this drops all
mixed terms and interband particle-hole pairs. If we kept
the higher-order terms in the low-energy theory below the
separating scale s, and treated them perturbatively, additional
two-particle interactions would be generated by joining two
of the external low-energy legs of the interaction terms by
low-energy propagators. This either generates tadpoles, if the
two legs are at the same 1PI vertex, or one- and more-loop
diagrams with two and more propagators, if the two legs
are at different vertices. If we only allow connecting legs
at neighboring vertices with low-energy lines, we get mixed
diagrams like the ones on the right-hand side of (b) and (c) in
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Fig. 3. The right term of Fig. 3(b) reconstructs the second-order
term in the cRPA, while the right term of (c) brings in the
third-order correction (and much more, because not only the
direct particle-hole terms are reconstructed this way). If we
now only keep the appropriate particle-hole terms that build
up the RPA series, and do the same for all higher-order
interactions S

(m)
eff of order m > 8, we sum up the missing mixed

particle-hole diagrams from the cRPA to infinite order.
The corresponding bubble sums with two high-energy lines

in the individual bubbles that are already summed in the
1PI–four-point vertex (i.e., the two-particle interaction),

S
(4)
eff = 1

2

∑
k,k′ ,q
s,s′

V
(4)

eff (q)λ̄k+q,s λ̄k′−q,s ′λk′,s ′λk,s, (10)

in the effective theory before resumming the higher-order
terms. To get the strict correspondence to cRPA, we should also
restrict the construction of the effective two-particle interaction
S

(4)
eff to the RPA-type diagrams only (i.e., write S

(4),RPA
eff ), or

S
(4),RPA
eff = 1

2

∑
k,k′ ,q
s,s′

V
(4),RPA

eff (q)λ̄k+q,s λ̄k′−q,s ′λk′,s ′λk,s , (11)

with

V
(4),RPA

eff (q) = v(q)

1 − Phigh,s(q)v(q)
(12)

using the bare interaction v(q) and the polarization in the high
energy bands (now dropping self-energy corrections),

Phigh,s(q) = 2
∑

k

Cs(k)Cs(k + q) . (13)

Cs(k) is the bare high-energy propagator that lives on scales
above s. In our notation, the polarization sums are negative in
the limit of frequency transfer iq0 → 0.

Furthermore, if we only allow for this specific particle-hole
diagram that forms the RPA, the higher-order 1PI vertices
γ (n>4)

s will be zero, and the higher-order effective interactions
will be given just by specific tree diagrams with bare high-
energy propagators, which we call S

(n),RPA
eff .

In total we get for the effective two-particle interaction,
after including these RPA corrections due to the higher-order
interaction terms,

V
(4),cRPA

eff (q) = V
(4),RPA

eff (q) − V
(4),RPA

eff (q)Pmixed,s(q)V (4),RPA
eff (q)

+V
(4),RPA

eff (q)Pmixed,s(q)V (4),RPA
eff (q)Pmixed,s

× (q)V (4),RPA
eff (q) − . . . . (14)

Here the first term is the direct two-particle interaction without
mixed-diagram contributions, the second term comes from
contracting the tree for S

(6),RPA
eff , and the third term is obtained

from contracting the neighboring vertices in the two-branch
tree for S

(8),RPA
eff . The minus signs are chosen according to the

usual diagram rules that also apply in this case with cutoffs.
The polarization bubble is given by

Pmixed,s(q) = 2
∑

k

[Ds(k)Cs(k + q) + Cs(k)Ds(k + q)],

(15)

with the bare low-energy propagator Ds(k) and the high-
energy propagator Cs(k) that lives on scales above s, in this
approximation without self-energy corrections.

Obviously, this sum for V
(4),cRPA

eff (q) can be extended to all
higher S

(n),RPA
eff , such that we can sum the geometric series to

obtain

V
(4),cRPA

eff (q) = V
(4),RPA

eff (q)

1 − Pmixed,s(q)V (4),RPA
eff (q)

. (16)

Furthermore, it is not difficult to see that the two geometric
series summing high-energy and mixed polarizations can
be combined. This gives in terms of the bare two-particle
interaction,

V
(4),cRPA

eff (q) = V (4)(q)

1 − [Pmixed,s(q) + Phigh(q)] V
(4),RPA

eff (q)
, (17)

which is the same as the cRPA result stated in Eq. (1).
This completes the identification of the cRPA as a partial
resummation of higher-order interaction terms in the effective
theory, however, with a specific choice that only particle-hole
diagrams can be summed as RPA series are included. As stated
in the introduction, there is no hard reason why other mixed or
high-energy diagrams should give much smaller corrections.
Hence it would be interesting to try a parquet summation
of all one-loop diagrams (i.e., the other particle-hole terms
corresponding to vertex corrections and to crossed diagrams,
as well as the particle-particle diagrams). RG schemes like the
one for the one-particle irreducible (1PI) vertices are able to
do this without the actual need of writing down higher-order
terms. They sum all one-loop diagrams to infinite order, but in
the usual form they do not resum the higher-order interactions
with m > 4.

C. Relation to Wick-ordered correlation functions

We will now work toward adapting the RG scheme for the
four-point (two-particle) interaction vertices so as to include
the missing mixed diagrams and to perform an extended
resummation of the higher-order interactions. Here, one is
aided by the observation that the resummation just described
for the cRPA is basically (not exactly, due to the neglected
terms) equivalent to the relation between so-called Wick-order
correlation functions, generated by a Wick-ordered functional
Ws(λ) and the amputated connected correlation functions,
generated by Vs(λ). This relation reads19,24,26

Ws(λ) = e�Ds Vs(λ), (18)

where (now suppressing bars on the field again, and working
with a matrix propagator Ds),

�Ds
=

∑
k,k′

δ

δλk

Ds(k,k′)
δ

δλk′
(19)

is a functional Laplacian which takes away two low-energy
fields of an amputated correlation function and then joins the
two vacant external legs with a low-energy propagator. The
Wick-ordered functional Ws(λ) obtained in Eq. (18) can again
be expanded in a power series in the fields λ, with Wick-
ordered correlation functions as expansion coefficients. The
Wick-ordered functions differ in their physical content from
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FIG. 4. (Color online) Relation between the fourth-order term
W (4)

s in the expansion of the Wick-ordered generating functional
defined in Eq. (18) and the amputated connected correlation functions
V (m)

s . The closed lines are bare low-energy propagators.

the amputated connected correlation functions. In particular,
they include the looked-for mixed diagrams.

This can be seen most easily if we focus on the fourth-
order Wick correlation function W (4)

s . The exponential of the
Laplacian generates an infinite series of terms of fourth order
in λ, starting with the normal fourth-order term V (4)

s (which is
the same as the 1PI–four-point vertex γ (4)

s when we neglect
self-energies) but then contains as the next term a singly
Ds-contracted V (6)

s , a doubly contracted V (8)
s , and so on. The

diagrammatic expression for the relation between the Wick-
ordered four-point correlation function and the amputated
correlation functions is shown in Fig. 4. Note that in a theory
with bare two-particle interactions only, building up a 2m-
point amputated correlation function from the bare interaction
then requires at least m − 2 high-energy propagators for
the necessary tree diagrams (the 1PI parts expressed in the
bare interaction have even more internal high-energy lines).
In forming the four-point Wick function, 2(m − 2) legs are
contracted with m − 2 low-energy propagators. Hence, in
terms of the bare interaction, the perturbation series for the
four-point Wick function contains diagrams that have at least
as many internal high-energy lines as low-energy lines. In this
sense the Wick interaction is somehow halfway between only
capturing high-energy corrections and the full perturbation
series on all scales.

The cRPA can be retrieved in this construction by again
neglecting all 1PI vertices higher than γ (4)

s and all contractions
that do not correspond to those diagrams that occur in the
RPA-type mixed particle-hole bubble chain. But the full Wick
four-point function contains many other corrections. In the
diagram class with as many high-energy as low-energy lines
these are particle-hole vertex corrections and particle-particle
diagrams with one high-energy and one low-energy line.
Regarding diagrams with only high-energy lines, only the
RPA particle-hole diagrams going into V (4)

s are kept by the
cRPA, but the full Wick function also contains the corrections

of the other one-loop terms to V (4)
s , and those higher-energy

corrections that build up the 1PI parts of V (>4)
s .

Thus we arrive at the following proposal. If one does not
want to retain the higher-order tail of the effective low-energy
action explicitly, but still wants to keep an important part of
their feedback such as the cRPA terms and possibly more,
one should use the fourth-order Wick correlation function as
the effective interaction term. Then one can truncate after the
fourth order in the low-energy fields, and the theory remains
tractable.

D. RG scheme for the Wick-ordered correlation functions

We have just argued that instead of the amputated connected
correlation function of fourth order, the Wick-ordered four-
point function should be used in the truncated effective action.
This prompts the question how the Wick-ordered correlation
functions can be computed efficiently. Here one can take
advantage of the corresponding RG flow equations that were
developed by Wieczerkowski26 for scalar field theories and
by Salmhofer27 for fermions. In the context of correlated
fermions, these Wick-ordered RG equations were applied in
the proof of Fermi liquid behavior in two dimensions for suf-
ficiently small interactions and benign dispersions,27 and for
instability28 and self-energy29 studies in the two-dimensional
Hubbard model on the square lattice. In the same context,
the Wick-ordered scheme has already been used as a tool to
determine the effective interactions for a mean-field study.30

In the case of spin-rotational invariance, any antisymmetric
four-point function can be expressed in terms of a coupling
function Vs(p1,p2,p3,p4) where the spin projection σ of the
first incoming particle with other quantum numbers p1 equals
that of the first outgoing particle p3, and spin projection σ ′ is
the same for the second incoming particle p2 and the second
outgoing one, p4. On the level where self-energy corrections
are neglected, and no higher-order Wick function beyond the
fourth-order term is considered, the flow equations for the
fourth-order Wick interaction function Vs(p1,p2,p3,p4) read28

d

ds
Vs(p1,p2,p3,n4) = τPP

s + τPH,d
s + τPH,cr

s , (20)

with the particle-particle channel,

τPP
s (p1,p2,p3,n4) = −T

∫
dp

∑
n′

Vs(p1,p2,p,n′)

×Ls(p,qPP )Vs(p,qPP ,p3,n4), (21)

and the direct particle-hole channel,

τPH,d
s (p1,p2,p3,n4) = −T

∫
dp

∑
n′

[−2Vs(p1,p,p3,n
′)Ls(p,qPH,d )Vs(qPH,d,p2,p,n4)

+Vs(p,p1,p3,n
′)Ls(p,qPH,d )Vs(qPH,d,p,n4) + Vs(p1,p,p3,n

′)Ls(p,qPH,d )Vs(p2,qPH,d ,p,n4)]. (22)

Here, the underlined term in the first line on the right-hand side
can be identified as RPA correction; it also carries the factor
of two from the internal spin sum. Only keeping this term and
dropping all the other terms on the right-hand side of Eq. (20)

reproduces the RPA diagram series (the precise mode content
of the diagrams depends on the cutoff used in the RG; here
it corresponds to cRPA). The other two terms in Eq. (22) are
vertex corrections. Finally there is the crossed particle-hole
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channel,

τPH,cr
s (p1,p2,p3,n4)

= −T

∫
dp

∑
n′

Vs(p,p2,p3,n
′)Ls(p,qPH,cr )

×Vs(p1,qPH,cr ,p,n4), (23)

where qPP = (−�k + �k1 + �k2; −w + w1 + w2; n′), qPh,d =
(�k + �k1 − �k3,ω + ω1 − ω3; n′), qPh,cr = (�k + �k2 − �k3,ω +
ω2 − ω3,n

′) are the quantum numbers of the second loop
line, and p = (�k,ω,n) are those of the first line. The loops are
given by

Ls(p,p′) = d

ds
[Ds(p)Ds(p

′)], (24)

with the bare low-energy Green’s function defined to be
nonzero only belowÊ the scale s (at least if a sharp cutoff
is used),

Ds(p) = �[s − |ε( �p)|]
ip0 − ε( �p)

. (25)

The initial condition at scale s = W , the bandwidth
of the multiband system including the higher energy
bands, is given by the bare interaction, Vs0 (p1,p2,p3,p4) =
Vn1,n2,n3,n4 ( �p1, �p2, �p3, �p4), which can be found, for example,
by computing Coulomb integrals in an already downfolded
multiband Wannier representation, or by staying in the full
Bloch representation with all bands.

Integrating the coupled RG equations in Eq. (20) down to
a scale s generates the full parquet sum, that is, all diagrams
of arbitrarily high order in the bare interactions that can be
obtained from repeated replacing of a bare interaction by one-
loop diagrams, either of particle-particle type or the various
particle-hole types. When we only integrate from the initial
scale s0 down to s > 0, at least half of the internal lines in these
one-loop diagrams have support only on the high-energy sector
s � |εn( �p)| � s0, just as in the direct perturbation expansion
of the four-point Wick function discussed above. In particular
the pure low-energy corrections that have all internal lines
below scale s remain untouched.

Quite generally, the initial interaction will not be frequency
dependent, and only depend on three wave vectors and four
band indices (spin-rotational invariance is assumed). Then, in
the flow to the lower cutoff, the coupling function will acquire
an additional dependence on three frequencies. We will use
the two incoming frequencies ω1 and ω2 and one outgoing
frequency ω3 to capture this dependence, where again the
notation is such that the first incoming line 1 and the first
outgoing line 3 have the same spin projection. Another choice
would be to use the total incoming frequency ω1 + ω2 and two
frequency transfers ω1 − ω3 and ω2 − ω3.

The cRPA can be recovered by restricting the right-hand
side of the flow equation to the underlined RPA term, and
ignoring all the other contributions. This just sums RPA
contributions with one line in the high-energy sector between
s0 and s, and the other line in the full energy window
between s0 and 0. Then the coupling function will only depend
on one frequency transfer ω1 − ω3. This way we have at
hand a comprehensive formalism that includes the cRPA as
approximation. This gives us an appropriate framework to

compare the changes with respect to cRPA when we include
all other one-loop diagrams.

IV. APPLICATION AND COMPARISON
IN A SIMPLE TWO-BAND MODEL

In this section we compare the effective interactions
obtained with the Wick-ordered fRG scheme and the cRPA in
a simple two-band model. This will mainly give us information
on the difference in the degree of the suppression of the
repulsion by the screening, and on the differences in the
frequency structure in the effective interactions.

A. Model and implementation of fRG scheme

The model is given by the Hamiltonian,

H =
∑
�k,s,b

εb(�k)c†�k,s,b
c�k,s,b

+ U

2

∑
�k,�k′ ,�q

b1 ...b4 ,s,s′

c
†
�k+�q,s,b3

c
†
�k′−�q,s ′,b4

c�k′,s ′,b2
c�k,s,b1

, (26)

with the two bands,

εc(�k) = −2t(cos kx + cos ky) − μ, (27)

for the two-dimensional conduction band (band index b = c),
and

εv(�k) = −2tv(cos kx + cos ky) − �E − μ, (28)

for the “valence” band (band index b = v) which is in our
case ∼ �E below the Fermi level. We use the parameters
tv = −t/4 and �E ∼ 5t . The dispersion is shown in Fig. 5.

For the onsite interaction part we simply use a constant U =
t irrespective of the band index. This approximation ignores
a lot of quantitative structure, sometimes called orbital make-
up,2 that is brought in when the bare interaction in orbital space

X M
−8

−6

−4

−2

0

2

4

ε 
/ t

Γ Γ

FIG. 5. (Color online) Dispersion of the two-band model as used
for the numerical study in Sec. IV for �E = 5.5t , with the other
parameters mentioned in the text. The points on the trajectory through
the two-dimensional square lattice Brillouin zone are the � = (0,0),
X = (π,0), and M = (π,π ). The upper band (solid line) is the
conduction band for which the effective interactions are computed
by integrating out the lower “valence” band (dashed line), either by
cRPA or by Wick-ordered fRG.
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is rewritten in band language. We prefer to drop this aspect in
the discussion here, as it might complicate the comparison
between the two approximation schemes. On a technical level,
it is straightforward to include more realistic parametrization
of the interactions. This also holds with some restrictions for
the wave vector or spatial dependence of the interactions, a
point which we will comment on in the next section.

For the Wick-ordered fRG scheme described in the last
section, the standard procedure would be to introduce an
energy cutoff that excludes the high-energy modes, which is
then lowered from the full bandwidth of the two-band system,
say �2 down to the energy scale where the valence band
has been integrated out but the conduction band has not been
included, say �1. This way, the excitations in the valence band
are included step by step. Another path to arrive at the same
goal is to multiply the propagator in the valence band with a
factor 1 − λ, and increase λ from 0 to 1. The conduction band
propagator remains untouched, that is, comes with a factor of
one in the the loop diagrams where the undifferentiated line
is in the low-energy sector (while the differentiated line is
always in the high-energy window). This way the flow from
λ = 0 to λ = 1 interpolates between the full model with both
bands active to the situation where the propagator in the upper
band is switched off, and all diagrams with only conduction
band propagators on the internal lines remain not included.
These are the same initial and final conditions as for the
Wick-ordered flow with energy cutoff flowing from �2 to �1.
The two cutoff schemes are visualized in Fig. 6. This cutoff
choice corresponds to a “flat” cutoff in the band away from
the Fermi surface. In single-band problems, this flat cutoff
flow corresponds to a flow in the bare interaction strength and
has been tried out in Ref. 31. There it was shown to give
equivalent results regarding the interaction-driven instabilities
as the conventional momentum-shell schemes. The flat cutoff

flow has one big practical advantage, at least in the simple
approximation where self-energy corrections are excluded.
Here, one-loop diagrams can be computed once, and are then
just rescaled by the factor (1 − λ)2 (or the λ derivative thereof)
at a given λ in the flow. With the energy-shell cutoff the
one-loop diagrams have to be recomputed at every RG step. In
general, the optimal cutoff choice (i.e., flat or sharp in energy
or combinations) may depend on what one is interested in and
on how much numerical effort one is willing to take. We do
not expect drastic qualitative differences because the diagram
series summed in this RG is nonsingular (i.e., the summation
should not depend on how the contributing terms are sorted).

The effective interaction can then be parametrized by
a coupling function Vλ(�ki,ni,bi), with two incoming wave
vectors �k1 and �k2, and two outgoing wave vectors �k3 and
�k4, obeying wave vector conservation on the lattice. The
real numbers ni index the fermionic Matsubara frequencies
ωni

= (2ni − 1)πT of these four particles, and the bi are
the corresponding band indices. Spin-rotational invariance is
assumed, and the convention is such that the spin projection
s is the same for the first incoming particle 1 and the first
outgoing particle 3, and s ′ is the spin projection of particles 2
and 4.

Treating the full wave vector and frequency dependence of
the coupling function to reasonable precision is a difficult task,
at least without further approximations or transformations, or
without performing heavy numerics. In the bare interactions,
there will typically be no retardation (i.e., the initial coupling
function is usually frequency independent), but during the flow,
a frequency dependence will get generated. On the other hand,
if one is interested in realistic situations, the wave vector
dependence will usually reflect the long-range part of the
Coulomb interaction (i.e., behave for small q like 1/q2 where �q
is the wave vector transfer �k1 − �k3). Note, however, that a major

(a) (b)

(c) (d)

FIG. 6. (Color online) Illustration of two schemes to integrate out the high-energy spectra weight in an RG flow. (a) Shows the initial
condition of both flows (either � � �2 or λ = 0), with the low-energy degrees of freedom below energy scale �1 as well as the high-energy
degrees of freedom between �1 and �2 active. In (b) we show the effect of an energy cutoff. The spectral weight above scale � has been
integrated out, and has effectively been absorbed into the action below scale �. If � is reduced down to �1, one obtains the effective one-band
model, as shown in (d). In (c) an intermediate stage of the flat-cutoff scheme used for the numerical comparison is shown. Here, the spectral
weight for each mode in the high-energy window between �1 and �2 has become reduced by a factor 1 − λ, where λ flows from 0 to 1, and
the missing fraction λ has been absorbed into the low-energy theory. At λ = 1, again the high-energy spectral has been fully absorbed into the
low-energy effective theory. This final state, corresponding either to � = �1 or to λ = 1, with only the degrees of freedom below �1 left in
the theory, is shown in (d).
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application of the here discussed cRPA is to provide local or
almost local Hubbard-type interaction parameters for effective
low-energy lattice models with short-ranged interactions.
These parameters are wave-vector-integrated quantities, and
strong wave-vector dependencies will be averaged out in the
integrals. Hence it should be reasonable to study the case for
generic, rather than special or small wave-vector transfers, as
they should contribute the bulk part to these local parameters.
If on the contrary the small-q part would dominate the Hubbard
interaction parameters, it would presumably be a bad approx-
imation to drop the long-range part of effective interactions.

With this in mind we separate the problem in two
parts. First, in this section, we ignore the wave-vector
dependence of the initial interaction by simply writing the
constant U in the interaction in Eq. (26). We can then
compute the effective interaction in the conduction band and
compare between the full RG and cRPA. We will see
that the average coupling strength and also the frequency
structure come out rather differently. Then, in the next section
we discuss, mostly neglecting the frequency structure, what
changes can be expected when the initial interaction is of a
long-range Coulomb part, and when vertex corrections are
less important compared to the RPA contributions.

To be more precise we simply discretize the two-
dimensional Brillouin zone square in four plaquettes cen-
tered at (π/2,π/2), (π/2, − π/2), (−π/2,π/2), and (−π/2,

−π/2). In this way we cannot describe anything else that
local and nearest-neighbor intra- and interorbital interactions.
We have also made some test runs for a 3×3 discretization,
with no qualitative differences regarding the conclusion further
below. The frequency information is included by computing
the coupling function Vλ(�ki,ni,bi), for Matsubara indices
ni = −Nω/2 + 1, . . . 0, . . . Nω/2. For higher frequencies on
the legs of the loop internal summations, the nearest frequency
is used for evaluating the coupling function connecting to
this leg. Below we present data for Nω = 20, T = 0.1t , and
T = 0.25t . For T = 0.1t , the maximal Matsubara frequencies
are roughly ±6t , somewhat larger than the energy gap between
the bands.

B. Numerical results for wave-vector-independent interactions

Here we describe the results of the numerical study on the
simple two-band model just described. In Figs. 7, 8, and 9,
we show the main characteristics of the data obtained with
the Wick-ordered fRG scheme with the full set of one-loop
diagrams included and in the approximation where the scheme
is reduced to cRPA by dropping the particle-particle channel,
the vertex corrections, and the crossed particle-hole channel.
In the upper left parts of these figures, the flow of the maximal
and minimal components of the effective interactions and
the average value at the end of the flow are plotted. λ = 0
corresponds to the bare interactions, and 0 < λ < 1 indicates
the “percentage” to which the high-energy band has been
absorbed into the effective intraconduction band interaction.
The pair of dashed lines shows the maxima and minimal
coupling in the full fRG, while the solid lines are for the
cRPA. The final frequency- and wave-vector-averaged value
of the cRPA is indicated by a blue circle, and by a red diamond
for the full fRG. The average reduction is ∼ 10% in both

FIG. 7. (Color online) Comparison of the cRPA and the full
fRG for the simple two-band model, obtained for an interaction
function Vλ(p1,p2,p3) on a 2 × 2 Brillouin-zone discretization grid
[points (±π/2, ± π/2)] for the wave-vector dependence and the 20
lowest Matsubara frequencies for the frequency dependence. The
temperature is T = 0.1 and the chemical potential is μ = t (i.e.,
the conduction band is more than half-filled). The energy separation
between the bands is �E = 5.0t , and the bare interaction is unity,
U = t , for all frequency, wave-vector, and band combinations. (Upper
left plot) Flow of the maximal and minimal components of the
effective interaction in the conduction band. The solid lines are for
cRPA and the dashed lines are for the full one-loop fRG. λ = 0 is
the initial bare interaction. For increasing λ > 0, the high-energy
window is integrated out successively; for λ = 1 all high-energy
modes are absorbed into the low-energy interaction. (Upper right plot)
Frequency dependence of the effective interaction Vλ=1(ω1,ω2,ω3) for
fixed ω2 = −πT and wave-vector transfer (π,0). The lower curve is
for cRPA, and the upper one for the full fRG. (Lower left) Dependence
of Vλ=1(ω1,ω2,ω3) with ω3 fixed at −πT , again for wave-vector
transfer (π,0). The vertical axis contains the first incoming frequency
ω1, and the horizontal axis the second incoming frequency ω2. The
color bar denotes the change with respect to the bare interaction with
magnitude 1. (Lower right plot) The same for the full fRG described
in the text.

cases. In ab initio applications of the cRPA, the reduction
is usually stronger, most likely as the bare interaction is
stronger on average. Another obvious tuning parameter is
the band separation �E. Lowering of �E gives stronger
renormalizations. In Figs. 7 and 8, which correspond to a
conduction band that is more than half-filled, the average
reduction of the effective full-fRG interactions is quite similar
to that in cRPA. Note, however, that the frequency structure of
the effective interactions in the full fRG and in cRPA, shown
in the lower plots, is quite different. While in the cRPA, the
effective interactions only depend on the transfer ω1 − ω3, the
fRG interactions depend on all three frequencies, and mostly
on the total incoming frequency ω1 + ω2. Below we analyze
this dependence further.

In Fig. 9, we show analogous results for less than half-filling
of the conduction band. This filling opens, in combination with
the single filled valence band below the Fermi level, a larger
particle-hole phase space. As can be seen in the upper left plot
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FIG. 8. (Color online) The same as in Fig. 7, but at higher
T = 0.25t . The 10th Matsubara frequency is now ω10 = 19πT ≈ 15t .

of Fig. 9, now the suppression of the effective interactions in
the full fRG is somewhat weaker than in cRPA. In the fRG,
the reduction at λ = 1 is only a few percent, ∼3%, while the
maximal component is actually larger than 1.1 (i.e., increased
with respect to the bare value). On the contrary, in cRPA, we
find an average reduction down to 80% of the bare value at
λ = 1.

Let us now come back to the frequency dependence. In the
upper right plots of Figs. 7, 8, and 9 we show cuts through the
frequency dependence of the effective interactions at λ = 1, as
a function of the frequency transfer between the first incoming
and the first outgoing particle. On a qualitative level, along this
cut, the frequency dependence is similar in cRPA and fRG, but
with a stronger reduction in cRPA when the filling is such
that there is more particle-hole phase space. The difference in
the frequency dependence of the effective interactions is best
visible in the lower plots of these figures, where we compare
Vλ=1(ω1,ω2,ω3) as a function on the incoming frequencies

FIG. 9. (Color online) The same as in Fig. 7, but at less than
half-filling, μ = −0.5t , for the conduction band. Now the effective
interactions in the full fRG are much less suppressed than in cRPA.
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FIG. 10. (Color online) Data for the effective interactions
Vλ=1(ω1,ω2,ω3) at T = 0.1t and for wave-vector transfer (π,0),
with the right-hand side of the fRG flow equation reduced to either
the crossed particle-hole channel (left plot) or the particle-particle
channel (right plot). The vertical axis contains the first incoming
frequency ω1, and the horizontal axis the second incoming frequency
ω2. ω3 is fixed at −πT . The color bar illustrates the reduction or
enhancement with respect to the initial value Vλ=0(ω1,ω2,ω3) = t .

ω1 and ω2 with the first outgoing frequency ω3 fixed to the
smallest positive frequency. While the cRPA results shown in
the left lower plots only depend on ω1 − ω3 and just show
the suppression for small ω1 − ω3, the full fRG results are a
more complicated function of three frequencies. The main
suppression now occurs in the upper left and lower right
corners. The line connecting these corners is the line with
small or zero total frequency, and for these combinations
the repulsive interaction is “Kanamori”- or “Anderson-Morel”
screened in the particle-particle channel. The enhancement
also seen in the plot can be traced back to the influence of
the crossed particle-hole channel that increases the repulsion
for small crossed transfer frequency ω2 − ω3. In Fig. 10 we
show the results for the effective conduction-band interactions
when only the crossed particle-hole channel or only the
particle-particle channel is allowed on the right-hand side
of the fRG flow equation. These flows are then equivalent
to an infinite-order summation in the respective channel. In
these plots one can clearly see the enhancement for small
transfer ω2 − ω3 due to the crossed particle-hole channel
and the suppression of interactions with small ω1 + ω2 in
the particle-particle channel. If one adds these two features
at λ = 1 (i.e., after doing infinite-order summations in each
channel separately), one actually gets near the full fRG
results with all channels coupling and active (i.e., in addition
also the RPA channel and the vertex corrections), although
quantitatively the differences are still clearly visible. Adding
as well the summed RPA does not improve the result. The
attempts to model the result of the full fRG with coupled
channels by adding single-channel summations are shown in
the left plot of Fig. 11 for particle-particle ladder sum, crossed
particle-hole sum, and RPA sum added together, and on the
right side of Fig. 11 for particle-particle channel and crossed
particle-hole channel summed separately and added afterward.
Hence, to get the result quantitatively as correct as possible,
one has to do the full flow.

The data shown in the figures above are for a specific choice
of wave vectors �k1 to �k3, but other combinations show very
similar results. This basically reflects the fact that the wave-
vector dependence of the interband and pure high-energy loop
diagrams is rather weak due to the energy separation.
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FIG. 11. (Color online) Data at T = 0.1t and for wave-vector
transfer (π,0). In the left plot, we added the three fRG flow results
with the right-hand side reduced either to cRPA, the particle-particle
channel, or the crossed particle-hole channel, divided by 3. In the
right plot we only added the separate flows in the particle-particle
channel and the crossed particle-hole channel (shown in the left and
right plots of Fig. 10). These plots should be compared to the full
fRG result in the lower right plot of Fig. 9. The agreement is better
for the two-channel sum in the right plot. Again, the vertical axis
contains the first incoming frequency ω1, and the horizontal axis the
second incoming frequency ω2. ω3 is fixed at −πT . The color bar
illustrates the reduction or enhancement with respect to the bare value
Vλ=0(ω1,ω2,ω3) = t .

Summarizing these results we see that without additional
physical ingredients and for onsite bare interactions without
wave-vector structure, the cRPA does in certain cases present
a satisfactory approximation to the effective interactions on an
average level, but not regarding the precise frequency structure.
In light of the weak wave-vector dependence of the diagrams
just mentioned it is not overly surprising that all one-loop
diagrams have a comparable influence. The Wick-ordered fRG
scheme allows one to overcome this difficulty and to include
all one-loop diagrams (i.e., to do the full parquet summation),
in order to obtain a more robust description of the effective
interactions.

Of course, as the one-loop diagrams do not necessarily
dominate higher-loop terms for the setup here, even corrections
beyond the one-loop level might still have some influence, but
to include these or to check their importance might be a very
hard task. Furthermore, in our simple model, the quantitative
corrections in the effective interactions compared to the bare
interactions were not too strong, and hence one might wonder
if second-order perturbation theory would not be sufficient.
We have not explicitly analyzed this question quantitatively,
but from the slightly nonlinear flows as a function of λ in
the upper left plots of Figs. 7, 8, and 9 one can observe that
there are mild corrections beyond second order. The rationale
behind this argument is that if one performs just one discrete
step in the λ flow, the corrections will effectively be of second
order in the interactions before this step, as the right-hand side
of the flow equation is of second order. The nonlinearity of
the curves shows that the integrated flow of many steps is not
just an extrapolation of the first step, but that the second-order
corrections of one step change the corrections collected in the
next step. This way a series of arbitrarily high order in the bare
couplings is generated. If we used stronger bare interactions,
the higher-order corrections would be more visible. Note that
our goal was to present a flexible mechanism that can go
beyond finite-order perturbation theory, and the differences
between the different approximations are already visible at this
value of the interactions. Therefore we refrain from discussing

for which parameters a second-order approximation might be
suitable or not.

C. Effect of wave-vector-dependent bare interactions

As already argued in the introduction, a priori and without
additional arguments there is no reason why there should not
be significant correction to RPA in the case of wave-vector-
independent bare interactions. We just saw explicitly that for
this case the cRPA, despite capturing important contributions,
does not provide the full picture. A main opponent turned
out to be the crossed particle-hole channel, which tends to
increase the (repulsive) interaction rather than to suppress
it. Of course both these particle-hole (PH) channels can be
summed up to infinite order separately. The main differences
between the two channels is that the RPA channel has an
extra fermion-loop minus sign which causes the different sign
(suppression/enhancement) in the renormalization due to these
two channels. We can also use this simplified approach in order
to see what additional effects are caused by a wave-vector
structure of the bare interactions. In this argument we now
drop the frequency structure (that can be added in later), at
least for some parts of the outcome. In order to be precise let
us now choose the bare interaction vertex as

Vλ=0(�k1,�k2,�k3) = v(�k1 − �k3). (29)

Here v(�q) can be understood as the Fourier transform of
the bare Coulomb interaction ∼ 1/r , which gives 4πe2/q2

in three dimensions or related expression for layered or
lower-dimensional systems (e.g., 2π/q for stacked perfectly
two-dimensional layers and q → 0). The main point is that the
interaction is strongly peaked and singular at q = 0. On the
other hand,

∫
dD v(�q) should remain integrable in the relevant

dimension D.
Let us now insert this bare interaction into the RPA and

crossed PH channels. The main point is the well-known fact
that the different wave-vector transfers �q do not couple in the
RPA sum, and for external wave-vector transfer �k1 − �k3 = �q
every interaction in the sum is v(�q). So we simply get for the
cRPA series,

VcRPA(�k1,�k2,�k3) = v(�k1 − �k3)

1 + 2v(�k1 − �k3)|Pc(�k1 − �k3)| , (30)

with the constrained polarization bubble Pc(�k1 − �k3) that
does not contain intraconduction band screening. This term
is real in the limit of zero frequency and we have written
the absolute value in order to avoid confusion regarding the
sign convention. The factor of two in the denominator is
due to the spin sum for s = 1/2. As said before, due to
the energy separation of the high-energy bands, we expect
a rather weak wave-vector dependence of this bubble [i.e.,
we can set Pc(�k1 − �k3) = P̄c with some averaged constrained
polarization]. In contrast with this, in the crossed channel,
the wave-vector transfer appearing in the bare interactions is
�k2 − �k3 �= �q. The crossed PH sum then gives

VcrPH(�k1,�k2,�k3) = v(�k2 − �k3)

1 − v(�k2 − �k3)|P̄c|
. (31)
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Now, there is no factor of two and a minus sign in the
denominator, causing an increase of VcrPH with respect to
the bare coupling in the repulsive case. Obviously these
two types of corrections plus the other PH diagrams and
the PP channel compete, unless we focus on a specific
wave-vector combination (e.g., the direct forward scattering
channel with �k1 − �k3 = �q → 0). If now �k2 − �k3 is such that
the dimensionless |v(�k2 − �k3)Pc| is small, the cRPA sum
dominates all other corrections, and the reduction in the
cRPA channel can be much stronger than possible increases in
other channels. Then the frequency structure of the effective
interactions will be dominated by the RPA channel as well
(i.e., the effective interaction will mainly depend on the direct
transfer ω1 − ω3 and the suppression will be largest when
ω1 − ω3 is small).

This way we see that there is a range of external wave
vectors where the cRPA sum constitutes the main correction
to the bare interaction. If we choose a true long-range Coulomb
interaction as the bare interaction, we will certainly get into
such a situation, if we make �q only small enough. However,
the interesting question is now whether this small �q regime
is significant for the effective local interaction parameters,
or whether these are better represented by interactions for less
special external wave vectors. If the small-q range is dominant,
the next issue is if it is then appropriate to truncate the effective
low-energy interaction in its range (i.e., to keep only local and
nearest-neighbor terms). The answer to these questions can
only be found by more realistic calculations. We hope that the
formalism proposed here can help to clarify these issues.

V. CONCLUSIONS AND OUTLOOK

We have presented a functional renormalization group
framework that allows one to compute the effective interac-
tions of subsets of “target bands” in multiband models. The
subset of target bands is typically at lower excitation energies
near the Fermi level, and integrating out the higher-energy
bands by the fRG leads to renormalizations of the effective
interactions that can have an important impact on the low-
energy phase diagram. By computing the Wick-ordered corre-
lations rather than one-particle irreducible vertices, additional
contributions corresponding to the feedback of higher-order
vertices in the 1PI scheme are already contained on the four-
point truncation level. These contributions represent “mixed”
diagrams with internal lines both in the high-energy sector
and in the low-energy bands which would be missed in the
usual effective action at the same truncation level. The RPA
particle-hole part of these mixed diagrams is responsible for
a screening of the bare interactions by interband particle-hole
pairs, and can have a rather strong quantitative effect. These
terms were first summed in the so-called constrained RPA
scheme (cRPA)8 that has become a widely used tool for the
determination of (local) effective interaction parameters in
correlated multiband systems.12,13 Here, the inclusion of these
corrections and the corresponding changes in the interaction
parameters can lead to relevant differences of a quantitative
nature (e.g., the energy scales for ordering tendencies32,33),
and of a more qualitative character (e.g., by shifting transition
lines between different ground states or by opening or closing
gap nodes in the case of unconventional superconductors2,3).

The fRG approach presented here can, in principle, be
reduced to the cRPA content by dropping all diagrams outside
the RPA channel. In a simple two-band model with struc-
tureless bare interactions we have shown, however, that the
cRPA can result in qualitatively different effective interactions
compared to the full fRG with all one-loop diagrams included.
In particular, the frequency dependence (on the imaginary axis)
of the full fRG effective interaction is much more complex, and
the particle-particle channel is clearly visible there as another
strong source of a reduction of the effective interactions.
Depending on the parameters, the overall suppression can be
weaker than that found in cRPA. We have argued that for a
sharper wave-vector structure of the bare interactions there
may well be wave-vector combinations where the cRPA is
closer to the full results. This required specific care to the
long-range or small-q part of the interactions. The question
that arises from this study is whether this wave-vector regime
is somehow representative for the local interaction parameters,
and whether it is then justified to ignore longer range effective
interactions.

As stated before, the current fRG study with very coarse
wave-vector resolution is not capable of answering these
questions more directly, and we concentrate on a proof of
principle that shows that in toy models deviations from cRPA
might indeed occur. We do not attempt to study more realistic
situations here. A main obstacle for improving the wave-vector
resolution is the numerical effort. In our straightforward
discretization of the vertex we already kept N3

ω frequencies
with Nω = 20. For each frequency combination we have
2 × N3

�k wave vectors for two bands and N�k = 2. Significant
improvements in the wave-vector resolution and treating more
bands are certainly possible with parallel computing, but
in order to resolve the small wave-vector-transfer regime
addressed in the previous section one might need additional
tricks. A very useful approximation may be the channel
decomposition developed by Husemann and Salmhofer34 for
the wave-vector dependence of the interaction. The same
strategy was also used by Karrasch et al.35 for the frequency
dependence in impurity problems, and combinations of wave-
vector and frequency dependence have also been tried.36 Here
the main idea is to write or approximate the full vertex that
depends on three variables pi = (ωi,�ki) with i = 1,2,3 as the
sum of three functions that can depend strongly on either the
total incoming p1 + p2 or one of the two transfers p1 − p3

or p2 − p3, but that depend only weakly on the respective
other, remnant combinations. Instead of a numerical object of
the order of (NωN�k)3 one then deals with an array of order
ν × (NωN�k), where ν is at least 3 for the three functions
just mentioned, or somewhat higher for different form factors
that may be used to capture the milder dependence on the
remnant variable combinations. Hence, up to a factor ν � 10,
the computational effort is comparable to that of the cRPA
that is (NωN�k). It should therefore be possible, as a next step,
to go significantly beyond the simple toy model studied here
and to treat realistic, more complex systems with increased
wave-vector resolution. We hope that this may help to estimate
the usefulness of the scheme presented here in the context
of multiband systems. As possible application fields we
mention the iron arsenide superconductors, where many-body
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calculations of the pairing symmetry show a nonuniversal
behavior that is also clearly borne out in experiments.37 Here,
the similar quantitative differences as seen in our toy model
may lead to different predictions of the gap structure. At
least for the sake of theoretical consistency, it is important to
understand the effective interactions as thorough as possible.
Another interesting issue is the relevant effective interaction
in bilayer graphene models. Here different spatial interaction
profiles seem to lead to different predictions38,39 for the type
of ground-state ordering that may explain the spectral gaps
observed in experiments.40

In any case, besides these material-specific issues, our work
clarifies the connection between the cRPA scheme and the
framework of effective actions in many-particle systems.
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tional Renormalization Group, Springer Lecture Notes in Physics,
Vol. 798 (Springer, New York, 2010).

22N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997);
I. Souza, N. Marzari, and D. Vanderbilt, ibid. 65, 035109 (2001).

23V. I. Anisimov, Dm. M. Korotin, M. A. Korotin, A. V. Kozhevnikov,
J. Kunes, A. O. Shorikov, S. L. Skornyakov, and S. V. Streltsov,
J. Phys.: Condens. Matter 21, 075602 (2009).

24A compact overview is found at Tilman Enss, Ph. D thesis,
University of Stuttgart; e-print arXiv:cond-mat/0504703 (to be
published).

25J. Polchinski, Nucl. Phys. B 231, 269 (1984).
26C. Wieczerkowski, Commun. Math. Phys. 120, 149 (1988).
27M. Salmhofer, Commun. Math. Phys. 194, 249 (1998).
28C. J. Halboth and W. Metzner, Phys. Rev. B 61, 7364 (2000); Phys.

Rev. Lett. 85, 5162 (2000).
29D. Rohe and W. Metzner, Phys. Rev. B 71, 115116 (2005).
30J. Reiss, D. Rohe, and W. Metzner, Phys. Rev. B 75, 075110 (2007).
31C. Honerkamp, D. Rohe, S. Andergassen, and T. Enss, Phys. Rev.

B 70, 235115 (2004); related schemes have been proposed by
V. Meden (unpublished) and J. Polonyi and K. Sailer, ibid. 66,
155113 (2002).

32S. Uebelacker and C. Honerkamp, Phys. Rev. B 85, 155122 (2012).
33S. A. Maier and C. Honerkamp, Phys. Rev. B 85, 064520 (2012).
34C. Husemann and M. Salmhofer, Phys. Rev. B 79, 195125 (2009).
35C. Karrasch, R. Hedden, R. Peters, Th. Pruschke, K. Schönhammer,

and V. Meden, J. Phys.: Condens. Matter 20, 345205 (2008).
36C. Husemann, K.-U. Giering, and M. Salmhofer, Phys. Rev. B 85,

075121 (2012).
37P. J. Hirschfeld, M. M. Korshunov, and I. I. Mazin, Rep. Prog. Phys.

74, 124508 (2011).
38O. Vafek, Phys. Rev. B 82, 205106 (2010).
39M. Scherer, S. Uebelacker, and C. Honerkamp, e-print

arXiv:1112.5038 (to be published).
40Wenzhong Bao, Jairo Velasco Jr., Fan Zhang, Lei Jing, Brian

Standley, Dmitry Smirnov, Marc Bockrath, Allan MacDonald, and
Chun Ning Lau, e-print arXiv:1202.3212 (to be published); J.
Velasco Jr., L. Jing, W. Bao, Y. Lee, P. Kratz, V. Aji, M. Bockrath,
C. N. Lau, C. Varma, R. Stillwell, D. Smirnov, Fan Zhang, J. Jung,
and A. H. MacDonald, Nature Nanotechnology 7, 156 (2012).

195129-13

http://dx.doi.org/10.1103/PhysRevB.79.224511
http://dx.doi.org/10.1103/PhysRevB.79.224510
http://dx.doi.org/10.1103/PhysRevB.79.224510
http://dx.doi.org/10.1103/PhysRevLett.106.187003
http://dx.doi.org/10.1103/PhysRevLett.106.187003
http://arXiv.org/abs/arXiv:1106.5964
http://dx.doi.org/10.1103/PhysRevLett.106.236805
http://dx.doi.org/10.1103/PhysRevLett.106.236805
http://dx.doi.org/10.1103/PhysRevLett.100.146404
http://dx.doi.org/10.1103/PhysRevLett.100.156401
http://dx.doi.org/10.1103/PhysRevLett.100.156401
http://dx.doi.org/10.1038/nature08942
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevB.77.085122
http://dx.doi.org/10.1103/PhysRevB.80.155134
http://dx.doi.org/10.1103/PhysRevB.80.155134
http://dx.doi.org/10.1143/JPSJ.79.112001
http://dx.doi.org/10.1143/JPSJ.79.112001
http://dx.doi.org/10.1103/PhysRevB.70.195104
http://dx.doi.org/10.1103/PhysRevB.74.125106
http://dx.doi.org/10.1103/PhysRevB.74.125106
http://dx.doi.org/10.1103/PhysRevB.39.1708
http://dx.doi.org/10.1103/PhysRevB.39.1708
http://dx.doi.org/10.1103/PhysRevB.43.7570
http://dx.doi.org/10.1103/PhysRevB.43.7570
http://dx.doi.org/10.1143/JPSJ.79.044705
http://dx.doi.org/10.1143/JPSJ.79.044705
http://dx.doi.org/10.1103/PhysRevB.83.081101
http://dx.doi.org/10.1103/PhysRevB.83.081101
http://dx.doi.org/10.1103/PhysRevB.4.3184
http://dx.doi.org/10.1103/PhysRevA.8.401
http://dx.doi.org/10.1080/00018737900101375
http://dx.doi.org/10.1103/RevModPhys.66.129
http://dx.doi.org/10.1103/RevModPhys.84.299
http://dx.doi.org/10.1103/PhysRevB.56.12847
http://dx.doi.org/10.1103/PhysRevB.65.035109
http://dx.doi.org/10.1088/0953-8984/21/7/075602
http://arXiv.org/abs/arXiv:cond-mat/0504703
http://dx.doi.org/10.1016/0550-3213(84)90287-6
http://dx.doi.org/10.1007/BF01223210
http://dx.doi.org/10.1007/s002200050358
http://dx.doi.org/10.1103/PhysRevB.61.7364
http://dx.doi.org/10.1103/PhysRevLett.85.5162
http://dx.doi.org/10.1103/PhysRevLett.85.5162
http://dx.doi.org/10.1103/PhysRevB.71.115116
http://dx.doi.org/10.1103/PhysRevB.75.075110
http://dx.doi.org/10.1103/PhysRevB.70.235115
http://dx.doi.org/10.1103/PhysRevB.70.235115
http://dx.doi.org/10.1103/PhysRevB.66.155113
http://dx.doi.org/10.1103/PhysRevB.66.155113
http://dx.doi.org/10.1103/PhysRevB.85.155122
http://dx.doi.org/10.1103/PhysRevB.85.064520
http://dx.doi.org/10.1103/PhysRevB.79.195125
http://dx.doi.org/10.1088/0953-8984/20/34/345205
http://dx.doi.org/10.1103/PhysRevB.85.075121
http://dx.doi.org/10.1103/PhysRevB.85.075121
http://dx.doi.org/10.1088/0034-4885/74/12/124508
http://dx.doi.org/10.1088/0034-4885/74/12/124508
http://dx.doi.org/10.1103/PhysRevB.82.205106
http://arXiv.org/abs/arXiv:1202.3212
http://dx.doi.org/10.1038/nnano.2011.251

