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Transport through side-coupled double quantum dots: From weak to strong interdot coupling
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We report low-temperature transport measurements through a double-quantum-dot device in a configuration
where one of the quantum dots is coupled directly to the source and drain electrodes, and a second (side-coupled)
quantum dot interacts electrostatically and via tunneling to the first one. As the interdot tunneling coupling
increases, a crossover from weak to strong interdot tunneling is observed in the charge stability diagrams
that present a complex pattern with mergings and apparent crossings of Coulomb blockade peaks. While the
weak-coupling regime can be understood by considering a single level on each dot, in the intermediate- and
strong-coupling regimes, the multilevel nature of the quantum dots needs to be taken into account. Surprisingly,
both in the strong- and weak-coupling regimes, the double-quantum-dot states are mainly localized on each dot for
most values of the parameters. Only in an intermediate-coupling regime does the device present a single dotlike
molecular behavior as the molecular wave functions weight is evenly distributed between the quantum dots. At
temperatures larger than the interdot coupling energy scale, a loss of coherence of the molecular states is observed.
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I. INTRODUCTION

Double-quantum-dot (DQD) devices have been the object
of numerous experimental1–4 and theoretical5–7 studies due
to their potential applications in both classical and quantum
computing,5,6,8–10 and also because of their usefulness as
model systems to study the physics of strongly correlated
electrons.4,11–15

The transport signatures of these devices depend strongly
on their topology and on the geometry of the quantum dots,
which determines their energy level spacings and charging
energies.16–21 In the so-called side-coupled configuration,
where only one of the quantum dots is coupled to the
electrodes, a rich variety of correlated phenomena have
been predicted,7,13,22–25 yet few experiments are available.4,26

Signatures of two-channel Kondo physics have been measured
for a device with a large side-coupled quantum dot,4 while a
two-stage Kondo effect has been proposed for a small (single-
level) side-coupled dot in the Kondo regime.13 Furthermore,
a device with an intermediate size of the side-coupled dot
has been predicted to be a realization of the Kondo box
problem.27–34 As we will show in what follows, in the weak
quantum dot electrodes tunneling regime, where the Kondo
effect is exponentially suppressed, this type of device allows
for a controlled study of the interplay between the interdot
tunnel coupling, the temperature, and the multiple levels of
the quantum dots.35

In this work, we measure the electronic transport through
a DQD in the side-coupled configuration and characterize the
effect of the interdot tunnel coupling and the temperature.
For sufficiently weak interdot tunneling coupling, the charge
stability diagrams can be understood within the usual two-level
representation (i.e., a single level on each quantum dot).2 As
the tunneling coupling increases, however, the device enters a
molecular regime where the multilevel nature of the quantum

dots needs to be taken into account in order to capture the
physics of the low-temperature regime.

Numerical simulations based on a simplified multilevel
double-dot Hamiltonian enable us to calculate the conductance
through the system in the sequential tunneling regime. We
show that a qualitative understanding of the transport proper-
ties can be reached by comparing experimental and numerical
data in the energy range where the experiment is carried out.

The rest of the paper is organized as follows: In Sec. II,
we describe the experimental setup. In Sec. III, we present
transport measurements illustrating the weak to strong interdot
tunneling crossover and the effect of temperature. In Sec. IV,
we present the model and methods for the calculation of
the conductance. In Sec. V, we present numerical results
that reproduce the main features observed experimentally
in the crossover from weak to strong interdot tunneling. In
Sec. VI, we characterize numerically and analytically the
different interdot tunneling and temperature regimes. Finally,
in Sec. VII, we present our concluding remarks.

II. EXPERIMENT

Our device consists of a double quantum dot defined in a
two-dimensional electron gas formed in a GaAs/AlxGa1−xAs
heterostructure (density 2.4 × 1011 cm−2, mobility 1 ×
106 cm2 V−1 s−1). The quantum dots are designed following a
side-coupled (or T -shape) configuration where a small quan-
tum dot (500 nm) is connected to electron reservoirs and is side
coupled to a large quantum dot (1500 nm) [Fig. 1(a)]. The bare
charging energy and mean level spacing of each dot extracted
from nonlinear measurements in the weak-coupling regime are
Ud = 700 μeV, �d = 150 μeV and UD = 250 μeV, �D =
20 μeV for small dot (d) and large dot (D), respectively. The
differential conductance dI/dV of the double-dot system is
measured by applying a dc and ac (11 Hz, 2 μV) voltage
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FIG. 1. (Color online) (a) SEM image of the device. The red gates
are pushed far in the pinch-off regime. The interdot tunnel coupling
is controlled via the yellow gates. All Ohmic contacts are set to the
same potential (V0) except the top small-dot lead where the bias
voltage Vbias is applied. The energies and occupancies of each dot are
changed with the use of the green plunger gates. (b) Weak-coupling
stability diagram (30 mK). The differential conductance (color scale)
is plotted versus the small-dot and large-dot plunger gate voltages
Vgd and VgD , respectively.

excitation on the top small quantum dot lead, as indicated by
Vbias in Fig. 1(a). In this particular electrical setup, transport
occurs only through the small quantum dot. The side-coupled
large quantum dot influences the transport mechanisms via the
interdot tunnel coupling that is controlled with the voltages
applied on the middle gates. All measurements are performed
in a dilution refrigerator with a base electron temperature
of 30 mK. The electronic temperature for different fridge
temperatures has been calibrated from weak localization
measurement realized in earlier experiments.36

III. TRANSPORT MEASUREMENTS

The regime of interest is a strong interdot tunnel coupling
regime compared to the weak-coupling limit widely studied
in lateral point contacts and quantum dots.37,38 In order to
emphasize the influence of the increase of the interdot tunnel
coupling in our system, we make a comparison by means of
Figs. 1(b) and 2 that show two experiments performed on the
same double-dot system at low temperature (30 mK) and with
different interdot tunneling (hopping) strengths. Figure 1(b)
shows the weak-coupling limit where the conductance pattern
follows a honeycomb lattice. Note that due to the side-coupled
configuration, conductance occurs mainly at the degeneracy
points of the small dot with the Fermi energy.18 Nevertheless,

(a)

(b)
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FIG. 2. (Color online) (a), (b) Low-temperature (30 mK) stability
diagrams (2D and 3D) with a coupling between the dots stronger
than in Fig. 1(b). At such low temperatures, a complex conductance
modulation pattern is found.

detection of current on the degeneracy line of the large dot with
the reservoir indicates finite though weak interdot hopping.
The position of the charge states of each dot can therefore
be identified through the modulation of the conductance on
the different degeneracy lines. In other words, a large conduc-
tance peak indicates a charge state holding an important weight
of the small-dot wave function and vice versa. Moreover,
the small-dot-lead hybridization (�) results in very thin
degeneracy lines and in a very low conductance in the Coulomb
blockade valleys (10−4 e2/h). Such a regime of weak tunneling
(to the leads and between the dots) can be accounted for in
a standard two-level representation (one-level per QD).2 The
stronger coupling situation is met in Fig. 2. One can notice that
the degeneracy lines seen in the stability diagram still appear
as thin conductance lines indicating a rather weak coupling
to the leads. This point can be confirmed by monitoring the
conductance in the Coulomb blockade valleys that is of the
order of 10−3 e2/h, which is still far from the strong-coupling
limit (∼0.1 e2/h).39 We will consider therefore the tunnel
coupling to the leads as a weak perturbation and concentrate
mainly on the effect of the interdot hopping. Concerning
the conductance pattern, we observe that it deviates from
a honeycomb lattice. From Fig. 2 it can be argued that the
effect of enhanced tunneling between the dots is an effective
smoothing of the honeycomb structure as expected from
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earlier literature.2 However, the nonperiodic modulation of
the conductance in each direction of the voltage gate space
depicted in Fig. 2 shows unusual transport features such as the
apparent merging and the crossing of peak structures in the
VgD direction (black lines). Such conductance features can not
be accounted for in the common two-level representation. To
be able to capture the low-temperature physics, the multilevel
structure of the large dot on the energy range of the interdot
tunnel coupling, tdD > �D , has to be considered.

In order to justify the use of a multilevel representation of
the hybridization between both quantum dots, we make use
of Fig. 3(a). The depicted low-temperature stability diagram
represents a larger gate voltage scan centered around the same
region of parameters used in the previous low-temperature
measurements (white dashed rectangle). From Fig. 3(a), it
appears that the area scanned in Fig. 2 corresponds to a
crossover region between two different regimes. On the bottom
left side of Fig. 3(a), smoothed honeycomb cells (red cells)
can be identified. By studying the deviation of these cells from
pure honeycomb cells, we can extract a rough estimation of
the interdot tunnel coupling, that is to say, tdD ∼ 30 μeV.
In this limit, tdD ∼ �D , the experimental data point toward
a two-level system behavior, hence the apparent honeycomb
cells. However, by depolarizing both plunger gates one can
note through the straightening of the degeneracy lines (red
lines) that the hopping term increases. This feature can be
easily understood due to crosstalk between the different gates.
Once the regime tdD > �D is reached, hybridization involves
multiple energy levels in dot D. As a result, the molecular
addition spectrum40 gains in complexity, which we expect to
be reflected in the conductance through the device. A proper
calculation will be presented in the following to illustrate this
point.

Before going into the core of the multilevel double-dot
model, it is interesting to address the question of the evolu-
tion of the transport properties as temperature is increased.
Experimental data shown in Figs. 3(b) and 3(c) indicate that
at high temperature (500 mK), the strong irregularities found
at low temperature are completely washed out and a periodic
pattern is recovered [Fig. 3(b), black lines]. Whereas at low
temperature the conductance can not be interpreted as the
independent charging of each dot, in the high-temperature limit
the standard picture can be applied. Periodic oscillations of the
conductance as a function of both plunger gate voltages enable
us to keep track of the addition of electrons in each quantum dot
separately. Therefore, by heating the device, the coherence of
the molecular eigenstates is broken and a suitable description
is found by simply thinking in terms of the occupancy states
in dots d and D. More precisely, by bringing thermal energy
to the system, the Fermi distribution of the metallic leads
is broadened, which leads to a larger effective conduction
window. We argue that once kBT > tdD , the conductance
measured through the double quantum dot represents an
average over several molecular levels lying in the conduction
window, which results in the loss of coherence of molecular
states and leads to a regular stability diagram. The picture at
low temperature becomes clearer now. As we will show in
the following, for tdD > �D > kBT and at the degeneracy
with the leads, the addition of an electron in the system
can only be done via a single molecular energy state. In this

FIG. 3. (Color online) (a) Low-temperature stability diagram
(30 mK) corresponding to a larger scan than previously shown. The
white dashed rectangle corresponds to the gate scan seen in Figs. 1(b)
and 2. Due to crosstalk between the plunger gates and the middle
gates defining the interdot tunneling, two different regimes can be
identified in the diagram. As tunneling increases, we go from a
two-level system behavior to a multilevel system behavior. (b) Color
plot of the high-temperature stability diagram monitored at 500 mK
in the same plunger gate voltages range made initially [Fig. 1(b)].
(c) Three-dimensional representation of the above diagram. At high
temperature, the conductance follows a periodic pattern. One can
clearly identify the addition of electrons in one quantum dot or the
other.

regime, Fig. 2 represents in a sense a spectroscopy of single
molecular levels. The irregular stability diagram therefore
reflects the complexity of the molecular addition spectrum
of the system as already mentioned.
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In what, follows we present a theoretical analysis of the
experimental results using a simplified model that captures
qualitatively the main features observed in the conductance
maps.

IV. MODEL AND METHODS

We use a constant interaction model for the double quantum
dot described by the Hamiltonian41

H = HC + Ht + He + HV + Hel . (1)

Here, HC describes the electrostatic interactions2

HC =
∑

�=d,D

U�

2
(N̂� − N�)2

+UdD(N̂D − ND)(N̂d − Nd ), (2)

where N� = Cg�Vg�/U�, Cg� is the capacitance of dot � with
its corresponding gate electrode, U� is the charging energy,
and UdD is given by the QDs mutual capacitance;17,19–21

He =
∑

�=d,D

∑
σ,α

ε̃�αd
†
�ασ d�ασ (3)

describes the single electron states of the quantum well
associated to each quantum dot;

Ht =
∑
σ,α,β

t
αβ

dD(d†
dασ dDβσ + H.c.) (4)

describes the tunneling coupling between the QDs, and

HV =
∑

α

∑
ν=L,R

∑
k,σ

Vkαν[c†νkσ ddασ + H.c.] (5)

describes the coupling between QD d and the left (L) and
right (R) electrodes, which are modeled by two noninteracting
Fermi gases:

Hel =
∑
ν,k,σ

εkc
†
νkσ cνkσ . (6)

We follow Refs. 18,42, and 43 to calculate the conductance
through the system

G = e2

h̄

∫
dε

[
−∂f (ε)

∂ε

]
Tr

{
�R�L

�R + �L
A(ε)

}
. (7)

Here, A(ω) is the QD spectral density and we have assumed
proportional (�L ∝ �R) and energy-independent dot-leads
hybridization functions:

[�L(R))]�,�′ = 2πρL(R)(EF)V ∗
L(R),�(EF)VL(R),�′(EF), (8)

where EF = 0 is the Fermi energy of the electrodes, ρL(R)(ε)
is the electronic density of states of the left (right) electrode,
and VL(R),�(ε) equals VkL(R),� for ε = εk .

To lowest order in �/kBT , we replace in Eq. (7) the exact
spectral density A(ε) of the isolated DQD:

Aσ
n,m(ε) = 1

Z

∑
i,j

(e−βEi + e−βEj )〈�j |d†
nσ |�i〉

× 〈�i |dmσ |�j 〉δ[ε − (Ej − Ei)], (9)

where |�i〉 and Ei are the exact eigenfunctions and eigenener-
gies of the DQD, and Z = ∑

i e
−βEi is the partition function.

We get

G = e2

h̄

∑
n,m

�n,m

∑
i,j

(Pi + Pj )

[
−∂f (ω)

∂ω

∣∣∣∣
Ei−Ej

]

×〈�j |d†
nσ |�i〉〈�i |dmσ |�j 〉, (10)

where Pi = e−βEi /Z.
In the experimental setup, � is nonzero only for the small

dot d, and we choose it to be level independent:

�n,m =
{

�δn,m if n ∈ d,

0 if n ∈ D.
(11)

We finally have

G = e2

h̄

�

kBT

∑
i,j

(Pi + Pj )f (Ei − Ej )f (Ej − Ei)

×
∑

n

|〈�j |d†
dnσ |�i〉|2 (12)

valid for � 	 kBT .
It is clear from this formula that the conductance is

suppressed for |Ei − Ej | 
 kBT , i.e., the conductance is low,
unless two states with N + 1 and N electrons in the DQD
are nearly degenerate, allowing the charge in the molecule
to fluctuate.18 This is, however, not a sufficient condition.
For a charge fluctuating in and out of a state, the weight of
which is mainly located in the large dot, the matrix elements∑

n |〈�j |d†
dnσ |�i〉|2 are small and suppress the conductance.

The calculation of the conductance maps then reduces to
obtaining the eigenenergies and eigenfunctions for the isolated
DQD molecule. This can be done by exact diagonalization for
a limited number of states on each dot, due to the exponential
increase of the size of the Fock space with the number of levels.

V. TUNNELING CROSSOVER

In this section, we present numerical results for the conduc-
tance maps that reproduce qualitatively the main experimental
observations. We exactly solve a model of an isolated DQD
with three levels on each quantum dot and use Eq. (12) to
calculate the conductance in the weak dot-leads coupling
regime (�/kBT 	 1).

We use the experimentally obtained values for the param-
eters Ud = 700 μeV, �d = 150 μeV and UD = 250 μeV,
�D = 20 μeV, and UdD = 100 μeV. We consider fixed in-
tradot level splittings and the same interdot tunneling coupling
t
αβ

dD = tdD for all levels α,β. To model the tunneling crossover
observed in the experiments (see Fig. 3), we include a linear
crosstalk of the gate that determines the tunneling coupling
between the dots with the gate voltages Vgd and VgD:

tdD ∝ Vgt + αDVgD + αdVgd . (13)

Figure 4 shows a three-dimensional representation of the
calculated conductance as a function of the gate voltages
including a crosstalk with the interdot tunneling amplitude.44

The hopping amplitude increases linearly from a minimum at
the lower left corner of the figure to its maximum at the top
right corner. As we will see in the next section, the system
goes from a low-tdD regime for small ND,Nd , to a high-tdD
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FIG. 4. Three-dimensional representation of the calculated con-
ductance for a double quantum dot with 3 × 3 levels, including a gate
voltage dependence of tdD = 0.015 meV + 0.01 meV(ND + Nd/3)
and kBT = 0.0075 meV.

regime for high ND,Nd , both characterized by a regular array
of conductance peaks (honeycomb diagram), associated to the
charging of the small QD. In the intermediate tunneling regime,
the electronic wave functions are highly delocalized between
the two QDs and the DQD enters a single-dot molecular
regime where the conductance maps present diagonal lines
of high and relatively uniform conductance. The result is an
apparent merging and crossing of peaks with increasing ND

as observed experimentally. Eventually, the emergence of a
regular pattern of peaks at high tdD implies that the wave
functions are localized on each dot as in the low-tdD case. As
we will show in the next section, this is a consequence of the
structure of the wave functions in the regime �d ∼ tdD 
 �D .

We now focus on the effect of the temperature on the
conductance maps. Figure 5 presents conductance maps
calculated with the same parameters as in Fig. 4 for different
values of the temperature. Each panel is calculated using a
different temperature, but the parameters are otherwise equal.
Increasing the temperature allows us to observe its effect
on regions with different values of the hopping amplitude
and investigate the regularization of the patterns observed
experimentally.

For temperature regimes where kBT is much smaller than
the DQD’s energy-level spacings, the main effect of increasing
the temperature is to increase the width and reduce the height
of the Coulomb blockade peaks. This can be readily seen
from Eq. (12), assuming that a single state from each charge
sector contributes to the conductance at a given peak. When
the temperature becomes of the order or larger than the level
spacing in a given charge sector, several states may contribute
to the conductance, producing in some cases a qualitative
change in the conductance maps. Such changes are expected in
the present DQD geometry whenever the states that contribute
to a single CB peak have a markedly different weight on each
dot. In that case, the intensity of the conductance peak at low
temperatures will be very different depending on the nature
of the state that dominates the charging: a small conductance
if the large dot is being charged and a large conductance if
the small dot is being charged. At temperatures larger than the
level spacing, however, several states with a different weight on
each dot may statistically contribute to the charging, resulting
in an intermediate value of the conductance.

FIG. 5. Calculated conductance maps for a double quan-
tum dot with 3 × 3 levels, including a gate voltage depen-
dence of tdD = 0.015 meV + 0.01 meV(ND + Nd/3) and different
values of the temperature: (a) kBT = 0.0075 meV, (b) kBT =
0.02 meV, (c) kBT = 0.04 meV, and (d) kBT = 0.05 meV. Other
parameters are Ud = 0.7 meV, UD = 0.25 meV, UdD = 0.1 meV,
�d = 0.15 meV, and �D = 0.02 meV.

This type of behavior is observed in Fig. 5, where an
increase in the temperature produces a broadening of the
charge degeneracy lines and leads to a more homogeneous
intensity of the conductance along them.

At the highest temperature shown in the lowest panel of
Fig. 5, the conductance pattern presents a regular lattice of
maxima. This is the expected behavior for kBT � tdD with
the position of the conductance maxima given by the charging
energies as in the tdD → 0 case.

VI. TUNNELING REGIMES

In the previous section, we showed that the main features
of the measured conductance maps can be reproduced numer-
ically and that the observed merging and apparent crossing
of peaks are associated to a crossover from weak to strong
interdot tunneling regimes. In this section, we characterize the
different tunneling regimes.

We start with the case of uniform charging energies
(UdD = Ud = UD = U ) that is obtained in the regime of large
interdot capacitance. This case allows for an analytical solution
and already contains the underlying structure of the general
case.
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A. Large interdot capacitance

For UdD = Ud = UD = U , the isolated DQD can be readily
solved as the interaction term only depends on the total
number of electrons in the molecule N = Nd + ND , which
is a good quantum number. The energy of the system is given
by EN = EN

C + ∑N
α εα , where the εα are the eigenenergies of

Htb = Ht + He, and EN
C = U

2 (N − N )2, where N = Nd +
ND . The charge degeneracy points (Ej − Ei = 0) satisfy the
equation

Nd + ND = N + 1
2 + εN+1/U (14)

that determines a series of parallel lines in the (Nd,ND) plane.
The intensity associated to these lines in the conductance map
is proportional to the weight of the additional electron’s wave
function in dot d. In the case of uncoupled dots (tdD = 0),
only the lines associated to the charging of dot d present a
maximum in the conductance. In the general case (tdD �= 0),
the wave functions of the DQD are delocalized between the
dots and the intensity of the conductance lines is modulated
accordingly. Surprisingly, for large tdD , the wave functions
are again mainly localized on each dot as in the small-tdD

regime.
To show this latter point, we further simplify the model

by considering ε̃�α = ε̃� (i.e., �d = �D = 0) and t
αβ

dD = tdD .
Then,

Htb =
(

ε̃d1 T
T ε̃D1

)
, (15)

where 1 is the identity matrix and

T =

⎛
⎜⎝

tdD tdD . . . tdD

tdD . . . . . . tdD

. . . . . . . . . · · ·
tdD . . . . . . tdD

⎞
⎟⎠ . (16)

The Hamiltonian matrix Htb can be diagonalized exactly for its
eigenvectors. Among all wave functions, only two are strongly
delocalized between the dots, having half of the weight on each
dot, the rest of the states are either fully localized at dot d and
have energy ε̃d or are fully localized at dot D and have energy
ε̃D (assuming ε̃d �= ε̃D). For a finite level spacing on each dot
�D,�d 	 tdD , the states remain localized in one of the dots,
with only a small weight (	1) on the other dot. This structure
of eigenstates persists even if one of the level spacings becomes
of the order or even larger than the hopping amplitude, e.g.,
�d � tdD 
 �D .

B. Experimental situation: Ud > UD > Ud D

In the experimental situation, there is a hierarchy of
interactions: Ud > UD > UdD and it is generally no longer
possible to solve the interaction and tight-binding parts of
the Hamiltonian independently as it was done in the previous
section. However, as we shall see, the analysis presented above
serves as a guide when tackling the general case.

We first focus on the limit of small tdD where the charge in
each dot is well defined. The charging conditions for dots d

FIG. 6. Calculated conductance maps for a double quantum
dot with 3 × 3 levels, for different values of the interdot hopping
tdD (a) 0 meV, (b) 0.02 meV, (c) 0.04 meV, (d) 0.05 meV, and
(e) 0.08 meV. Other parameters are Ud = 0.7 meV, UD =
0.25 meV, UdD = 0.1 meV, �d = 0.15 meV, and �D = 0.02 meV.
The high tdD and low tdD with segments of high conductance are
clearly observed.

and D are given by

Nd = Nd + 1

2
+ ε̃dNd+1

Ud

+ UdD

Ud

(ND − ND),
(17)

ND = ND + 1

2
+ ε̃DND+1

UD

+ UdD

UD

(Nd − Nd ),

respectively, where ε̃�N�+1 is the energy of the concerned level
on dot �, and determine two sets of parallel straight lines
in the (Nd ,ND) plane. The charging of the DQD and the
conductance maps are determined by these equations and the
result, for UdD > 0, is a series of high conductance segments
with slope −Ud/UdD associated to the charging of the small
dot [see Fig. 6(a)]. The endpoints of these segments are given
by the intersections of the charge degeneracy lines (CDL) of
the small dot by the CDLs of the large dot, i.e., by triple degen-
eracy points: E(Nd,ND) = E(Nd,ND + 1) = E(Nd + 1,ND)
and E(Nd,ND) = E(Nd + 1,ND − 1) = E(Nd + 1,ND). The
separation between two consecutive segments, for a fixed ND ,
is associated to the extra energy required to add an electron
and depends on the parity of electron number on dot d: it is
Ud , when a second electron is added to a partially occupied
level (odd electron valley) and Ud + �d when it is added to an
empty level (even electron valley).
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A finite but small tdD < �D,�d produces a distortion
of the high conductance segments, and a small peak in the
conductance associated to the charging of the large dot, due
to interdot mixing. The main features in this regime can be
understood within a simplified model with a single level on
each dot [see Fig. 6(b)].

For intermediate values of tdD , the states are strongly
mixed between the two dots and the charge on each dot is
no longer well defined. In this case, the conductance maps are
not expected to have a regular pattern of segments with high
conductance. Instead, as is shown in Figs. 6(c) and 6(d), the
situation is similar to the high interdot capacitance case (see
previous section) with the conductance map showing diagonal
lines of high conductance separated by an effective interaction.

In the regime of large tdD , however, the state wave functions
are, as in the uncoupled case, mainly localized on each dot.
Equations (17) determine the conductance map patterns in the
limit tdD → 0 but also for tdD → ∞ and give their qualitative
shapes in the regimes tdD 	 �D and �d ∼ tdD 
 �D .

An important difference between the large- and small-tdD

limits is that while in the small-tdD limit, all states have a well-
defined number of electrons on each dot (excluding specific
regions in the parameter space), in the large-tdD limit there are
two states which are strongly delocalized between the dots.

One of these states, which is fully symmetric between dots,
is the ground state and is the first to be charged as the gate
voltages are swept. The complete charging of this state adds a
single electron to each dot and therefore changes the parity for
the subsequent charging of the dots. This parity change alters
the sequence of distances between high conductance peaks
as the gate voltage of the small dot is swept: the separation
between two consecutive segments, for a fixed ND , is now Ud

when adding an odd electron on dot d and Ud + �d for an
even electron.

The above-mentioned parity effect persists even for tdD �
�d , and the pattern of peaks in the conductance follows
qualitatively what is expected in the high-tdD limit. A
qualitative understanding of the peaks positions and shapes
can be obtained considering that for a finite but large value
of tdD , the states are not fully localized on each dot. A small
interdot mixing of the states reduces the effective charging
energy of dot d and increases the effective interdot interaction.
This leads to a reduction of the slope of the high conductance
segments [see Fig. 6(e)], which is given by −Ud/UdD in the
tdD → 0 and tdD → ∞ limits.

VII. SUMMARY AND CONCLUSIONS

We have studied the transport through a double-quantum-
dot system in a side-coupled configuration as a function of
temperature and interdot tunneling coupling. We have focused
on the weak QD electrodes coupling regime and analyzed
the structure of the DQDs molecular wave functions. The
topology of the device allows us to study, via transport
measurements, how the wave-function weight is distributed
between the QDs for each molecular state. The geometry of
the device makes it possible to explore different tunneling
coupling and temperature regimes. We have constructed and
solved a simplified model that reproduces the experimentally
observed regimes.

For a weak interdot coupling (tdD 	 �D,�d ), the molecu-
lar states can be accurately described considering a model with
two levels, one from each QD, coupled by a hopping term
tdD . The resulting molecular wave functions are essentially
localized on one of the quantum dots for most values of the
plunger gate voltages. The conductance in the (Vgd,VgD) plane
reflects this structure of molecular eigenstates and shows a
series of Coulomb blockade (CB) peaks associated to the
charging of the QD directly coupled to the electrodes. Much
weaker CB peaks are obtained as the side-coupled QD is
charged due to a small mixing between the QDs.

When the interdot coupling is increased, more levels from
each QD are involved in the formation of a given molecular
state. An intermediate tunneling regime (tdD � �D) can be
reached where the molecular wave functions are strongly
delocalized between the QDs. In this situation, the conductance
maps present a series of lines of high and relatively uniform
conductance in the (Vgd,VgD) plane and resemble those
expected for a single quantum dot coupled to two plunger
gates.

For large enough interdot coupling (tdD ∼ �d 
 �D), the
nature of the eigenfunctions changes and most molecular states
become increasingly localized on each QD as in the weak-tdD

limit. There is, however, an important difference between these
two regimes due to the emergence, in the high-tdD limit, of
two states of a different nature that result from a mixing of
several levels from each dot. These states are a symmetric and
antisymmetric combination between the states of the two QDs
and have (for tdD > 0) a lower and higher energy than their
component states, respectively. The charging of the lowest
lying of these states involves adding a single electron to each
QD and alters the even-odd sequence of CB peaks, producing
a shift of the high conductance peaks in the (Vgd,VgD) plane.

In the experiments, there is a crosstalk between the plunger
gates of each QD and the gate controlling the tunneling
barrier between the QD. As a consequence, different regions
of the (Vgd,VgD) plane have associated different intensities
of tunneling coupling and it is possible to observe the above-
mentioned regimes in a single conductance map. The crossover
between the different regimes gives rise to a complex evolution
of the CB peaks with mergings and apparent crossings.

Finally, we analyzed the effect of the temperature on the
transport properties. For kBT > tdD , several levels contribute
to the conductance of each Coulomb blockade peak, the pattern
of conductance maxima is similar to that of weakly coupled
dots in the kBT ∼ tdD regime, and resemble those of uncoupled
dots (tdD → 0) for kBT 
 tdD .
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22R. Žitko and J. Bonča, Phys. Rev. B 73, 035332 (2006); R. Žitko,
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