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Surface magnetic ordering in topological insulators with bulk magnetic dopants
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We show that a three-dimensional topological insulator doped with magnetic impurities in the bulk can have a
regime where the surface is magnetically ordered but the bulk is not. This is in contrast to conventional materials
where bulk ordered phases are typically more robust than surface ordered phases. The difference originates from
the topologically protected gapless surface states characteristic of topological insulators. We study the problem
using a mean-field approach in two concrete models that give the same qualitative result, with some interesting
differences. Our findings could help explain recent experimental results showing the emergence of a spectral gap
in the surface state of Bi2Se3 doped with Mn or Fe atoms, but with no measurable bulk magnetism.
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I. INTRODUCTION

In recent years, the field of topological insulators (TIs) has
attracted much attention and research in the condensed-matter
community.1–3 The advance has been rapid, on both the
theoretical and experimental fronts; however, many challenges
still remain. Among these perhaps the most important is
gaining experimental control over the bulk and surface con-
duction in three-dimensional TIs. In this paper we address one
aspect of this challenge that is associated with a magnetically
induced excitation gap in the topologically protected surface
states.

Topological insulators are bulk insulators in two or three
dimensions with strong spin-orbit coupling (SOC) and pro-
tected gapless surface states.4–9 The topological protection of
the surface states arises due to time-reversal invariance (TRI).
The surface states are conducting, have a characteristic linear
(Dirac) dispersion, and exhibit spin-momentum locking. The
most studied and most promising three-dimensional (3D) TI is
the semiconducting thermoelectric Bi2Se3, with a relatively
large band gap of ∼0.3 eV and a simple surface state
consisting of a single Dirac cone.10,11 The spectrum of Bi2Se3

and other TIs has been studied using angle-resolved photo-
electron spectroscopy12–14 (ARPES) and scanning tunneling
microscopy,15–17 showing that the surface states form an almost
ideal Dirac cone, illustrated in Fig. 1(a), familiar from studies
of graphene.18

Breaking TRI, for example by adding magnetic dopants
(as we discuss), is expected to open a gap in the spectrum
of the surface states. The resulting spectrum then resem-
bles that of a “massive” Dirac fermion [Fig. 1(b)]. There
is considerable interest in having a system with an odd
number of massive Dirac fermions, since it is predicted to
exhibit many interesting topological phenomena, including
the half quantum Hall effect on the surface (e2/2h Hall
conductance),19 the image magnetic monopole (an electric
charge adjacent to a TI results in the field of a magnetic
monopole embedded in the TI),20,21 and a Kerr-Faraday
angle quantization in units of the fine structure constant.22,23

A tunable gap would also allow the control of the surface
transport and could, in addition, lead to unique practical appli-
cations associated with purely electric control of the surface
magnetization.24,25

A signature of the massive Dirac fermion has been observed
recently using ARPES in magnetically doped Bi2Se3,26,27

although the interesting effects associated with it have yet to be
seen in a laboratory. A surprising feature of these experiments
is that the gap in the surface spectrum appears without bulk
magnetic ordering, even though the dopants are uniformly
distributed everywhere in the 3D sample. These findings raise
several important questions concerning the precise conditions
under which TRI-breaking perturbations open up a gap. Can
a gap open in the surface state of a TI in a TRI-broken phase
which, however, lacks global magnetic ordering? Although we
know of no systematic study of this problem, simple arguments
suggest that unordered magnetic moments do not open a gap.
Consider creating such a disordered state from a uniform
two-dimensional (2D) ferromagnet (FM) in the surface of a TI
by introducing domains with opposite magnetization (taken
to point in the direction perpendicular to the surface). It is
well known that the resulting domain walls carry topologically
protected gapless fermionic modes.28 As the number of the
domains grows so does the density of the low-energy fermion
modes, ultimately presumably recovering the 2D gapless
state characteristic of the system with unbroken TRI. The
above argument thus suggests that uniform magnetic ordering
over large domains is necessary to gap out the surface modes
in a TI.

In this paper, we lay out the hypothesis that a temperature
window exists in which the surface of a magnetically doped
TI is magnetically ordered but the bulk is not. We present a
simple and intuitive argument why this is so, and we back it
up via a mean-field calculation for two simple tight-binding
TI models: a cubic-lattice regularized Bi2Se3 and a model on
the perovskite lattice. Our results show that indeed a sizable
regime such as that described above could exist in real TIs, and
this indicates a possible physical explanation for the results
seen in experiments.26,27
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(a) (b)

FIG. 1. (Color online) (a) Energy spectrum of a massless Dirac
fermion. The bottom (red) cone is the valence band, fully occupied
at half filling. The top (green) cone is the conduction band, which is
assumed to be vacant. (b) Massive Dirac fermion. This figure shows
how the opening of a gap tends to lower the free energy.

II. SURFACE MAGNETIC ORDERING
IN TOPOLOGICAL INSULATORS

A. Surface doping

The most natural way to attempt to open up a gap in the
surface state of a TI is to coat the surface with a ferromagnetic
material, with magnetization perpendicular to the surface.
Theoretically, this causes a gap to open up, proportional to the
magnetization of the FM coating.28,29 To illustrate this point,
consider the effective low-energy Hamiltonian for electrons
on the surface of a 3D TI that lies parallel to the x-y plane,

H0 = v(kxσy − kyσx), (1)

where v is the Fermi velocity, and σi are Pauli matrices in
the spin subspace. If we coat this surface with a ferromagnetic
coating with magnetization M = Mẑ then we get an additional
term in the Hamiltonian,

H = H0 + JM
σz

2
, (2)

where J is the exchange-coupling strength. Since H is a
sum of anticommuting matrices we can write the spectrum
immediately:

Ek = ±
√

v2k2 + (JM/2)2, (3)

where k2 = k2
x + k2

y .
We see that a gap of size JM has opened up. However,

even though from a theoretical standpoint this proposition
seems promising, experimentally it has proven very difficult
to fabricate a sample with the requisite properties. Two key
challenges need to be overcome: First, to observe most of
the interesting surface phenomena, one requires the surface to
remain insulating; however, most ferromagnets in nature are
metallic. Second, for a ferromagnet in a thin-film geometry,
the magnetization vector usually lies in the plane, whereas a
perpendicular magnetization is required to open up a gap in
the TI surface state. To the best of our knowledge, this has
yet to be achieved in an experiment, although some theoretical
work has been done on this topic.30

B. Bulk doping

If surface doping with magnetic impurities fails, it is natural
to try bulk doping. In ARPES experiments26,27 it was found

that doping the bulk with nonmagnetic impurities (such as Ca,
Sn, and Tl) did not result in a gap in the Dirac cone, as expected
since they do not break TRI. Conversely, doping with magnetic
impurities, for example Bi2−xFexSe3, resulted in a spectral gap
that increased with the concentration of magnetic dopants x,
with a gap of 60 meV for x = 0.25 (the bulk gap for Bi2Se3 is
∼0.3 eV). For the magnetic dopants Fe and Mn it was found
that, at least for small x, the bulk was paramagnetic, whereas
for the undoped samples the bulk was found to be diamagnetic.
The magnetization measurements were not sensitive to the
surface.

This raises the question of magnetic ordering in the bulk
versus the surface. In general, ordered phenomena in lower
dimensions are more fragile (T 3D

c > T 2D
c ), for example, the

XY model and Heisenberg models: in one dimension they
do not order at any temperature, in two dimensions they
order only for T = 0, and in three dimensions they order for
T < Tc. This is also the case for the superconducting order
and general stability of lattices. However, in the case of a
TI, we argue that it is possible that T bulk

c < T surf
c . Therefore,

there is a regime T bulk
c < T < T surf

c in which the bulk is
unordered (paramagnetic) and the surface is ordered (for
example, ferromagnetic).

To illustrate why this could be the case, first recall that
magnetic ordering with the magnetization perpendicular to
the TI surface implies opening of a gap in the spectrum of
the surface states. This can be seen directly from Eqs. (2) and
(3). Now consider the ungapped surface spectrum, assuming
half filling, so that the surface valence band is fully occupied
and the conduction band is empty [Fig. 1(a)]. Gapping the
surface states causes the occupied states to move down in
energy [Fig. 1(b)], so the total kinetic energy decreases.
Therefore, the formation of a surface gap is favorable. If the
chemical potential is shifted either up or down then the net
gain in kinetic energy is diminished and we expect T surf

c to
decrease.

Contrast this with the situation in the insulating bulk, which
is gapped to begin with. In an ordinary insulator with negligible
spin-orbit coupling it is not possible to generate magnetization
in the initially spin-degenerate bands without first closing the
gap. Equivalently, one may recall that the spin susceptibility
of an ordinary insulator with a negligible spin-orbit coupling
vanishes. In the bulk of a topological insulator the situation is
more complicated as a result of the strong spin-orbit coupling
that is necessary for the occurrence of the topological phase.
In this case, magnetic susceptibility can be significant31 and
can lead to bulk magnetic states at nonzero temperatures.
Nevertheless, in this study we find that generically the
surface critical temperature for the formation of magnetic
order exceeds the bulk critical temperature. We remark that
a similar situation has been found in a theoretical study of the
transition-metal oxide Na2IrO3, which was predicted to be a
layered quantum spin Hall system.32

Equivalently, we can imagine integrating out the electrons,
and we consider that the range of the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction between the dopants is
inversely proportional to the gap. Since the gap is small for
the surface and large for the bulk, the range of the interaction
is much longer for the surface, and hence long-range order is
expected to be stronger on the surface.33
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III. FORMALISM

A. Mean-field theory for the bulk system

We consider first just the 3D bulk of the material and
study the coupling of electrons to magnetic dopants within
a mean-field approximation. We assume that the density of
impurities is low enough that we can neglect impurity-impurity
interactions and that there is no clustering. This is supported by
experiments34 on doped Bi2Te3. Therefore, we add an onsite
electron-impurity exchange interaction term31

H = He + J
∑

I

SI · sI , (4)

where He is the Hamiltonian for the electrons in a TI to be
discussed in Sec. IV, J is an exchange-coupling constant, the
sum extends over all impurity sites I , and SI and sI are the spin
operators of the impurity and electron on site I , respectively.

We define the average magnetization of the impurities and
electrons as M and m. The impurity magnetization is averaged
over all impurities and over all sites. This virtual crystal
approximation can be pictured as “spreading out” the localized
magnetic moment of the impurities so that there is a moment
on all sites. We assume that the fluctuations around the mean
are small and can be neglected, so that the interaction term is
decoupled:

J
∑

I

SI · sI � J M ·
∑

i

si +J m ·
∑

I

SI − NJ M · m, (5)

where N is the number of sites. We assume that the magne-
tization is in the z direction, so M = Mẑ and m = mẑ. Then
the mean-field Hamiltonian becomes H MF = H MF

e + H MF
imp −

NJMm, where

H MF
e =

∑
k

�
†
k

[
He(k) + JM

σz

2
− μ

]
�k,

(6)
H MF

imp = Jm
∑

I

Sz
I ,

and He(k) is a matrix in spin and orbital spaces. Since
the mean-field Hamiltonian is decoupled, we can write the
energies as a sum

E(k,λI ) = Ee(k) + Eimp − NJMm. (7)

The first term reflects the energies of the mean-field electron
Hamiltonian H MF

e . The second term is a sum over the
expectation values of the spin operator in the z direction at each
impurity site Eimp = Jm

∑
I λI , where λI is the component

of the spin in the z direction on impurity I . The last term
gives the overall shift in energy following from the mean-field
decoupling Eq. (5).

To find the magnetizations, we calculate the expectation
values of the electron and impurity spins in the ensemble
defined by H MF and find the equations

M = −2SxBS(βJmS),
(8)

m = 1

N

∑
k,i

(
U † σz

2
U

)
ii

f (Ei),

FIG. 2. (Color online) A 3D TI in a slab geometry with a low
density of randomly positioned magnetic impurities.

where BS(y) is the Brillouin function35

BS(y) = 2S + 1

2S
coth

2S + 1

2S
y − 1

2S
coth

1

2S
y, (9)

and where U is the matrix that diagonalizes H MF
e (it is a

function of J , M , and k) and f (E) is the Fermi function. The
chemical potential μ can be determined by summing over the
average occupation for each energy (given by the Fermi-Dirac
distribution) and equating to the total number of states. The
number of states per site is n = ∑

k f (Ee)/N . For example,
for half filling (μ = 0) at T = 0 for a model with four states
per site, we have n = 2 since only half of those are occupied.
The equations for m, M , and μ are coupled nonlinear equations
which can be solved self-consistently by an iterative procedure.

B. Adding the surfaces

Consider now a system with open boundary conditions in
the z direction and periodic boundary conditions in the x and
y directions (see Fig. 2). The advantage of this setup is that, in
addition to the bulk, we can also investigate the magnetization
near the two surfaces of the sample. We take the real space
Hamiltonian, and Fourier transform it only in x and y, keeping
the dependence on z in real space. The problem is now a
one-dimensional (1D) problem in z, as opposed to the zero-
dimensional (0D) problem before.

Once again, we rewrite the interaction term and then define
the magnetizations as z-dependent fields. The mean-field
Hamiltonian is now H MF = H MF

e + H MF
imp − N⊥J

∑
j Mj ·

mj , where j labels the layers and

H MF
e =

∑
k⊥

�
†
k⊥

[
He(k⊥) + J M ⊗ σz

2
− μ

]
�k⊥,

(10)
H MF

imp = J
∑
j,I∈j

mj · SI .

Here He(k⊥) is a matrix in indices labeling the z coordinate
in addition to spin and orbital spaces; M is a vector of length
Lz (the number of sites in the z direction), N⊥ = N/Lz is the
number of sites in the x-y plane, and by M ⊗ σz we mean that
M is expanded to a diagonal matrix of dimension Lz and then
we perform an external product with σz. In H MF

imp the summation
is over layer index j and dopant sites I in layer j .
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We now diagonalize the full electron Hamiltonian
He(k⊥) + J M ⊗ σz/2 − μ and find a matrix U which diag-
onalizes it. We calculate the electron and impurity magneti-
zations of each layer, which are given by the sum over the
expectation values of the spin operators

Mi = −2SxBS(βJmiS),
(11)

mi = 1

N⊥

∑
l,j

(
U

†
il

σz

2
Uil

)
jj

f (Ej ),

where Uil is a d × d block of U , and d is the dimension
of the Hamiltonian in the bulk (d = 4 for Bi2Se3 and
d = 8 for perovskite; the models are defined below). The
chemical potential can be determined as before by solving
n = ∑

k⊥,α f (Eα(k⊥))/N , where α runs from 1 to Lzd. In the
limit of a macroscopic crystal that is homogeneously doped, we
expect to find that the doping for each layer is equal, and hence
x does not vary in our sample. It would be straightforward to
consider a spatially varying dopant density x but we do not
pursue this here.

C. Estimate of the surface critical temperature

Consider a ferromagnetically ordered 2D surface of a TI.
We can make a rough estimate of the critical temperature.
The effective Hamiltonian is given by Eqs. (1) and (2), and
the energies are given by Eq. (3). The impurity and electron
magnetizations are described by the coupled equations

M = −2SxBS(βJmS),
(12)

m = 1

NJ

∑
k

∂Ek

∂M
f (Ek − μ).

For T → T surf
c we have m,M → 0, so we expand the above

equations to first order in M and m. We make use of ∂E/∂M =
J 2M/4E and the asymptotic form of the Brillouin function
BS(y) � y(S + 1)/3S for y � 1, and we find

M = −2

3
S(S + 1)βJxm,

(13)

m = −JM

4N

∑
k

1

Ek

[1 − f (Ek + μ) − f (Ek − μ)].

We can evaluate the sum by converting it into an integral
and imposing a momentum cutoff �. Assuming Ek � ±v|k|
(since M → 0 at the critical point) we find a simple result30,36

for exact half filling (i.e., μ = 0),

T surf
c � π

S(S + 1)

3kB

(
�a

2π

)2
J 2x

(�v)
. (14)

For S = 5/2, J = 0.5 eV, x = 0.05, v = 2λ⊥a, and a cutoff
�a/(2π ) � 1/5 we find T surf

c � 100 K. Away from half filling,
when βμ � 1, there is a small correction of ∼−μ2/(4kBv�)
to the result in Eq. (14).

A simple result can also be found for the case βμ 	 1,
which is relevant for most values of μ inside the bulk gap,

T surf
c � π

S(S + 1)

3kB

(
�a

2π

)2
J 2x

(�v)2
(�v − |μ|). (15)

As expected, T surf
c is seen to decrease away from half filling.

To complete the argument we would now like to give
a similar simple estimate for T bulk

c . Unfortunately, the bulk
critical temperature is not easy to estimate, since unlike the
topologically protected surface state, whose physics is simple
and universal, the bulk of a TI can be complicated and T bulk

c

will generally depend on the details of the band structure
and other factors. For Bi2Se3 with 5% concentration of Cr
dopants, Ref. 31 estimates T bulk

c � 70 K using first-principles
numerical calculations. Comparing with our rough estimate for
T surf

c given above we see a clear indication that a T bulk
c < T surf

c

regime can be easily obtained.

IV. MODELS AND RESULTS

Below we present our results for the two tight-binding
models we considered in this study: a model for Bi2Se3

regularized on a simple cubic lattice37 and a model on the
perovskite lattice.38 These simple tight-binding models with
spin-orbit coupling exhibit nontrivial topological invariants for
a broad range of model parameters and have been used widely
in the literature to study the physical properties of topological
insulators.

A. Effective model for Bi2Se3 regularized on the cubic lattice

We consider electrons hopping on a simple cubic lattice
with two orbitals per site [Fig. 3(a)]. The form of the
Hamiltonian and the parameters (see Fig. 4) were chosen to fit
the dispersion near the center of the Brillouin zone obtained by
the first-principles calculation10,37,39 for Bi2Se3. The electron
Hamiltonian is given by

He(k) = d4 +
∑

μ

dμ
μ,

d0 ≡ mk = ε − 2
∑

i

ti cos(kiai),

(16)
di ≡ −2λi sin(kiai),

d4 ≡ γ0 − 2
∑

i

γi cos(kiai),

where we have chosen the gamma matrices so that 
0 = τ1 ⊗
σ0, 
1 = −τ3 ⊗ σ2, 
2 = τ3 ⊗ σ1, 
3 = τ2 ⊗ σ0, and τi are
Pauli matrices in the orbital subspace and σi are Pauli matrices
in the spin subspace. The energies are

Ee = d4 + γ

√
d2

1 + d2
2 + [√

d2
0 + d2

3 + δM̃
]2

, (17)

(a) (b)(a)) ((b)

FIG. 3. (Color online) (a) A unit cell of the discretized Bi2Se3

model, a simple cubic lattice with two orbitals per site. (b) A unit cell
of the perovskite lattice, which can be described as edge-centered
cubic. The four basis sites are labeled.
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FIG. 4. (Color online) (a) Impurity spin expectation value as a function of temperature for the discretized Bi2Se3 lattice. We plot the order
parameter on the surfaces (“surf”), the averaged bulk result for the 14 middle sites (“avg”), and the results of the separate bulk calculation
(“bulk”). (b) Impurity spin expectation value as a function of the z coordinate for different temperatures. For both plots the parameters are
Lx = Ly = 40, Lz = 20, S = 5/2, J = 0.5 eV, x = 0.05, and the rest of the parameters are chosen to fit the Bi2Se3 dispersion close to
the 
 point based on first-principles calculations:10,37,39 γ0 = 0.3391 eV, γ⊥ = 0.0506 eV, γz = 0.0717 eV, ε = 1.6912 eV, t⊥ = 0.3892 eV,
tz = 0.2072 eV, λ⊥ = 0.2170 eV, and λz = 0.1240 eV.

where M̃ ≡ JM/2, and γ,δ = ±1. Note that if there are no
impurities (J = 0) then we get the “clean” doubly degenerate

electron spectrum E0 = d4 ±
√∑

μ d2
μ.

The results for the magnetization in this model are presented
in Fig. 4. The bulk is ferromagnetically ordered up to T bulk

c �
73 K, and the surface remains FM ordered up to T surf

c � 102 K
for the two surfaces [see Fig. 4(a)]. Therefore, the window
in which the surface is ordered and the bulk is unordered
(paramagnetic) is �29 K. We plot the magnetization in the
z direction in Fig. 4(b). Here the effect can be seen clearly.
If we ramp up the temperature from T = 0 at first, all spins,
regardless of being in the bulk or surface, are fully polarized.
As we increase the temperature, the magnetization of the bulk
drops faster than the magnetization of the surface. Eventually
we cross T bulk

c , at which stage the magnetization of the bulk
is zero, but the magnetization of the surface is finite. If we
increase the temperature further, the magnetization of the
surface drops, but the magnetization of the bulk remains at
zero. Once we cross T surf

c , the magnetization of both the bulk
and the surface vanish—thermal fluctuations have broken the
ordered phases.

In samples with open surfaces we observed spatial fluctua-
tions in the bulk magnetization as the temperature approached
T bulk

c from above, e.g., the T = 80 K curve in Fig. 4(b). We
attribute these to the large magnetic susceptibility of the bulk,
which diverges at T → T bulk

c , and the proximity of the ordered
surfaces. The correct T bulk

c can be obtained from the bulk
calculation with periodic boundary conditions, the results of
which are plotted in Fig. 4(a).

We plot the critical temperature for the surface and the
bulk as a function of the chemical potential in Fig. 5. The
surface critical temperature is maximal when the chemical
potential intersects the surface Dirac point, which happens
for μ � 0.09 eV, and falls on both sides, as expected.
The result agrees well with the linear dependence of the
surface critical temperature on μ predicted in Eq. (15).
The bulk critical temperature is approximately constant
within the bulk gap, as expected; since there are no bulk states
within the gap, changing the chemical potential should not
change the critical temperature.

B. Perovskite lattice model

To ascertain whether the results obtained for the Bi2Se3

model are in fact generic, we investigate another simple lattice
model known to give a robust TI. The perovskite lattice, or
edge-centered cubic lattice, consists of atoms on a simple cubic
lattice with a four-point basis, corresponding to atoms at the
center of each edge [Fig. 3(b)]. Tight-binding electrons on this
lattice (with spin-orbit coupling) were recently shown to form
a TI.38 The momentum-space electron Hamiltonian, written
in the basis of four sublattice sites indicated in Fig. 3(b), is
He = H0 + HSO. Here H0 is the hopping part,

H0 = −2t

⎛
⎜⎜⎜⎝

0 cos kx cos ky cos kz

cos kx 0 0 0

cos ky 0 0 0

cos kz 0 0 0

⎞
⎟⎟⎟⎠ , (18)

100

µ

T
c

surf
surfa
bulk

 90

 95

 85

 80

 75

 70
 0.10  0.05 0.00 0.05  0.10 0.15 0.20 0.25

FIG. 5. (Color online) Critical temperature as a function of the
chemical potential μ for the discretized Bi2Se3 lattice. We plot
the surface critical temperature (blue squares) and the approximate
surface temperature from Eq. (15) (solid black line). In addition, we
plot the bulk critical temperature as obtained from an average over
the bulk sites (red circles). The error bars were obtained by fitting the
magnetization below the critical temperature to the known behavior
for a second-order phase transition, M ∝ (Tc − T )1/2. The parameters
are as in Fig. 4, except for Lz = 10. The cutoff was visually chosen for
best fit: �a/2π = 0.215. The vertical dashed lines mark the bulk gap.
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FIG. 6. (Color online) (a) Ferromagnetic order parameter as a function of temperature for the perovskite lattice, with parameters Lx =
Ly = 20, Lz = 10, S = 5/2, J = 0.25 eV, t = 1 eV, λ = 0.2 eV, and x = 0.05. We plot the order parameter on each of the surfaces (“surf1”
and “surf2”), the result for the site at z = Lz/2 (“z”), and the results of the separate bulk calculation (“bulk”). (b) Antiferromagnetic order
parameter as a function of temperature for the perovskite lattice, with parameters as in (a). Here we also plot the average over the four central
sites (“avg”).

and HSO is the spin-orbit part, HSO = ∑
μ σμ ⊗ Hμ

SO, and

Hx
SO = 4λi sin ky sin kz

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

⎞
⎟⎟⎟⎠ , (19)

and similarly for y and z.
The results for magnetization in this model are presented

in Fig. 6. In this case we observe that for a large range
of temperatures the magnetizations on basis sites 1 and 4
are similar and opposite in sign from the magnetizations on
basis sites 2 and 3 (which are equivalent due to a rotational
symmetry around the z axis). This motivates the definition
of a FM order parameter SFM

i = (Si,1 + Si,2 + Si,3 + Si,4)/4
and an antiferromagnetic (AF) order parameter SAF

i = (Si,1 −
Si,2 − Si,3 + Si,4)/4 (where Si,� is the expectation value of
the impurity spin on basis site � of lattice site i). We see
that the system is ferromagnetically ordered up to T � 4.5 K,
where it becomes AF ordered. The bulk remains AF ordered
until T bulk

c � 60.5 K, and the surface remains AF ordered
until T surf

c � 72 and 78 K for the two surfaces. Therefore,
the maximum window in which the surface is ordered and the
bulk is unordered (paramagnetic) is �17.5 K. Note that the
difference in surfaces results from the fact that the unit cell is
not symmetric under reflection along z: the “top” of the system
ends with basis site 4 and the bottom ends with basis site 1
[see Fig. 3(a)]. In addition, we see that the surfaces undergo an
additional partial phase change signified by discrete jumps
of the order parameter seen at T � 4.5, 5.5, 13.5, and
35.5 K, which we claim as additional evidence that the bulk
and surface differ.

V. CONCLUSIONS

We have demonstrated that magnetically doped topological
insulators can have a sizable window where the bulk is
paramagnetic and the surface is magnetically ordered. Our
conclusions are based on general arguments that involve only
universal properties of the topologically protected surface
states and on numerical calculations performed on simple
lattice models of 3D topological insulators. Physically, these
results are in accord with the intuition that the metallic state on

the surface should be more susceptible to magnetic ordering
than the insulating bulk, although this expectation is only
partially borne out in systems with strong spin-orbit coupling.

The results reported in this study rely on two key ap-
proximations: (i) the mean-field decoupling of the exchange
interaction between electrons and magnetic dopants indicated
in Eq. (5), and (ii) the “virtual crystal” approximation which
replaces the localized magnetic moments of dopant atoms by
their average over all lattice sites. We have attempted to bypass
the latter approximation by solving the problem in real space
without averaging over sites. This procedure gives reasonable
results for T bulk

c compared to those obtained in the virtual
crystal but is numerically more costly. The system sizes that we
could simulate did not allow us to unambiguously determine
the surface critical temperature. Nevertheless, based on these
results we feel that, in a large crystal, approximation (ii) will
not lead to a significant error in the determination of the critical
temperatures.

Since fluctuations around the mean-field result are typically
stronger in two than in three dimensions, they will likely reduce
the size of the temperature window between T bulk

c and T surf
c .

On the other hand, our mean-field calculation did not include
electron-electron interactions, which would tend to stabilize
the long-range magnetic order and thereby strengthen the
ordered phases. It was shown recently that electron-electron
interactions can lead to spontaneous breaking of TRI on the
surface of a TI,40 even in the absence of magnetic dopants.
Thus the interactions might in fact strengthen the effect found
in our study, although a more detailed investigation would be
needed in order to obtain a quantitative result. Overall, in our
opinion it is very likely that the combined effect of the magnetic
dopants and the electron-electron interactions can account for
the experimentally observed surface excitation gap without
bulk magnetic order in Mn- and Fe-doped Bi2Se3.

We note that the critical temperature for the bulk magnetic
ordering of the magnetically doped topological insulator
Bi2−xMnxTe3 was recently measured34 to be 9–12 K for
x = 0.04–0.09. This critical temperature is smaller than our
results and those of Ref. 31, which estimate T bulk

c � 70 K for
Cr-doped Bi2Se3 using first-principles numerical calculations.
We chose our coupling constant J based on the first-principles
results, so we expect that for a reduced coupling constant
the temperature window would shift to lower temperatures.
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As noted above, our arguments are universal; hence the
exact details of the material and coupling might alter the
result quantitatively but should not change it qualitatively.
Taking the above finding for Bi2−xMnxTe3 as a guideline,
one may surmise that T bulk

c for Fe- and Mn-doped Bi2Se3

lies in a similar range of temperatures. It is then entirely
possible that the ARPES experiments,26,27 performed at
∼20 K, detected surface magnetic ordering without bulk
magnetism as advocated in this paper. Careful surface-

sensitive magnetic measurements, as proposed recently,41

might be able to probe this intriguing phenomenon
directly.
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