
PHYSICAL REVIEW B 85, 195123 (2012)

Fermi surface reconstruction in hole-doped t- J models without long-range antiferromagnetic order
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We calculate the Fermi surface of electrons in hole-doped, extended t-J models on a square lattice in a regime
where no long-range antiferromagnetic order is present, and no symmetries are broken. Using the “spinon-dopon”
formalism of Ribeiro and Wen, we show that short-range antiferromagnetic correlations lead to a reconstruction
of the Fermi surface into hole pockets which are not necessarily centered at the antiferromagnetic Brillouin zone
boundary. The Brillouin zone area enclosed by the Fermi surface is proportional to the density of dopants away
from half-filling, in contrast to the conventional Luttinger theorem, which counts the total electron density. This
state realizes a “fractionalized Fermi liquid” (FL*), which has been proposed as a possible ground state of the
underdoped cuprates; we note connections to recent experiments. We also discuss the quantum phase transition
from the FL* state to the Fermi liquid state with long-range antiferromagnetic order.
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I. INTRODUCTION

The nature of electronic Fermi surfaces in strongly cor-
related metals, in particular underdoped cuprates, has been
the subject of intensive debate for many years. Recent obser-
vations of pocketlike Fermi surfaces in quantum oscillation
experiments1–5 as well as new angle-resolved photoemission
measurements6 have triggered a renewed theoretical interest
in this matter.7–9

One possible, well-known route to a Fermi surface recon-
struction is the onset of spin-density wave (SDW) order, which
breaks a large Fermi surface into small electron and hole
pockets centered at the magnetic Brillouin zone boundary.10,11

In fact, many of the unresolved theoretical problems in
strongly correlated electron materials, from heavy-fermion
compounds to high-Tc cuprates, are related to the fate of
electronic excitations close to antiferromagnetic quantum-
critical points.12 It has been been argued, however, that the
critical point between a metal with a large Fermi surface
and an antiferromagnetic metal with small Fermi pockets
may be replaced by a new intermediate phase, the so-called
fractionalized Fermi liquid (FL*),13,14 which exhibits small
pockets similar to the antiferromagnetic metal, but breaks no
symmetries: summaries of these arguments, and of previous
theoretical work, can be found in two recent reviews.15,16

The simplest picture of the FL* phase appears in the
context of Kondo lattice models coupling a lattice of localized
f moments and a conduction band of itinerant c electrons.
There are two important energy scales to consider: the Kondo
exchange JK between the f moments and the c electrons, and
Heisenberg exchange JH between the f moments. If JK �
JH , then f moments are “Kondo screened” by the conduction
electrons, leading to a Fermi liquid ground state with Fermi
surfaces enclosing the traditional Luttinger volume, which
counts the density of both the f and c electrons; the only
memory of the localized nature of the underlying f electrons
is that electronic quasiparticles near the Fermi surface have
an effective mass which is much larger than the bare electron
mass, and so this phase is often referred to as a “heavy” Fermi
liquid. However, in the opposite parameter regime JH � JK ,
other phases can appear. The most natural possibility is the
appearance of magnetic order of the f moments, but let us

assume the f -f couplings are sufficiently frustrated so that
this does not happen. Then, the f moments may form a spin
liquid, which does not break any symmetries of the lattice
Hamiltonian. The formation of the spin liquid also quenches
the Kondo effect, and so the effective value of JK does not
renormalize to infinity as it does in the single impurity Kondo
model.13,14,17 The c electrons are now only weakly coupled to
the f spin liquid, and so the c electrons form a “small” Fermi
surface that encloses a volume controlled only by the density
of c electrons, which violates the traditional Luttinger count.
This is the FL* metal.

This paper describes a FL* state in a single-band model ap-
propriate for the cuprate superconductors. Previous studies18,19

realized such a state by initially fractionalizing the electron
into a neutral S = 1/2 spinon and a spinless “holon” carrying
electromagnetic charge. The spinons eventually became the
excitations of a “background” spin liquid, analogous to
the spin liquid of the f electrons above, and the holons
eventually captured a spinon to reconstitute as electronlike
particles, which occupied the states inside a small Fermi
surface. Because of this somewhat intricate sequence of
transformations, the description of the FL* state was only
achieved in a semiphenomenological manner.

Here, we will provide a more direct and quantitative
description of the FL* state in a single-band model. The key
step will be a rewriting of the single-band degrees of freedom
in a manner which mimics those of the Kondo lattice. Such a
formulation is provided by the representation of Ribeiro and
Wen20 in which the electron fractionalizes into a neutral spinon
and a “dopon,” which has the same quantum numbers as the
electron.

The rest of the paper is organized as follows. In Sec. II,
we introduce the extended t-J model in the representation of
Ribeiro and Wen,20 which is ideally suited for our purposes.
Section III deals with our approach to construct FL* ground
states and presents results for the shape and position of the
electronic Fermi surface. Section IV describes the Fermi
surface evolution from the FL* state to the Fermi liquid
state with long-range antiferromagnetic order, along with a
discussion of the quantum-critical properties. We summarize
our results, and note connections to recent experiments in
Sec. V.
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II. MODEL

In the following, we study ground states of extended t-J
Hamiltonians on the square lattice

H = −1

2

∑
ij

tij (c̃†iσ c̃jσ + H.c) + 1

2

∑
ij

Jij

(
si · sj − 1

4
ninj

)
,

(2.1)

where c̃
†
iσ (c̃iσ ) denotes the Gutzwiller projected creation

(annihilation) operator of electrons with spin σ on lattice site
i, si = c̃

†
iασ αβ c̃iβ is the electron spin operator, and ni = c̃

†
iσ c̃iσ

the electron number operator (here and in the following,
we sum over repeated spin indices). We are interested in
describing possible ground states slightly below half-filling
n = 1 − x, where the density of doped holes is small x � 1,
but large enough to destroy any long-range magnetic order.
In addition, these ground states should not break any lattice
symmetries. In particular, we want to show that strong
short-range antiferromagnetic correlations already lead to a
reconstructed Fermi surface consisting of small hole pockets,
the area of which is proportional to the dopant density x,
instead of 1 − x as for conventional Fermi liquids. Such
ground states realize a fractionalized Fermi liquid.13,14

Our starting point is the spinon-dopon formulation of
the t-J model developed by Ribeiro and Wen.20 In this
representation, the elementary excitations are spinons, which
carry spin-1/2 but no charge, and dopons, which carry spin-1/2
and charge. Accordingly, Ribeiro and Wen introduce two
degrees of freedom per lattice site, a “localized” spin-1/2
as well as a fermionic spin-1/2 degree of freedom (the
dopon), representing a doped charge carrier. A physical hole
corresponds to a singlet of a lattice spin and a dopon. The
correspondence between single-site basis states is shown in
Table I. Following this approach, the t-J Hamiltonian in
Eq. (2.1) takes the form20

H =
∑
ij

Jij

2

(
Si · Sj − 1

4

)
P(1 − d

†
iαdiα)(1 − d

†
jβdjβ)P

+ 1

2

∑
ij

tij

2
P

[
1

4
d
†
iαdjα − 1

2
(d†

iασ αβdjβ) · (Si + Sj )

+ d
†
iαdjαSi · Sj + i(d†

iασ αβdjβ) · (Si × Sj ) + H.c.

]
P

−μ
∑

i

d
†
iαdiα . (2.2)

TABLE I. Single-site basis-state correspondence: t-J model
versus spinon-dopon representation.

t-J Spinon-dopon

|↑〉i |↑0〉i

|↓〉i |↓0〉i

|0〉i (|↑↓〉i − |↓↑〉i)/
√

2
Unphys. Triplet states
Unphys. Doubly occupied dopon

Here, P = ∏
j (1 − d

†
j↑dj↑d

†
j↓dj↓) denotes the Gutzwiller

projector for the fermionic spin-1/2 operators d
†
i and di that

create or annihilate a dopon on lattice site i, and we added a
chemical potential μ for the dopons. Note again that the spins
Sj on each lattice site j are independent, localized spin-1/2
degrees of freedom and are not associated with the spin of the
dopons. This representation of the t-J model is faithful in the
sense that the Hamiltonian does not couple the physical singlet
and the unphysical triplet states in the enlarged Hilbert space
that is spanned by the spin and the dopon degrees of freedom.20

A projection to the physical Hilbert space is thus not necessary.
We also note here that the dopons, which can be viewed
as bound states of spinons and holons in more conventional
slave-particle descriptions, carry no gauge charge.

In terms of the spin and dopon operators, the Gutzwiller
projected electron operators take the form

c̃
†
jσ = σ√

2
P

[(
1/2 + σSz

j

)
dj−σ − Sσ

j djσ

]
P , (2.3)

where Sσ denotes the spin-raising (-lowering) operator S+
(S−) for σ = ↑ (↓). From Eq. (2.3), one can easily show that
total density of electrons is given by

∑
σ

c̃
†
jσ c̃jσ =P

(
1 −

∑
σ

d
†
jσ djσ

)
P

lowdoping≈ 1 −
∑

σ

d
†
jσ djσ ,

(2.4)

i.e., the density of doped charge carriers equals the density of
dopons x = ∑

σ 〈d†
iσ diσ 〉, as expected.

As will be explained in more detail in the following, our
main assumption is that the localized lattice spins form a Z2

spin liquid with bosonic spinon excitations. This is reasonably
justified in the doping regime close to the antiferromagneti-
cally ordered phase, where the interaction between the lattice
spins is frustrated by the motion of dopons. The bosonic
nature of the spinons prohibits a hybridization of spinons
with fermionic dopons and gives rise to an electronic Fermi
surface, the volume of which is determined by the density
dopons x alone, as long as no pairing instabilities occur. This
is in contrast to the conventional Luttinger theorem, which
states that in a metal without broken symmetries, the “volume”
enclosed by the Fermi surface should be proportional to the
total density of electrons 1 − x. It has been shown earlier,
however, that topological excitations associated with the
emergent gauge field of a spin liquid have to be included in the
Luttinger count,14 giving rise to a FL* phase with small-pocket
Fermi surfaces, the total volume of which is the same as
in an antiferromagnetic metal. In the present formalism, this
modified Luttinger theorem of a Fermi surface of size x can
be easily proved by applying the usual many-body formalism
to the system of interacting spinons and dopons described by
Eq. (2.2) [and more explicitly in Eq. (3.3) below]; we need
only assume that the final state is adiabatically connected to a
state of weakly interacting spinons and dopons, and then the
standard proof leads here to the novel Luttinger count of x.

In the presence of strong local antiferromagnetic (AF)
correlations, the two important interaction terms between the
dopons and the localized spins in Eq. (2.2) are the ∼Si · Sj

term, which leads to a strong suppression of nearest-neighbor
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hopping of dopons in a locally AF-ordered background, and
the ∼(Si + Sj ) term, which is responsible for the scattering
of dopons with momentum transfer close to q = (π,π ). In the
following, we are going to neglect the ∼Si × Sj term due to
the expected strong local collinear AF correlations. Also, we
use a mean-field decoupling of the Heisenberg exchange term
in the first line of Eq. (2.2), i.e., J → (1 − x)2J , and drop the
Gutzwiller projectors, which is safe in the low doping limit
x � 1.

III. FL* AND ELECTRON FERMI SURFACE

As mentioned above, the main prerequisite in order to
get a fractionalized Fermi liquid is that the localized spins
form a spin liquid. Within our model (2.2), spin-liquid ground
states can be conveniently described using a Schwinger boson

representation for the lattice spins, i.e., we write

Si = 1
2b

†
iασ αβbiβ, (3.1)

which requires the constraint
∑

σ b
†
iσ biσ = 1 to hold on

every lattice site. Note that there is an emergent U(1) gauge
structure associated with the redundancy of the Schwinger
boson representation under local phase transformations bjσ →
bjσ exp(iφj ). The exchange terms can be expressed in terms
of Schwinger bosons using the identity

Si · Sj = −1

2
(εαβb

†
iαb

†
jβ )(εγ δbiγ bjδ) + 1

4
+ δij

2
. (3.2)

By inserting these expressions in the Hamiltonian (2.2) and
using the approximations mentioned above, we obtain the
Hamiltonian

H = −1

4

∑
ij

[
Jij + tij

2
(d†

iαdjα + H.c.)

]
εαβb

†
iαb

†
jβ εγ δbiγ bjδ

+ 1

2

∑
ij

tij

4
[2 d

†
iαdjα − d

†
iαdjβ(b†iβbiα + b

†
jβbjα) + H.c.] +

∑
i

(λ b
†
iαbiα − μd

†
iαdiα), (3.3)

where λ is the Lagrange multiplier that enforces the Schwinger boson constraint on average. In this representation, a spin liquid
can be conveniently described by employing the mean-field decoupling

Qij = 1
2 〈εαβb

†
iαb

†
jβ〉. (3.4)

This mean-field decoupling preserves the SU(2) invariance since Qij is a singlet expectation value and gives rise to
antiferromagnetic correlations between the spins on sites i and j . We note here that a mean-field decoupling in terms of
nonanomalous expectation values would give rise to ferromagnetic correlations between the spins, which is not our case of
interest. After a Fourier transformation, we obtain the Euclidean mean-field action [we use the shorthand notation k = (ω,k)]

SMF/β =
∑
k,σ

d̄kσ (−iωn + ξ 0
k )dkσ +

∑
kq

Q∗
k+qJqQk +

∑
k

B
†
k

[−in + λ −∑
p QpJp−k

−∑
p Q∗

pJp−k in + λ

]
Bk

−
∑
q,k,k′

d̄k′+q−kσ B
†
k Vσσ ′

k′kq Bq dk′σ ′ − 1

2

∑
q,k,k′

(tk′ + tk′+q+k)[Bk↓Bq↑d̄k+k′+q↑dk′↓ + B∗
k↑B∗

q↓d̄k′↓dk′+k+q↑], (3.5)

where β denotes the inverse temperature and we have introduced the bosonic Nambu spinor

Bk =
(

bk↑
b∗

−k↓

)
, (3.6)

the interaction matrix

Vσσ ′
k′kq =

[
1
2 (tk′ + tk′+q−k)δσ,↑

∑
p Qp(tp+k′−k + tp−k′−q)∑

p Q∗
p(tp+k′−k + tp−k′−q) 1

2 (tk′ + tk′+q−k)δσ,↓

]
δσσ ′, (3.7)

as well as

ξ 0
k = tk + 2

∑
qp

Q∗
qtpQk+q−p − μ, (3.8)

where tk is the usual t t ′t ′′ tight-binding dispersion on the square
lattice with nonzero hopping amplitudes up to third nearest
neighbors

tk = t (cos kx + cos ky) + t ′ 2 cos kx cos ky

+ t ′′(cos 2kx + cos 2ky). (3.9)

Note that in contrast to Jk and Qk, we have absorbed a factor
1/2 in the definition of tk. Moreover, iωn and in denote
fermionic and bosonic Matsubara frequencies, respectively.
Because the bosonic spinon modes are gapped in the spin-
liquid phase, we can safely integrate them out and obtain an
effective action for the dopon fields d. Expanding to second
order in the bosonic propagator, we get

S
(2)
MF[d̄,d] = S0[d̄,d] + Tr ln βG−1

0 − TrG0� − 1
2 TrG0�G0�

− TrG0DG0D̄ − TrG0D̄G0D, (3.10)
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where Tr denotes the trace with respect to momentum,
Matsubara, and Nambu indices. Furthermore, we have defined
the spinon Green’s function

(
G−1

0

)
kq

=
[−in + λ −∑

p QpJp−k

−∑
p Q∗

pJp−k in + λ

]
δkq (3.11)

and

�kq =
∑
k′

d̄k′+q−k σ Vσσ ′
k′kqdk′σ ′, (3.12)

Dkq = 1

4

∑
k′

(tk′ + tk′+q+k)d̄k′↓dk′+k+q↑ σx, (3.13)

D̄kq = 1

4

∑
k′

(tk′ + tk′+q+k)d̄k′+k+q↑dk′↓ σx, (3.14)

where σx denotes the respective Pauli matrix in Nambu space.
The effective dopon action in Eq. (3.10) describes the hopping
of doped charge carriers in a locally AF-ordered background
as well as the residual interactions between dopons due to the
exchange of a spinon pair. Note, however, that the Schwinger
boson mean-field theory presented here can not be used
to describe a conventional Fermi liquid state with a large
Fermi surface at large doping, where the Luttinger volume
is determined by the total density of electrons 1 − x. This
phase can be described using Schwinger fermions instead of
bosons.20 In this case, a hybridization between dopons and
fermionic spinons can lead to a ground state with a large Fermi
surface.

A. Gaussian dopon action

The linear contribution ∼G0 to the effective dopon action
(3.10) basically descends from the term in the Hamiltonian
(2.2) which couples the dopons to Si · Sj and thus strongly
renormalizes the bare dopon dispersion. By performing the
Matsubara summation and the trace over the Nambu indices
of the TrG0� term, we get the Gaussian action

S
(1)
MF = β

∑
k,σ

d̄kσ

[
−iωn + ξ 0

k

−
∑

k′

λtk + 4
∑

qp Q∗
pQqJq−k′ tp+k−k′

2Ek′

]
dkσ

+ Tr ln βG−1
0 + β

∑
kq

Jq−kQ
∗
qQk. (3.15)

This expression can be simplified using the self-consistency
conditions for the Lagrange multiplier λ as well as for the mean
field Qk. We make one further approximation here, however,
and determine λ and Qk at the Gaussian level not fully self-
consistent, but only with respect to S

(0)
MF = Tr ln βG−1

0 , i.e., we
neglect the back-action of the dopons on the spinons. The
approximate self-consistency equations thus read as

0 = ∂F (0)

∂Q∗
p

=
∑

k

Jp−k

[
Qk −

∑
q Jq−kQq

2Ek

]
, (3.16)

1 = ∂F (0)

∂λ
=

∑
k

λ

Ek
, (3.17)

where F (0) is the free energy associated with S
(0)
MF. Here and

in the following, Ek denotes the spinon dispersion relation,

which is given by

Ek =
√√√√λ2 −

∣∣∣∣∣
∑

q

QqJq−k

∣∣∣∣∣
2

. (3.18)

By inserting these expressions back into Eq. (3.15), we get

S
(1)
MF = β

∑
k,σ

d̄kσ [−iωn + ξk ]dkσ + Tr ln βG−1
0 + const

(3.19)

with the Gaussian dopon dispersion

ξk = tk/2 − 2
∑
qp

QqQ
∗
ptp+k−q − μ. (3.20)

Note the different sign of the second term compared to the
bare dopon dispersion ξ 0

k in Eq. (3.8).

B. Mean-field ansatz for a Z2 FL*

In the following, we use the simplest mean-field ansatz
for the Qij ’s. We take a zero-flux state with Qij = Q on
nearest-neighbor bonds. The invariant gauge group21 (IGG),
i.e., the group of gauge transformations that leaves this ansatz
invariant, is U(1) due to the bipartite nature of the square
lattice. Indeed, we can choose the gauge transformation
bjσ → bjσ exp(iφ) on sublattice A and bjσ → bjσ exp(−iφ)
on sublattice B without changing the ansatz. However, since
a U(1) FL* is generically unstable,22 we break the U(1) gauge
group down to Z2 by including frustration in the form of a
small next-nearest-neighbor exchange interaction J ′ as well as
a corresponding singlet bond amplitude Q′. The excitations of
the emergent Z2 gauge field are gapped visons, which should
not play a big role in our subsequent analysis as long as their
gap is sufficiently large, thus we neglect them in the following.
The Fourier transformation of our ansatz Qij then takes the
form

Qk = i2[Q(sin kx + sin ky) + 2Q′ cos kx sin ky]. (3.21)

Note that Qji = −Qij and thus Q−k = −Qk. The correspond-
ing spinon dispersion relation (3.18) is given by

Ek =
√

λ2 − 4 |JQ(sin kx + sin ky) + 2J ′Q′ cos kx sin ky |2,
(3.22)

where J and J ′ are the nearest- and next-nearest-neighbor
exchange couplings, whereas Q and Q′ are the corresponding
singlet amplitudes on nearest- and next-nearest-neighbor
bonds. For this choice of Qk, the convolutions in all the
expressions for the effective action can be evaluated straight-
forwardly. In particular, the Gaussian dopon dispersion from
Eq. (3.20) takes the form

ξk = t

2
(1 − 4|Q|2) (cos kx + cos ky)

+ t ′(1 − 4|Q′|2) cos kx cos ky

+ t ′′

2
(cos 2kx + cos 2ky) − μ. (3.23)

Note that the dispersion is invariant under Z2 gauge transfor-
mations Qij → −Qij . The singlet amplitudes Q and Q′ can
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take values between Q,Q′ ∈ [0, 1/
√

2], where Q = 1/
√

2 if
nearest-neighbor spins form a singlet. One can clearly see that
the nearest-neighbor hopping amplitude vanishes for perfect
classical local AF correlations (Q = 1/2) and it changes sign
for Q > 1/2. It is important to emphasize, however, that the
Gaussian dopon dispersion (3.23) is strongly renormalized by
the residual interaction.

C. Residual interactions, effective dopon action at quartic order

Here, we analyze the interactions between dopons that are
induced by the exchange of a spinon pair. The quadratic terms
∼G2

0 in the effective dopon action (3.10) are given by

S
(2)
int = −

∑
kq

Tr2

[
1

2
(G0)k�kq(G0)q�qk + (G0)kDkq(G0)qD̄qk

+ (G0)kD̄kq(G0)qDqk

]
. (3.24)

The first term gives rise to non-spin-flip interactions, which we
denote by V

(1)
qkk′ , whereas the second and third terms describe

interactions where the dopon spins are flipped (denoted by
V

(2)
qkk′). Both interactions are shown schematically in Fig. 1.

In the following, we perform a self-consistent Hartree-Fock
analysis of this induced retarded interaction. Self-consistency
is necessary because the interactions are strong and the shape
as well as the position of the Fermi surface is strongly
affected by interaction-induced fluctuations.23 The Hartree-
type interactions are accounted for already to a large extent

V
qkk’
(1) V

qkk’
(2) ==

k, k+q,

k’,k’+q,

FIG. 1. Dopon-dopon interactions induced by the exchange of a
spinon pair.

in the Gaussian dopon dispersion (3.23). In fact, the Hartree
diagrams would correspond to a self-energy correction of the
bosonic spinon propagator and are not expected to change the
results qualitatively. For this reason, we restrict ourselves to
the two Fock-type diagrams shown in Fig. 2. Since we expect
the Fermi liquid character of the dopons to prevail, we use
a dominant pole approximation and neglect the incoherent
part of the dopon Green’s function. In this approximation, the
dressed dopon Green’s function in the diagrams in Fig. 2 takes
the form

Gσ (k,iω) ≈ Zk

−iω + ξk
, (3.25)

where the quasiparicle residue Zk as well as the dopon
dispersion ξk are calculated self-consistently. We will justify
this approximation a posteriori by checking that the quasipar-
ticle weight Zk is reasonably large. The dopon self-energy
corresponding to the diagrams in Fig. 2 thus takes the
form

�(k,iωn) = 1

β

∑
q

Zk+q
V

(1)
qkk + V

(2)
qkk

−iωn − iq + ξk+q

= − 1

8β2

∑
qk′

Zk+q
ik′ (ik′ + iq) akk′q + bkk′q

[−iωn − iq + ξk+q]
[
E2

k′ − (ik′)2
][

E2
k′+q − (ik′ + iq)2

] , (3.26)

where akk′q and bkk′q are momentum-dependent factors given by

akk′q = 3(tk + tk+q)2 − 2|(Q ∗ t)k′−k + (Q ∗ t)k′+k+q|2, (3.27)

bkk′q = (tk + tk+q)2{3λ2 + [(Q ∗ J )k′(Q ∗ J )k′+q + c.c.]} + 2λ2|(Q ∗ t)k′−k + (Q ∗ t)k′+k+q|2 + λ(tk + tk+q)[(Q∗ ∗ J )k′

+ (Q∗ ∗ J )k′+q][(Q ∗ t)k′−k + (Q ∗ t)k′+k+q] + c.c. + (Q∗ ∗ J )k′(Q∗ ∗ J )k′+q[(Q ∗ t)k′−k + (Q ∗ t)k′+k+q] + c.c.

(3.28)

Here, the asterisk denotes convolutions, i.e., (Q ∗ t)k = ∑
p Qptk−p.

After performing the Matsubara sums and analytic continuation iωn → ω + iδ, we get (at T = 0)

�R(k,ω) = − 1

16

∑
q,k′

Zk+q

{
1

2Ek′Ek′+q

Ek′Ek′+qakk′q − bkk′q

ω − Ek′ − Ek′+q − ξk+q + iδ

−�(−ξk+q)

[
(Ek′ − ξk+q + ω)akk′q + bkk′q/Ek′

E2
k′+q − (Ek′ − ξk+q + ω + iδ)2

+ (Ek′+q + ξk+q − ω)akk′q + bkk′q/Ek′+q

E2
k′ − (Ek′+q + ξk+q − ω − iδ)2

]}
. (3.29)

The imaginary part of the retarded dopon self-energy finally takes the form

Im�R(k,ω) = − π

16

∑
k′q

Zk+q

(
bkk′q

2Ek′Ek′+q
− akk′q

2

)

×[�(ξk+q)δ(ω − Ek′ − Ek′+q − ξk+q) + �(−ξk+q)δ(ω + Ek′ + Ek′+q − ξk+q)]. (3.30)
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= +

Vqkk
(1) Vqkk

(2)

FIG. 2. Fock-type self-energy diagrams for the dopons. Double lines denote dressed dopon Green’s functions.

Note that Im�R(ω) ≡ 0 for −2� < ω < 2�, where � denotes
the spinon gap.

In all subsequent calculations, we do not determine the
Lagrange multiplier λ (which fixes the Schwinger boson
constraint) self-consistently, but use it to fix the value of the
spinon gap �. Moreover, we use the nearest- and next-nearest-
neighbor singlet amplitudes Q and Q′ as free parameters.
Our calculation procedure works as follows: first, we evaluate
Im�R(k,ω) numerically using the adaptive Monte Carlo
integration algorithm MISER,24 which is based on a recursive
stratified sampling method. Since the computational effort
increases considerably with increasing accuracy, we set the
bound of the relative error estimate to be smaller than 6%,
which is arguably a relatively large value, but sufficient for our
purpose. In order to perform the Monte Carlo integration, we
smoothen the singularities of the delta functions as well as the
step functions by replacing the delta functions by Lorentzians
with a full width at half maximum (FWHM) of 0.01 and the
step functions by Fermi distributions at an effective inverse
temperature β = 200.

The second step is to evaluate the real part of the self-energy
by a Kramers-Kronig transform and determine the dopon
dispersion ξk by finding the maximum of the dopon spectral
function

A(k,ω) = 1

π

−Im�R(k,ω)[−ω + ξ
(0)
k + Re�R(k,ω)

]2 + [Im�R(k,ω)]2
.

(3.31)

Here, ξ (0) denotes the Gaussian dopon dispersion from
Eq. (3.23). The quasiparticle residue Zk is obtained via

Z−1
k =

∣∣∣∣1 − ∂ Re�R(k,ω)

∂ω

∣∣∣∣
ω=ξk

. (3.32)

Finally, the self-consistency loop is performed by plugging ξk
and Zk back into Eq. (3.30) and repeating the steps above until
convergence is achieved.

D. Relation between the electron and the dopon Fermi surface

Using Eq. (2.3), the electron momentum distribution can be
expressed in terms of the lattice spin and dopon operators as

c
†
kσ ckσ = 1

2

∑
ij

eik·(Ri−Rj )[−(1/4 + Si · Sj )d†
jσ diσ

+ (d†
jασ αβdiβ) · (Si + Sj )/2] + const, (3.33)

where we implicitly sum over repeated spin indices and again
neglect the Si × Sj term. Using the Schwinger boson repre-
sentation (3.1) for the lattice spins, the electron momentum

distribution is given by

〈c†kσ ckσ 〉 = 1

2

∑
ij

eik·(Ri−Rj )

〈
−d

†
jσ diσ

+1

2
(εαβb

†
iαb

†
jβ)(εγ δbiγ bjδ)d†

jσ diσ

+1

4
d
†
jαdiβ(b†iβbiα + b

†
jβbjα)

〉
+ const

= −1

2
〈d†

−kσ d−kσ 〉 + smooth function of k. (3.34)

The second line follows because the last two terms give rise to
convolutions of the dopon momentum distribution with spinon
correlators, where the Fermi surface singularity is smoothened
out. We thus conclude that the electron Fermi surface coincides
with the dopon Fermi surface. Moreover, the value of the
electron quasiparticle residue at the Fermi surface is one-half
times the dopon quasiparticle residue Zk.

From Eq. (3.34), it is also clear that the spinon-dopon
approach to the t-J model can not give rise to electron pockets
at the antinodal regions, as observed in recent experiments.
Instead, the Fermi surfaces are always holelike.

E. Results

The following results were obtained using standard val-
ues for the bare hopping amplitudes, shown in Table II.
The nearest-neighbor hopping amplitude defines our energy
scale and has been set to unity. The next-nearest-neighbor
exchange interaction J ′ as well as the corresponding singlet
amplitude Q′ were chosen to be relatively small compared to
the nearest-neighbor values, as their only purpose is to break
the IGG form U(1) down to Z2.

Our results for the self-consistent dopon dispersion ξk and
quasiparticle residue Zk as a function of kx and ky in the upper
right quadrant of the Brillouin zone are shown in Figs. 3–5.
These results are at a finite dopon density nd > 0, although
we note that ξk as well as Zk look qualitatively similar in the
case where the dopon density is going to zero. The position
of the dispersion minimum depends on the strength of the
local antiferromagnetic correlations, which is parametrized by
the singlet bond amplitude Q. For Q = 1/2, the hole pockets

TABLE II. Parameter values for hopping amplitudes (t , t ′, t ′′),
exchange interactions (J , J ′), mean-field ansatz bond amplitudes
(Q, Q′), as well as for the dopon chemical potential μ and spinon
gap �.

t 1 J 0.25 Q Variable μ Variable
t ′ −0.3 J ′ 0.05 Q′ 0.1 � Variable
t ′′ 0.1
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FIG. 3. (Color online) Self-consistent dopon dispersion ξk (left) and dopon quasiparticle residue Zk (right) in the Z2-FL* phase as a
function of kx and ky in the upper right quadrant of the Brillouin zone. The thick black contour marks the position of the dopon Fermi surface,
which coincides with the electron Fermi surface. The dashed line indicates the magnetic Brillouin zone boundary. Parameter values for this
plot are Q = 0.4, � = 0.025, μ = 0.083, and the rest as in Table II.

are aligned with the magnetic Brillouin zone boundary and
centered at q � (π/2,π/2). For weaker correlations Q < 0.5,
the hole pockets are shifted to the outer side of the magnetic
Brillouin zone boundary toward q = (π,π ), whereas stronger
local AF correlations Q > 0.5 give rise to hole pockets
centered on the inner side of the magnetic Brillouin zone
boundary (see Fig. 6).

The spinon gap � does not influence the position of the
pockets, but it changes their shape slightly. The smaller � is,
the more elliptical are the hole pockets. This is illustrated in
Fig. 7. We note, however, that the ellipticity of the hole pockets
depends more strongly on the precise value of the bare hopping
parameters t ′ and t ′′ as on the size of the spinon gap. In fact,
smaller t ′ and t ′′ give rise to more elliptical pockets, similar to
the standard SDW theory for antiferromagnetic metals.

The effective mass of the dopons turns out to be enhanced
compared to the bare electron band mass as well. For the
two dispersions shown in Fig. 7, the arithmetic mean of
the effective masses at the dispersion minimum along the
two principal axes is m̄eff ≈ 2.5 in natural units (i.e., m = 1
corresponds to the band mass of the nearest-neighbor tight-
binding dispersion). Again, the effective mass depends on the
precise value of the bare hopping parameters t ′ and t ′′. For
highly elliptical pockets, the effective mass can reach values
on the order of meff ∼ 10 along the flat direction.

Within our approximation scheme, the quasiparticle residue
Zk does not drop sharply on the outer half of the Fermi
surface, as expected from phenomenological models.18 Only
for relatively high dopon fillings, as in Fig. 3, does an

asymmetry of Zk between the inner and outer sides of the
hole pocket appear.

IV. PHASE TRANSITION BETWEEN A Z2 FL*
AND AN AF METAL

The Schwinger boson description (3.1) is well suited to
study the quantum phase transition between the Z2 FL*
described above and a metal with long-range antiferromagnetic
order. Indeed, SDW ordering corresponds to a condensation of
Schwinger bosons at the points where the spinon gap closes,
which for Q′ �= 0 typically occurs at an incommensurate
wave vector. For Q′ = 0, the spinon dispersion (3.22) has
two degenerate minima at the momenta q = ±K with K =
(π/2,π/2) and the corresponding SDW ordering wave vector
is commensurate. A condensate of the two Schwinger boson
flavors at these respective momenta, i.e., 〈bq↑〉 = √

ms δq,K
and 〈bq↓〉 = √

ms δq,−K, corresponds to an AF-ordered state
with staggered magnetization ms in the x direction. Note,
however, that for Q′ = 0, the disordered phase no longer
corresponds to a Z2 FL* and thus there is no direct transition
between a Z2 FL* and a commensurate AF-ordered metal.25

Rather, the transition involves an intermediate incommen-
surate phase with Q′ �= 0; for simplicity, our numerical
analysis will not consider this intermediate phase, although
the extension is not difficult.

Within our path-integral formulation in Eq. (3.5), a
Schwinger boson condensate can be straightforwardly intro-

FIG. 4. (Color online) As in Fig. 3, but with parameters Q = 0.54, � = 0.025, μ = 0.18.
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FIG. 5. (Color online) As in Fig. 3, but with parameters Q = 0.5, � = 0.01, μ = 0.182.

duced by shifting the Nambu fields

Bqσ → Bqσ + √
ms δn,0 δq,K (4.1)

and keeping only the quadratic terms in the shifted field. Note
that the mean-field ansatz Qk in Eq. (3.21) also acquires a
contribution from the condensate

Qk = ms

2
(δk,K − δk,−K) + Q

(0)
k , (4.2)

where Q
(0)
k = i2Q(sin kx + sin ky) describes the strong

nearest-neighbor correlations on top of the uniform long-range
correlations induced by the condensate. The mean-field action
in the AF-ordered phase with K = (π/2,π/2) has the same
form as Eq. (3.5) with three differences. First, Qk is given by
Eq. (4.2). Second, the bare dopon dispersion ξ 0

k in Eq. (3.8) is
replaced by

ξ 0
k = tk(1 − ms) − m2

s (tk−tk−π )

+ 2
∑
qp

Q(0)
q

∗
tpQ

(0)
k+q−p − μ, (4.3)

Q<1/2

Q=1/2

Q>1/2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
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1.0

1.5

2.0

2.5

3.0

k_x

k_
y

FIG. 6. (Color online) Evolution of the Fermi surface in the
Z2-FL* phase as a function of the nearest-neighbor singlet am-
plitude Q ∈ [0,1/

√
2]. Shown is the upper right quadrant of the

Brillouin zone. Black solid line: Q = 0.54,� = 0.025,μ = 0.18;
red dotted line: Q = 0.5,� = 0.01,μ = 0.182; blue dashed line:
Q = 0.4,� = 0.025,μ = 0.083; other parameters as in Table II. The
hole pockets move to the inner side of the magnetic Brillouin zone
boundary (indicated by the dashed line) as the strength of local
antiferromagnetic correlations, parametrized by Q, increases.

and most importantly, the condensate gives rise to an additional
term to the action (3.5), which describes the scattering of do-
pons with momentum transfer q = π and which takes the form

SAF/β = −ms

2

∑
ωn,k

(tk + tk+π )(d̄ωn,k+π↑ dωn,k↓ + H.c.). (4.4)

Now, we can perform the same analysis as in Sec. III by
integrating out the bosonic modes and performing a Hartree-
Fock analysis of the effective quartic dopon action. At this level
of approximation, the off-diagonal elements of the self-energy
in spin space vanish identically and the diagonal elements
have exactly the same structure as in Sec. III. The effective
dopon action in the AF-ordered phase including the self-energy
corrections is thus given by

S/β =
∑

k

(d̄ωn,k+π↑ d̄ωn,k↓)

×
[−iωn+ξk+π

Zk+π
−ms

2 (tk + tk+π )

−ms

2 (tk + tk+π ) −iωn+ξk
Zk

](
dωn,k+π↑
dωn,k↓

)
,

(4.5)

where ξk and Zk again denote the self-consistently determined
dopon dispersion and quasiparticle residue, calculated in
the same manner as in Sec. III using Eqs. (4.2) and (4.3).
By diagonalizing (4.5), we obtain two dopon bands with
dispersions

ω±
k = ξk+π + ξk

2

±1

2

√
(ξk+π − ξk)2 + m2

sZkZk+π (tk + tk+π )2. (4.6)

The dopon Fermi surface is determined by ω±
k = 0. Slightly

beyond the AF critical point, where the condensate density is
small (ms � 1), the self-energy contributions to the dopon
Green’s function are basically the same as in the Z2-FL*
phase with a vanishing spinon gap and the dispersion ξk has
a minimum close to q = (π/2,π/2), as in Sec. III. The dopon
Fermi surface in the AF-ordered phase thus again takes the
form of pockets close to q = (π/2,π/2). However, the pockets
are symmetric with respect to the magnetic Brillouin zone (BZ)
boundary due to the presence of long-range antiferromagnetic
order. The shape of the hole pocket again depends on the
strength of the short-range correlations, parametrized by Q in
Eq. (4.2). Possible Fermi surfaces for ms = 0.05 are shown in
Fig. 8. For these plots, we used the same ξk and Zk as in the
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FIG. 7. (Color online) Evolution of the dopon dispersion ξk in the Z2-FL* phase as a function of the spinon gap � for Q = 0.54 and
μ = 0.15. Left: � = 0.025; right: � = 0.005; other parameters as in Table II. The Fermi energy is below the dopon band in both cases. With
decreasing spinon gap �, the dispersion around the minima becomes more elliptical.

FL* phase with a vanishingly small spinon gap and Q′ = 0,
which is justified for ms � 1, as argued above. Note that for
Q = 1/2, the dispersion ξk is almost symmetric with respect
to the magnetic Brillouin zone boundary and thus the two
dopon bands in the AF-ordered phase are almost degenerate
for ms � 1. In this case, we get two concentric Fermi pockets,
shown as solid blue and dashed red lines in the left plot of
Fig. 8. For larger ms , the red Fermi pocket shrinks to zero, and
we eventually obtain the familiar single hole pocket centered
on q = (π/2,π/2) of the AF-ordered phase. The right plot
shows a Fermi surface for Q = 0.54, in which case the single
pocket on the inner side of the magnetic BZ in the FL* phase
is “symmetrized” at the magnetic BZ boundary.

Note that in the AF-ordered phase, the electron Fermi
surface is related to the dopon Fermi surface not by the
same Eq. (3.34) as in the FL* phase. The spinon condensate
gives rise to additional contributions ∼ms , which only change
the electron quasiparticle residue, however. The shape of the

electron Fermi surface still coincides with the dopon Fermi
surface.

The nature of the quantum-critical point between the
AF-ordered and Z2-FL* phases can be addressed by methods
similar to earlier work.26–29 The magnetic fluctuations are
described by the spinor Schwinger bosons, and the critical
theory of the transition to a spiral AF-ordered phase is the
O(4) Wilson-Fisher fixed point. We now have to check if this
critical point is destabilized by the dopon Fermi surfaces.
Because the dopons do not carry emergent gauge charges,
they couple rather weakly to the critical spin fluctuations;18

the influence of this coupling can be analyzed perturbatively
and, as in previous work,27,29 it is found to be irrelevant. So the
critical theory remains that of the deconfined O(4) variety.26

In this approach to the onset of magnetic order, there is no
direct transition from the Z2-FL* phase to commensurate AF
order, and the latter phase is reached only via an intermediate
incommensurate phase.30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5
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3.0
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y
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0.0 0.0

FIG. 8. (Color online) Possible Fermi surface shapes in the antiferromagnetically ordered phase for ms � 1. Shown is the upper right
quadrant of the Brillouin zone. The dashed line marks the magnetic Brillouin zone boundary. See text for a discussion.
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V. CONCLUSIONS

This paper has presented a microscopic construction of a
FL* phase in a single-band t-J model on the square lattice, and
described its evolution toward the onset of antiferromagnetic
order. This was achieved by writing the t-J model in a
Kondo-type formulation using the spinon-dopon formalism.20

The FL* phase had a “background” spin liquid, which was the
Z2 spin liquid with bosonic spinon excitations. This spinon
was then coupled to mobile carriers (the “dopons”) which
had the same quantum numbers of the electron. Our effective
Hamiltonian for the spinons and dopons was an exact, in
principle, representation of the t-J model. However, we only
analyzed this effective Hamiltonian in a relatively straightfor-
ward self-consistent one-loop approximation. But, there is an
obstacle to extending such an analysis to higher orders and
accuracy by using more powerful computational methods.

Our analysis is controlled when the spinon energy gap
is large, and it yielded physically sensible results for the
electron spectrum that resemble aspects of the experimental
observations. The key feature was the presence of a small
hole pocket centered near, but not at, the magnetic Brillouin
zone boundary. This pocket enclosed a volume determined
by x, the density of doped carriers alone. The quasiparticle
residue was anisotropic around the Fermi surface, but our
approximation did not yield the strong variation found in
earlier phenomenological models.18

We note a recent independent study31 to describing the
underdoped cuprates as a “Luttinger-volume violating Fermi

liquid” (LvvFL) with a spin liquid of fermionic spinons.
The LvvFL state is qualitatively the same as the FL*
state.

On the experimental front, there are a number of recent
indications that a FL*-like model of pocket Fermi surfaces
without antiferromagnetic long-range order may be appropri-
ate for the pseudogap region of the hole-doped cuprates. The
angle dependence of quantum oscillations in YBa2Cu3O6.59

is consistent4 with the absence of spin-density-wave ordering.
NMR measurements32 on YBa2Cu3Oy have so far not seen
antiferromagnetic order at fields as high as 30 T, but do report
evidence of charge ordering. Such a charge ordering can be
superposed on our FL* analysis in a straightforward manner;
as long as the charge ordering wave vector does not connect
the hole pockets of the FL* state, there will be little change in
the Fermi surface configuration; a computation for the onset
of charge order in a FL* metal was described recently by
Vojta.15 We have already noted photoemission evidence for
pocket Fermi surfaces.6
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