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Interaction-range effects for fermions in one dimension
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Experiments on quasi-one-dimensional systems such as quantum wires and metallic chains on surfaces suggest
the existence of electron-electron interactions of substantial range and hence physics beyond the Hubbard model.
We therefore investigate one-dimensional, quarter-filled chains with a Coulomb potential with variable screening
length by quantum Monte Carlo methods and exact diagonalization. The Luttinger liquid interaction parameter
Kρ decreases with increasing interaction strength and range. Experimentally observed values close to 1/4 require
strong interactions and/or large screening lengths. As predicted by bosonization, we find a metal-insulator
transition at Kρ = 1/4. Upon increasing the screening length, the charge and spin correlation functions reveal the
crossover from dominant 2kF spin correlations to dominant 4kF charge correlations, and a strong enhancement of
the charge velocity. In the metallic phase, the signatures of spin-charge separation in the single-particle spectrum,
spinon and holon bands, remain robust even for rather long-ranged interactions. The charge-density-wave state
exhibits backfolded shadow bands.
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I. INTRODUCTION

The Hubbard model has served as a framework to study
strongly correlated electrons for almost five decades.1 Its
relative simplicity compared to more realistic models is
largely based on approximating the electron-electron Coulomb
interaction by an onsite repulsion U between electrons of
opposite spin. The resulting Hamiltonian captures many
aspects of strong correlations, including the Mott transition
at half filling. Detailed knowledge about the model can be
obtained by combining the Bethe ansatz with the bosonization
technique.2 However, experiments on quasi-one-dimensional
(1D) systems such as quantum wires,3 carbon nanotubes,4

or self-organized atom chains5 fall outside the range of
validity of the Hubbard model. This is evinced by the
possibility of an insulating, charge-ordered state at quarter
filling, substantial 4kF charge correlations, or by a Luttinger
liquid (LL) interaction parameter smaller than 1/2. Within a
quasi-1D description, these features imply electron-electron
interactions of finite range.

The case of one dimension is particularly interesting due
to the breakdown of Fermi-liquid theory, the importance of
collective excitations, and the emergence of spin-charge sepa-
ration. These phenomena can be understood in the framework
of bosonization,2,6–8 which provides a description in terms of
a few nonuniversal parameters valid asymptotically at long
wavelengths and low energies. In particular, knowledge of
these parameters fully characterizes the correlation functions.

The 1D Hubbard model, describing a screened, onsite inter-
action, is a Mott insulator for any U > 0 at half filling. Away
from half filling, umklapp scattering is not allowed and the
system remains metallic. The LL interaction parameter takes
on values 1/2 � Kρ � 1, leading to dominant spin-density-
wave correlations. A finite interaction range permits Mott
or charge-density-wave (CDW) transitions of the Kosterlitz-
Thouless type at other commensurate fillings n, for example,
at quarter filling in the U -V model with onsite (U ) and
nearest-neighbor (V ) repulsion.2 In contrast to the Hubbard

model, such transitions occur at a finite critical U determined
by the condition Kρ = n2. The effects of extended-range
interactions depend on the details. For example, the intuitive
picture of long-range interactions driving the system to strong
coupling does not always apply: for spinless fermions, the
critical interaction for the metal-CDW transition is larger for
the 1/r potential than for a nearest-neighbor repulsion;9 for
spinfull fermions, a transition seems to be absent for the
unscreened potential up to very strong interactions.10

The 1/r Coulomb potential realized in, e.g., nanotubes
and quantum wires, represents the extreme limit of long-
range interactions. The logarithmic divergence of its Fourier
transform gives rise to remarkable differences, most notably
the metallic Wigner crystal (WC) state with quasi-long-range
4kF charge correlations,11,12 and the existence of plasmon
excitations. Strictly speaking, the divergence only exists for
infinite systems and in the absence of screening. Consequently,
the above phenomena are absent for any large but finite
interaction range, and the bare Coulomb potential can be
regarded as a special point in parameter space distinct from
the LL liquid fixed point. The 1/r potential has been studied
analytically12–21 and numerically.9,10,22,23

The typical experimental situation is most likely interme-
diate between the Hubbard limit and the bare 1/r potential.
Within bosonization, a finite interaction range only leads to a
renormalization of the LL parameters.2,24 However, in contrast
to the Hubbard model, there exist no analytical methods to
calculate the LL parameters exactly for nontrivial cases. Be-
sides, the bosonization results rely on a linear band dispersion,
and are valid only at low energies and long wavelengths, a
limit which is nontrivial to achieve both in experiment and
in numerical simulations. On the other hand, exact numerical
methods are valid at all energies and distances and permit, e.g.,
the calculation of spectral weights of excitations. They provide
a quantitative connection to microscopic model parameters and
can be used to study intermediate interaction ranges. The 1D
nature of the problem makes numerical methods particularly
powerful.
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In this work, we study the effect of the electron-electron
interaction range using exact, large-scale quantum Monte
Carlo (QMC) simulations and exact diagonalization. The
model chosen here makes significant simplifications over
typical experimental situations, but we believe that our findings
are rather general. One of the key results is the LL interaction
parameter Kρ , which allows us to estimate the interaction
strength and range required to reproduce the experimentally
observed values. We also study the evolution of static and
dynamical correlation functions as a function of the interaction
range. Importantly, we find that spin-charge separation in
the single-particle spectrum is robust against increasing the
interaction range. Our work extends previous investigations
of spinfull and spinless lattice models,9,14,21,22,25,26 and contin-
uum simulations.27–29

The paper is organized in the following way. In Sec. II,
we introduce the model and discuss related previous work.
Section III gives details of the numerical methods. Our results
are discussed in Sec. IV. Section V contains the conclusions.
The Appendix provides details about the application of the
continuous-time (CT) QMC method.

II. MODEL

We consider a 1D chain of length L with Hamiltonian

Ĥ =
∑

k

ε(k)n̂k +
L/2−1∑
r=0

V (r)
L∑

i=1

n̂i n̂i+r . (1)

The kinetic term contains the usual 1D tight-binding band
structure ε(k) = −2t cos k. The electron density operator
(summed over spin σ ) at wave vector k (Wannier site i) is
given by n̂k (n̂i), with n̂iσ = c

†
iσ ciσ . We have set the lattice

constant, h̄, and kB equal to one, and take t as the unit of
energy.

The interaction matrix element V (r) is defined as

V (r) =
{
V, r = 0
V e−r/ξ /2r , r > 0.

(2)

The screening length ξ permits us to interpolate between the
Hubbard model (ξ = 0, U = 2V ) and long-range Coulomb
interaction [ξ = ∞, V (r) ∼ 1/r]. The choice (2) appears
more natural than gradually adding more and more matrix
elements for increasing distances. The condition r < L/2
is due to the use of periodic boundary conditions. V (r) as
defined by Eq. (2) satisfies V (r) → 0 as r → ∞ as well
as the convexity condition V (r + 1) + V (r − 1) � 2V (r) for
r > 1. In the classical limit (no hopping), this guarantees a
4kF CDW ground state.14 If the second condition is not met,
the competition between 2kF and 4kF charge order can lead to
enhanced metallic behavior or even a CDW-metal transition
with increasing interaction range, as observed in quarter-filled
extended Hubbard models.25,30 As we show below, our choice
of V (r) excludes such phenomena. We have also compared the
choice of potential (2) to an Ewald summation for the case of
Fig. 10, where the cutoff is expected to be most relevant, but
found only minor changes in the form of energy shifts.

The bosonization picture for the model (1), taking into
account the lattice, is as follows. At half filling, any V > 0
produces a Mott insulator. For commensurate densities n away

from half filling and an interaction range greater than or equal
to the average particle spacing 1/n, strong enough interactions
cause a CDW transition at the critical point Kρ = n2, beyond
which umklapp scattering becomes a relevant perturbation.2

The CDW state is characterized by long-range 4kF charge
order. In the LL phase, the dominant correlations are 2kF spin-
density fluctuations for Kρ > 1/3, and 4kF charge correlations
for Kρ < 1/3. For the unscreened Coulomb potential with
divergent Fourier transform (ξ = ∞), we formally have Kρ =
0, which would suggest an insulating ground state, in contrast
to the continuum prediction of a metallic quasi-WC made by
Schulz.12

The existence of a metal-insulator transition at Kρ = n2

has been verified numerically for the U -V model and the
U -V1-V2 model. In contrast, for lattice fermions with a
long-range potential (more specifically, the Pariser-Parr-Pople
model), numerical results10 suggest a metallic ground state
with the properties predicted in the absence of umklapp
scattering.12 This rather surprising result, obtained on large
but finite systems, is attributed to the reduction of the
umklapp matrix element g3 due to long-range interactions.9

Within bosonization, there are subtle but important differences
between spinfull and spinless models (concerning umklapp
scattering), and between odd and even filling factors (e.g.,
n = 1/2 and 1/3 are not equivalent when considering the
Luther-Emery point).2 These differences seem to manifest
themselves also in numerical studies of lattice models. For
example, whereas spinfull fermions interacting via a 1/r

potential remain metallic even for large V ,10 a metal-insulator
transition has been observed in the spinless case,25 with the
critical interaction being larger than for the extended Hubbard
model.

For simplicity, we consider in the following only the case
ξ < ∞, so that no divergence in the Fourier transform V (q)
occurs. We further focus on quarter filling n = 0.5, and will
see below that the model (1) is then either a LL (for Kρ > 1/4)
or a CDW insulator (for Kρ < 1/4).

For quarter filling, n = 0.5, most of the physics of the
model (1) (with ξ < ∞) can also be captured by simpler
U -V or U -V1-V2 models provided the convexity condition is
satisfied.14 In particular, these models realize the non-Hubbard
regime Kρ < 1/2, and a metal-insulator transition at K = 1/4.
In the metallic phase, the LL conjecture implies that given the
same LL parameters, the extended Hubbard models and Eq. (1)
produce identical results, albeit with different microscopic
parameters. However, in connection with experiments, it
is crucial to know how strong the dependence of the LL
parameters and hence the static and dynamical correlation
functions on the interaction range is. We will show below
that in order to reach the same value of Kρ , the U -V model
requires much larger (and thus rather unrealistic) interactions
than a model with a larger interaction range.

III. METHODS AND OBSERVABLES

The majority of our results were obtained from simulations
in the stochastic series expansion (SSE) representation with
directed loop updates.31,32 The inclusion of the long-range
interaction terms in Eq. (2) is straightforward. Due to the
linear scaling of computing time with the average expansion
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order, this method permits us to study low temperatures
and long chains (up to L = 140 here) even in the strong-
coupling regime. We also show results obtained with the
continuous-time QMC method.33,34 The latter is restricted to
weak and intermediate interactions due to a less favorable
scaling of computer time with temperature and system size,
and additional numerical difficulties (see the Appendix). Both
QMC methods are exact.

The single-particle spectral function is of particular interest
in relation to photoemission results. Since the calculation of
the single-particle Green’s function in SSE is hampered by
a minus-sign problem (for periodic boundaries), we instead
present results from exact diagonalization on clusters with
L = 20.

We consider the static charge (ρ) and spin (σ ) structure
factors

Sρ(q) =
∑

r

eiqr (〈n̂r n̂0〉 − 〈nr〉〈n0〉) ,

Sσ (q) =
∑

r

eiqr
〈
Ŝz

r Ŝ
z
0

〉
, (3)

where Ŝz
j = 1

2 (n̂j↑ − n̂j↓), and the dynamical charge and spin
structure factors

Sρ(q,ω) = 1

Z

∑
ij

e−βEj |〈i| ρ̂q |j 〉|2δ(Ei − Ej − ω), (4)

Sσ (q,ω) = 1

Z

∑
ij

e−βEj
∣∣〈i| Ŝz

q |j 〉∣∣2
δ(Ei − Ej − ω), (5)

where ρ̂q = ∑
r eiqr (n̂r − n)/

√
L, and |i〉 and |j 〉 are eigen-

states with energies Ei and Ej . These dynamical correlation
functions can be calculated in the SSE representation at fixed
particle density and for periodic boundaries without a sign
problem. For the analytical continuation, we have used the
maximum entropy method.35

The T = 0 single-particle spectral function reads as

A(k,ω) = A+(k,ω) + A−(k,ω),

A+(k,ω) =
∑

n

∣∣〈ψ (Ne+1)
n,k

∣∣c†k−q

∣∣ψ (Ne)
0,q

〉∣∣2

× δ
[
ω − (

E
(Ne+1)
n,k − E

(Ne)
0,q

)]
,

A−(k,ω) =
∑

n

∣∣〈ψ (Ne−1)
n,k

∣∣ck−q

∣∣ψ (Ne)
0,q

〉∣∣2

×δ
[
ω + (

E
(Ne−1)
n,k − E

(Ne)
0,q

)]
, (6)

where A− (A+) is related to photoemission (inverse photoe-
mission), and |ψ (Ne)

0,k 〉 denotes the ground state for the sector
with Ne electrons and total momentum k; the corresponding
energy is E

(Ne)
0,k . In order to measure energies relative to the

Fermi energy, we show A(k,ω − μ) with μ = [E(Ne+1)
0 −

E
(Ne−1)
0 ]/2.

IV. RESULTS

Since we used three different methods, let us state here that
the results of Figs. 1–5, 7, and 8 were obtained using the SSE
representation, Fig. 6 with the CTQMC method, and Figs. 9–11

by exact diagonalization. Except for Fig. 2(b), results are for
quarter filling n = 0.5.

A. Luttinger liquid interaction parameter

In the metallic regime of the model (1), the knowledge of the
LL interaction parameter Kρ together with the bosonization
results for the correlation functions provides a complete
description of the low-energy, long-wavelength physics. The
crossover between the Hubbard and long-range cases as a func-
tion of ξ , and the quantitative relation between microscopic
parameters and LL parameters, can be studied exactly by
means of numerical methods. The LL parameter has previously
been calculated, for example, for spinless fermions with a 1/r

potential,9 for the U -V model,36 and for the U -V1-V2 model.30

We extract Kρ from SSE QMC results for the charge
structure factor using the relation

Kρ = lim
L→∞

π

q1
Sρ(q1), (7)

where q1 = 2π/L is the smallest, nonzero wave vector for a
given system size, and the static structure factor is defined in
Eq. (3). For each V and ξ , we have performed a finite-size
scaling to obtain Kρ . The extrapolation is shown for selected
values of ξ in the case V/t = 3, n = 0.5 in Fig. 1. We find
that for large enough system sizes, the finite-size dependence
is dominated by the lowest order 1/L, and have therefore used
a linear fit for the extrapolation.

Figure 2(a) shows the dependence of Kρ on V/t and ξ

at quarter filling n = 0.5. The V/t = 1 results fall into the
Hubbard regime Kρ � 1/2 for all values of ξ shown. For
a stronger interaction V/t = 3, Kρ becomes smaller than
1/2 for ξ ≈ 2, but remains larger than 1/3, thereby implying
dominant 2kF correlations [see Eq. (8) and discussion below].
At V/t = 6, the values of Kρ span the Hubbard, non-Hubbard,
and dominant 4kF (i.e., Kρ < 1/3) regimes. For the largest

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.01  0.02  0.03

πS
ρ(

q 1
) 

/ q
1

1 / L

ξ=0.1

ξ=∞

FIG. 1. Finite-size scaling of the rescaled density structure factor
πSρ(q1)/q1, with q1 = 2π/L, for V/t = 3, n = 0.5, and ξ = 0.1,
0.5, 1, 2, 3, 4, 5, 10, 20 (top to bottom). Lines are linear fits, and the
extrapolated value in the thermodynamic limit L → ∞ defines the
Luttinger liquid parameter Kρ . The extrapolation has been carried
out for all data points shown in Fig. 2. The system sizes were
L = 32,44,60 for n = 0.5 and L = 60,100,140 for n = 0.1. The
temperature was βt = 2L for V/t = 1 and βt = L for V/t = 3,6,9.
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FIG. 2. (Color online) Luttinger liquid parameter Kρ as a function
of screening length ξ . Points represent values obtained from a finite-
size scaling (see Fig. 1). Lines are guides to the eye. (a) Results at
quarter filling n = 0.5. (b) Fixed V/t = 3 and different fillings n.
The phases are a Luttinger liquid (LL) for Kρ > n2 and a charge-
density-wave insulator (CDW) for Kρ < n2.

ξ = 20, the LL parameter takes on almost exactly the critical
value Kρ = 1/4 of the LL-CDW transition. The numerical
results therefore suggest that the experimentally observed
values of Kρ ≈ 0.25 require surprisingly large values of
V/t and ξ . Finally, for V/t = 9, the system undergoes the
metal-insulator transition for ξ ≈ 3.5. Independent of V , we
expect Kρ → 0 for ξ → ∞ in the thermodynamic limit,
corresponding to the quasi-WC. A theoretical prediction Kρ ∼
ln−1/2 ξ was made by Schulz,12 and the numerical results for
the charge structure factor by Fano et al.10 are consistent with
Kρ = 0.

Figure 2(a) reveals that Kρ decreases with increasing ξ ,
thereby bringing the system closer to the insulating phase.
In previous work on extended Hubbard models, it was found
that adding interactions at distances beyond the interparticle
spacing 1/n can increase Kρ and hence enhance the metallic
character of the system.9,25 Similarly, in the U -V1-V2 model
with U fixed, varying the relative strength of V1 and V2 leads
to a competition between 2kF and 4kF charge fluctuations.25,30

As a result, Kρ takes on a maximum for V2 = V1/2, where the
metallic state is most stable, and it is not clear if the U -V1-V2

becomes insulating at finite values of V1 and V2.26,30 The
condition V (2) = V (1)/2 is also realized for the unscreened
Coulomb potential, and numerical results suggest that the

system remains metallic up to very strong interactions even
in the presence of a lattice.10,25 The experimentally moti-
vated form (2), fulfilling the monotonicity and the convexity
condition,14 favors a 4kF CDW state in the limit V/t → ∞.14

Similar to previous results for spinless fermions with a 1/r

potential,9 Kρ in Fig. 2 decreases with increasing V/t .
A common feature of the curves in Fig. 2(a) is a pronounced

decrease at small values of ξ , followed by a much slower
decrease for larger ξ . The numerical results indicate that the
change in behavior occurs when the interaction range ξ equals
the average particle spacing 1/n = 2. To verify this hypothesis,
we compare in Fig. 2(b) the ξ dependence of Kρ for two
different densities n = 0.5 and 0.1 at V/t = 3. The curve
for n = 0.1 indeed exhibits a significant ξ dependence up to
much larger ξ . The results for n = 0.1 further reveal that for
a given V/t , a smaller density requires a significantly larger
interaction strength and/or range to reach the critical Kρ = n2

for the metal-insulator transition (see also Ref. 21).

B. Charge and spin correlation functions

For a model with SU(2) spin symmetry such as Hamiltonian
(1), bosonization predicts the decay of charge and spin
correlation functions to be determined solely by the parameter
Kρ (since Kσ = 1) (Ref. 37):

〈nxn0〉 = − Kρ

(πx)2
+ A1

x1+Kρ
cos(2kFx) + A2

x4Kρ
cos(4kFx),

〈
Ŝz

x Ŝ
z
0

〉 = − 1

(2πx)2
+ B1

x1+Kρ
cos(2kFx) . (8)

The 1/x2 dependence of the leading term in both channels
is familiar from Fermi-liquid theory. The 2kF and 4kF

charge correlations decay to leading order as x−1−Kρ and
x−4Kρ , respectively. For the Hubbard model, Kρ � 1/2 and
2kF correlations dominate; taking into account logarithmic
corrections not included in Eq. (8), the dominant correlations
in this regime are 2kF spin correlations.2 For models with
a nonzero interaction range, the 4kF density oscillations can
become dominant for Kρ < 1/3. For the Hubbard model,
subdominant 4kF oscillations have been observed in systems
with open boundary conditions.38

In the opposite limit of a 1/r Coulomb potential (ξ = ∞)
with divergent Fourier transform V (q) ∼ ln(1/q), Schulz12

obtained

〈n̂x n̂0〉 = C1

x
e−c2

√
ln x cos(2kFx) + C2e

−4c2
√

ln x cos(4kFx),
(9)〈

Ŝz
x Ŝ

z
0

〉 = D1

x
e−c2

√
ln x cos(2kFx).

Apart from the absence of the 1/x2 Fermi-liquid contribution,
the most notable difference is that charge correlations are
dominated by an unusually slow decay of the 4kF component
(slower than any power law). These quasi-long-range 4kF

charge oscillations led to the notion of a fluctuating WC,
where the wavelength λ = 2π/4kF = 1/n is the average
distance between fermions. In contrast, the spin sector retains a
power-law decay. These continuum results are consistent with
numerical work.10,27

As emphasized before, the WC results (9) rely on the
divergence of the Fourier transform of the potential V (r).
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Such a divergence only occurs in the thermodynamic limit,
and for ξ = ∞. If either of these conditions is not met, the
LL forms (8) can be recovered in the long-wavelength limit.
Here, we only consider large but finite values of ξ , for which a
metal-insulator transition occurs at Kρ = n2 = 1/4. The CDW
state exhibits long-range 4kF charge order. The closest analog
of the metallic quasi-WC state in our case is therefore the
metallic regime 1/3 > Kρ > 1/4 with dominant (power-law)
4kF correlations. As shown in Fig. 2, Kρ < 1/3 is realized for
V/t = 6 and large ξ , and we explore the similarities to the
WC in the following.

Figure 3 shows the charge and spin structure factors as
defined in Eq. (3). At V/t = 3 and with increasing ξ , we
see a slight increase of the 4kF = π charge correlations
[see Fig. 3(a)]. This effect becomes more noticeable for
a stronger repulsion V/t = 6, as shown in Fig. 3(b). The
inherent length scale 1/n again appears in Fig. 3, with the
results saturating on the scale of the plots for ξ � 2. The spin
structure factor [Figs. 3(c) and 3(d)] reveals an enhancement
of 2kF = π/2 antiferromagnetic correlations with increasing
ξ , which according to Eq. (8) can be related to the reduction of
Kρ . This enhancement is again more pronounced for V/t = 6
than for V/t = 3.
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0 π/2 π
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(e) V/t = 3 ξ = 0.1
1
5
10
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FIG. 3. (Color online) Charge [(a), (b)] and spin [(c), (d)]
structure factors Sρ/σ (q) for different values of the screening length
ξ , and βt = L = 44. The key in (a) applies to (a)–(d). (e) Rescaled
charge structure factor for V/t = 3 (βt = L = 60), revealing the
asymptotic approach to the small-q behavior of the WC, Sρ(q) ∼
q/| ln q|1/2. Here and in all subsequent figures, results are for quarter
filling n = 0.5.

Let us now turn to the long-wavelength behavior. For a
LL, we have Sρ(q) ∼ qKρ , whereas for the WC, Sρ(q) ∼
q| ln q|−1/2 (see Ref. 2). Following Ref. 10, we plot in
Fig. 3(e) Sρ(q)| ln q|1/2/q. This quantity shows a logarithmic
divergence at q = 0 as long as Sρ(q) ∼ q and tends to a
constant as q → 0 for ξ = ∞.10 Our numerical results show
that a divergence occurs throughout the metallic phase, and that
the approach to the WC result is rather slow. In particular, given
the finite values of ξ , the LL nature of the system reemerges
eventually in the limit q → 0, although the system sizes
required to see this effect become larger and larger. A nonlinear
(at long wavelengths) density structure factor corresponding to
Kρ = 0 has been observed for the 1/r potential.10 In contrast,
for finite ξ , Fig. 3 shows that the linear behavior of Sρ(q) is
preserved. The long-wavelength spin structure factor is not af-
fected by the interactions [Figs. 3(c) and 3(d)]; the slope in the
limit q → 0 remains fixed, as required by Kσ = 1 [cf. Eq. (8)].

Schulz12 suggested that for a finite ξ , one should be able to
observe WC-like correlations at distances x < ξ and LL-like
correlations at x > ξ . Although the bosonization results are
only valid for large distances, this prediction can in principle
be tested numerically. Figure 4 shows the density-density
correlation function in real space. We have chosen V/t = 5,
and ξ = 10 or 20. This choice was made for the following
reasons. First, deviations from the LL form given by Eq. (8)
are most visible in the regime where 4kF oscillations dominate,
that is, for Kρ < 1/3. However, for the bosonization results to
apply, it is important to avoid the insulating state expected
for Kρ < 1/4. Close to Kρ = 1/4, previous work on the
extended (U -V ) Hubbard model has shown the importance of
logarithmic corrections.39 For the parameters chosen, we have
Kρ ≈ 0.29 for ξ = 10 and Kρ ≈ 0.28 for ξ = 20. The results
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FIG. 4. (Color online) Density-density correlations in real space
(symbols). Here, V/t = 5, βt = L = 84, n = 0.5 and (a) ξ = 10,
(b) ξ = 20. Lines are fits to the LL result for 〈nxn0〉 with fitting
parameters A1, A2 [see Eq. (9)] and Kρ determined from a (linear)
finite-size extrapolation based on L = 44,84. The fitting interval was
(a) [15 : 35], (b) [25 : 45].
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FIG. 5. (Color online) Finite-size scaling of the amplitude of 4kF

charge correlations at fixed ξ = 10. The results reveal the absence of
long-range order for V/t = 3, and long-range 4kF charge correlations
for V/t = 9. The case V/t = 6 is on the metallic side but very close
to the critical point, and we find a small but finite extrapolated value.
The lines are linear fits. Here, βt = L and n = 0.5.

in Fig. 4 show dominant 4kF correlations but no long-range
order, as expected in the LL regime.

Based on the idea that the LL form for 〈nxn0〉 should
hold at distances larger than ξ , we fit the numerical data
to Eq. (8) using two fitting parameters (the 2kF and 4kF

amplitudes) as well as the above values of Kρ . The fitting
intervals are chosen as [ξ + 5,35] and we used βt = L = 84.
Figure 4(a) shows that we indeed have good agreement
between the fit and the QMC data at large distances. However,
for r � ξ = 10, significant deviations become visible. To
discriminate between short-distance effects coming from the
continuum approximation underlying Eq. (8) and genuine
deviations from LL theory, we consider ξ = 20 in Fig. 4(b).
Again, there is reasonable agreement at large distances, but
clear differences at r � ξ = 20. Hence, keeping in mind the
difficulties mentioned above, our results are consistent with
the picture proposed by Schulz.12

As can be seen from Fig. 2, the insulating CDW phase
can be reached for ξ � 3.5 and V/t = 9. The CDW state is
characterized by long-range 4kF charge order at T = 0, as
formally reflected by Eq. (8) for Kρ = 0, and may be regarded
as a WC pinned to the lattice. Figure 5 shows the amplitude of
4kF charge correlations divided by system size, i.e., Sρ(4kF)/L.
At fixed ξ = 10, we find that this quantity extrapolates to zero
in the thermodynamic limit in the LL phase [Kρ = 0.383(1),
V/t = 3], and to a finite value in the CDW state (V/t = 9).
Near the phase boundary, the Kosterlitz-Thouless nature of
the transition makes numerical studies difficult and we see
that, assuming a linear scaling, Sρ(4kF)/L extrapolates to
a finite but very small value despite Kρ = 0.270(3) > 1/4.
For the unscreened Coulomb potential, Sρ(4kF)/L increases
logarithmically with system size, and there is no long-range
order.10

C. Dynamical charge and spin correlations

We now discuss the dynamical spin and charge correlation
functions, defined in Eq. (4), as obtained from QMC
simulations. We begin with a rather weak interaction V/t = 1
and a large screening length ξ = 10. CTQMC results for these
parameters which, according to Fig. 2, fall into the Hubbard
regime, are presented in Fig. 6. Despite the long-range
interaction, the spectra closely resemble previous results

ω
 / 

t

q
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 2

 4

0 π/2 π

 0.01  0.1  1

(a) Sρ(q,ω)

q
0 π/2 π

 0

 2

 4
(b) Sσ(q,ω)

FIG. 6. (Color online) (a) Dynamical charge and (b) spin structure
factor for V/t = 1 and ξ = 10. Results were obtained with the
projective CTQMC method (Ref. 34) using L = 28, θt = 15, and
n = 0.5. Dashed lines indicate the velocity of long-wavelength charge
and spin excitations.

for the Hubbard model (see, e.g., Ref. 40). In particular,
the particle-hole continuum is clearly visible in both the
charge and the spin channels. As a result of interactions, the
velocities of long-wavelength charge and spin excitations
differ by about a factor of 2.

To investigate larger values of V/t , we use the SSE
representation. The latter can also be used for the parameters
of Fig. 5, but we chose the CTQMC method to demonstrate its
applicability to models with long-range interactions. Taking
V/t = 6, we can explore the whole metallic regime of the
model (1) by varying the screening length ξ . Results are shown
in Fig. 7.

We first discuss the charge sector. For ξ = 0.1,
corresponding to the strong-coupling regime of the Hubbard
model [U = 2V (0) = 12t], the results in Fig. 7(a) look
qualitatively similar to Fig. 6(a). However, the distribution of
spectral weight over the particle-hole continuum is much more
inhomogeneous, with pronounced excitation features along
the edges. The charge velocity vρ is only slightly smaller
than in Fig. 6(a). Upon increasing ξ , we observe a substantial
increase of vρ , as indicated by the dashed lines; between
ξ = 0.1 and 1, vρ increases from 1.97(2)t to 2.64(2)t . A
small charge gap of order 0.1t , which extrapolates to zero for
L → ∞ in the LL phase, is visible in Fig. 7(c), but we can
estimate the velocity as vρ > 3.5t . The increase of vρ reflects
the fact that the extended interaction promotes 4kF charge
order, and thereby increases the stiffness of the charges with
respect to long-wavelength excitations. This gap is a finite-size
effect caused by the close proximity of the CDW transition.
The onset of 4kF fluctuations is also reflected in an incomplete
but well visible softening of the excitations at q = 4kF. We
will see below that this feature develops into a Bragg peak
in the CDW state. A plasmon excitation, one of the hallmark
features of the 1/r Coulomb potential, is not expected for
finite values of ξ , and would in general be very difficult to
distinguish from a linear mode in numerical simulations.

In contrast to the charge sector, the effect of ξ on
the spin dynamics is very small. In accordance with LL
theory, the velocity vσ of long-wavelength spin excitations
remains virtually unchanged upon increasing ξ from 0.1 to 10
[Figs. 7(d) and 7(f)]. However, vσ is strongly renormalized
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FIG. 7. (Color online) Dynamical charge [(a)–(c)] and spin [(d)–
(f)] structure factor from simulations in the SSE representation for
V/t = 6 and different screening lengths ξ . Results are for n = 0.5,
L = 44, and βt = 2L. The dashed lines indicate the velocity at long
wavelengths.

in going from V/t = 1 [Fig. 6(b)] to V/t = 6 [Fig. 7(d)]. At
fixed V/t , the screening length hence provides a natural way
of changing the ratio of charge and spin energy scales, and
opens a route to explore the spin-incoherent LL.41

Figure 8 shows results for the charge and spin dynamics in
the CDW phase, for V/t = 9 and ξ = 10. As demonstrated in
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FIG. 8. (a) Dynamical charge and (b) spin structure factor for
V/t = 9 and ξ = 10, corresponding to the insulating CDW phase.
Results were obtained in the SSE representation using n = 0.5, L =
44, and βt = 2L.

Fig. 5, for these parameters, the system is in a CDW state with
long-range 4kF order. In addition to a charge gap at q = 0, the
charge structure factor has become almost perfectly symmetric
with respect to q = π/2. This doubling of the unit cell results
from the softening at q = 4kF, and is a typical signature of the
CDW state. Except for a smaller velocity vσ , the spin structure
factor in Fig. 8 is similar to the metallic regime (i.e., gapless)
[see for example Fig. 7(c)].

D. Single-particle spectral function

The single-particle spectrum is of particular interest in
the search for experimental realizations of LLs because it
can reveal the signatures of spin-charge separation (spinon
and holon bands).42,43 Although LL theory is a low-energy
description, spin-charge separation may be observed up to
rather high energies. For example, spinon and holon bands are
visible over an energy range of the order of the bandwidth
in the Hubbard model,40,44,45 and also experimentally for
TTF-TCNQ (Ref. 46) and 1D cuprates.47,48 In contrast, such
clear features of spin-charge separation seem to be absent in
recent measurements on self-organized gold chains, although
the density of states reveals the scaling expected for a LL.5,49

To understand the role of the interaction range and small
values of Kρ , we calculate the single-particle spectral function
A(k,ω − μ) [Eq. (6)] for different values of V and ξ . To
simplify the interpretation of the complex structures, we use
exact diagonalization on chains with L = 20 sites, and use a
different graphical representation.

Figure 9 shows the single-particle spectrum in the Hubbard
regime for V/t = 1 and ξ = 10. To highlight the spinon,
holon, and shadow bands previously observed for the Hubbard
model away from half filling,40,44,45 we include the holon and
shadow band dispersions for the U = ∞ Hubbard model,45

−2t cos(|k| + kF) and −2t cos(|k| − kF), as well as a linear
spinon branch vσ (k − kF) with vσ determined from Sσ (q,ω).
These analytical results have well-defined corresponding ex-
citations in the numerical spectra, and establish the signatures
of spin-charge separation in the Hubbard regime of the phase
diagram. The spectral weight of the shadow band at large k is
rather small in Fig. 9. The finite spectral weight between the

k

(ω − μ) / t

holon

spinon

shadow

0

π

-2  0  2  4  6

V/t = 1, ξ = 10

FIG. 9. (Color online) Single-particle spectral function A(k,ω −
μ) for n = 0.5, V/t = 1, and ξ = 10 from exact diagonalization with
L = 20. We used an artificial broadening of 0.05t . The curves marked
spinon, holon, and shadow are explained in the text.
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FIG. 10. (Color online) Single-particle spectral function A(k,ω −
μ) for n = 0.5, V/t = 6, and different screening lengths ξ from exact
diagonalization with L = 20. Insets: full energy range, revealing the
upper Hubbard band.

holon and spinon excitation peaks is due to the finite system
size.45

Taking V/t = 6, we can study the spectral function across
the Hubbard, non-Hubbard, and dominant 4kF regimes with
increasing ξ . The results are shown in Fig. 10, and reveal that
the signatures of spin-charge separation are fully preserved.
Whereas the holon dispersion reflects the noticeable increase
of the charge velocity with increasing ξ (see Fig. 7), the spinon
excitations remain virtually unchanged by the interaction
range, again in accordance with the results for Sσ (q,ω) in
Fig. 7. The spectral weight of the shadow band is significantly
enhanced compared to V/t = 1 (Fig. 9). On approaching the
strong-coupling region at larger ξ , the upper Hubbard band
(visible in the insets of Fig. 10) becomes almost completely
flat. Similar to Fig. 10, a gap is visible at kF in Fig. 10(c) [and
also in (b) but much smaller]; we have verified that this gap is
a finite-size effect.

k

(ω − μ) / t
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π

-4 -2  0  2  4  6  8  10

V/t = 9, ξ = 10

-2  0  2
0

π/2

FIG. 11. (Color online) As in Fig. 9 but for V/t = 9 and ξ =
10, corresponding to the insulating CDW phase (see Fig. 2). The
inset shows a logarithmic density plot of the spectrum, revealing
backfolded shadow bands related to the 4kF charge order.

Our findings in the metallic region of the phase diagram
are consistent with the experimentally observed coexistence
of a small Kρ (implying extended-range interactions) with
signatures of spin-charge separation in photoemission mea-
surements; a good example is TTF-TCNQ.46 On the other
hand, the finite interaction range does not provide an explana-
tion for the possible absence of clear spin-charge separation in
self-organized gold chains.5,49 We comment on the latter case
in the conclusions.

Finally, we show in Fig. 11 the single-particle spectrum
in the insulating CDW phase at V/t = 9 and ξ = 10. The
dynamical charge and spin structure factors for these parame-
ters were presented in Fig. 8. We find a charge gap [equal to
0.2(1) in the thermodynamic limit], and backfolded shadow
bands related to the 4kF charge order which are visible in the
inset of Fig. 11. The spectrum appears to evolve continuously
across the CDW transition. In particular, the holon band is well
visible in Fig. 11, whereas it has been found to separate into
two domain walls for much stronger Coulomb interaction.22

The single-particle spectrum of a quarter-filled CDW state has
also been calculated using the bosonization method.50 In the
absence of dimerization, no singularities exist near kF (note
that in our numerical calculations, we can not distinguish
between singularities and excitation peaks of finite width).
The spectrum may also depend on the details of the interaction
potential.

V. CONCLUSIONS

In this work, we have studied the effects of the electron-
electron interaction range in one dimension using exact
numerical methods. We have obtained the Luttinger liquid
interaction parameter Kρ as a function of the Coulomb matrix
element V and the screening length ξ , which, in combination
with Luttinger liquid theory, defines the phase diagram of
the model. In addition to the Hubbard regime 1 � Kρ � 1/2,
we have explored the non-Hubbard regime Kρ < 1/2, the
case Kρ < 1/3 with dominant 4kF charge correlations, and
the insulating CDW state, which exists at quarter filling for
Kρ < 1/4. We identified an important length scale 1/kF for
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Kρ ; Kρ strongly depends on the screening length for ξ � 1/kF,
whereas it decays very slowly for ξ � 1/kF. Our results
indicate that the lattice model with a finite (but possibly large)
interaction range can be described by Luttinger liquid theory
if higher-order umklapp terms are taken into account. This
case is therefore distinct from the unscreened 1/r potential
which falls outside the Luttinger liquid description.11,12 For the
unscreened potential, numerical results suggest the existence
of a metallic quasi-Wigner-crystal state with Kρ = 0.10 For our
choice of a screened Coulomb potential, which is both convex
and monotonically decreasing with increasing distance, Kρ

always decreases with increasing interaction strength or range,
as compared to enhanced metallic behavior observed in
extended Hubbard models as a result of competing nearest-
neighbor and next-nearest neighbor interactions. Interestingly,
the small values of Kρ ≈ 1/4 observed in recent experiments
on gold chains, as well as previously in quantum wires,
carbon nanotubes, and quasi-1D materials, can only be
achieved for large values of the interaction strength and/or
range.

We have calculated the static and dynamical charge and spin
correlation functions, and found good agreement with the ex-
pectations based on Luttinger liquid theory. Upon decreasing
Kρ by increasing V and/or ξ , 4kF charge correlations become
strongly enhanced, reminiscent of although not identical
to the quasi-Wigner-crystal. Our results for the real-space
density-density correlations are consistent with Luttinger
liquid behavior on length scales beyond the screening length
and deviations on smaller length scales.

The 4kF correlations lead to a pronounced Bragg peak
in the dynamical density structure factor. The interaction
range strongly modifies the velocity of long-wavelength
charge excitations, whereas the spin velocity only depends on
the onsite repulsion. Throughout the Luttinger liquid phase,
spin-charge separation is clearly visible in the single-particle
spectrum. Finally, in the insulating charge-density-wave phase,
we observe backfolded shadow bands.

An important question to be addressed in future work,
motivated by experiments on self-organized gold chains,5,49

is the impact of spin incoherence on the spinon and holon
signatures in photoemission spectra. The energy scales for
low-energy charge and spin excitations are determined by the
corresponding velocities vρ and vσ . As explicitly shown in
this work, vρ increases with increasing ξ , whereas vσ does
not depend on the interaction range. Therefore, the charge
and spin energy scales can be well separated for sufficiently
large ξ . In the regime vρ � vσ , the 2kF spin correlations
can be suppressed at finite temperatures, whereas the charge
sector remains coherent.41 This scenario may explain the rather
incoherent angle-resolved spectrum of gold chains, which
at the same time show clean LL power-law behavior in the
angle-integrated density of states.5
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APPENDIX: CTQMC

The general formulation of the weak-coupling CTQMC
method allows the simulation of problems with long-range
interactions in imaginary time and/or space.33,34,51 Retarded
interactions (i.e., nonlocal in time), which essentially corre-
spond to the electron-phonon problem, have been considered
in Refs. 52–54. In this appendix, we provide technical details
for the application of the CTQMC method to a Hamiltonian of
the form (1).

Although such simulations are in principle straight-
forward, we have encountered difficulties which are ultimately
related to the strong-coupling character of the problem con-
sidered in this paper. The algorithm is quite similar to the case
of electron-phonon interactions, and has been implemented
both at finite temperatures and at T = 0 (with a projection
parameter θ ).34

Our starting point is Eq. (1), which we write as

H =
∑

k

ε(k)n̂k + V
∑
ir

P (r) (n̂i − n) (n̂i+r − n) . (A1)

Here, n is the average density, the interaction accounts for
fluctuations around the paramagnetic saddle point, and P (r)
is a probability distribution; we also defined V = ∑

r V (r).
During the simulation, vertices corresponding to interactions
over a distance r are proposed with probability P (r) =
V (r)/V .

To circumvent the negative sign problem, and following
Ref. 34, we rewrite the interaction as

1
2V

∑
irσσ ′s

P (r)
(
n̂iσ − n

2
+ sδ

) (
n̂i+rσ ′ − n

2
− sδ

)
. (A2)

Here, we have introduced an Ising variable s = ±1. Up to
a constant, Eq. (A2) is equivalent to the original interaction.
To avoid the sign problem for V > 0 we have the condition
n/2 + δ > 1.

The average expansion order, which determines the com-
puter time, can be evaluated within the finite-temperature
approach, giving

〈M〉 = βV L

[
4δ2 −

∑
r

P (r)〈(n̂0 − n) (n̂r − n)〉
]

. (A3)

The fact that the form (A2) is beneficial for the simulations
at quarter filling and for rather strong interactions confirms an
empirically derived rule. In order to obtain optimal results
away from half filling, it is often useful to increase the
value of δ at the expense of a larger average expansion
order. With the above formulation, we were able to ex-
tend the parameter regime of applicability for the weak-
coupling CTQMC method, and exemplary results are shown
in Fig. 6. However, the strong-coupling regime remains out of
reach.
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38S. A. Söffing, M. Bortz, I. Schneider, A. Struck, M. Fleischhauer,

and S. Eggert, Phys. Rev. B 79, 195114 (2009).
39S. Nishimoto and M. Tsuchiizu, Phys. Rev. B 81, 085116 (2010).
40A. Abendschein and F. F. Assaad, Phys. Rev. B 73, 165119 (2006).
41G. A. Fiete, Rev. Mod. Phys. 79, 801 (2007).
42J. Voit, Phys. Rev. B 47, 6740 (1993).
43V. Meden and K. Schönhammer, Phys. Rev. B 46, 15753 (1992).
44K. Penc, K. Hallberg, F. Mila, and H. Shiba, Phys. Rev. Lett. 77,

1390 (1996).
45H. Benthien, F. Gebhard, and E. Jeckelmann, Phys. Rev. Lett. 92,

256401 (2004).
46R. Claessen, M. Sing, U. Schwingenschlogl, P. Blaha, M. Dressel,

and C. S. Jacobsen, Phys. Rev. Lett. 88, 096402 (2002).
47B. J. Kim et al., Nat. Phys. 2, 397 (2006).
48C. Kim, A. Y. Matsuura, Z. X. Shen, N. Motoyama, H. Eisaki,

S. Uchida, T. Tohyama, and S. Maekawa, Phys. Rev. Lett. 77, 4054
(1996).

49S. Meyer, J. Schafer, C. Blumenstein, P. Hopfner, A. Bostwick,
J. L. McChesney, E. Rotenberg, and R. Claessen, Phys. Rev. B 83,
121411 (2011).

50F. H. L. Essler and A. M. Tsvelik, Phys. Rev. Lett. 88, 096403
(2002).

51E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer,
and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

52F. F. Assaad, Phys. Rev. B 78, 155124 (2008).
53M. Raczkowski, P. Zhang, F. F. Assaad, T. Pruschke, and M. Jarrell,

Phys. Rev. B 81, 054444 (2010).
54M. Hohenadler, H. Fehske, and F. F. Assaad, Phys. Rev. B 83,

115105 (2011).

195115-10

http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1088/0953-8984/21/2/023203
http://dx.doi.org/10.1038/nphys895
http://dx.doi.org/10.1038/nphys2051
http://dx.doi.org/10.1038/nphys2051
http://dx.doi.org/10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1088/0034-4885/58/9/002
http://dx.doi.org/10.1103/PhysRevB.61.13410
http://dx.doi.org/10.1103/PhysRevB.61.13410
http://dx.doi.org/10.1103/PhysRevB.60.15654
http://dx.doi.org/10.1103/PhysRevB.60.15654
http://dx.doi.org/10.1103/PhysRevB.45.8454
http://dx.doi.org/10.1103/PhysRevB.45.8454
http://dx.doi.org/10.1103/PhysRevLett.71.1864
http://dx.doi.org/10.1103/PhysRev.168.418
http://dx.doi.org/10.1103/PhysRevB.17.494
http://dx.doi.org/10.1103/PhysRevB.19.6119
http://dx.doi.org/10.1103/PhysRevLett.72.2235
http://dx.doi.org/10.1103/PhysRevLett.72.2235
http://dx.doi.org/10.1103/PhysRevLett.77.1358
http://dx.doi.org/10.1103/PhysRevB.61.15530
http://dx.doi.org/10.1007/s100510070070
http://dx.doi.org/10.1103/PhysRevB.64.193307
http://dx.doi.org/10.1103/PhysRevB.64.193307
http://dx.doi.org/10.1103/PhysRevB.68.045112
http://dx.doi.org/10.1103/PhysRevB.68.045112
http://dx.doi.org/10.1103/PhysRevB.75.125116
http://dx.doi.org/10.1103/PhysRevB.78.205115
http://dx.doi.org/10.1103/PhysRevB.78.205115
http://dx.doi.org/10.1088/0953-8984/1/42/018
http://dx.doi.org/10.1103/PhysRevB.56.R1645
http://dx.doi.org/10.1103/PhysRevB.56.R1645
http://dx.doi.org/10.1103/PhysRevB.69.195115
http://dx.doi.org/10.1103/PhysRevB.69.195115
http://dx.doi.org/10.1103/PhysRevB.78.165303
http://dx.doi.org/10.1103/PhysRevB.78.165303
http://dx.doi.org/10.1103/PhysRevB.83.153303
http://dx.doi.org/10.1103/PhysRevB.83.153303
http://dx.doi.org/10.1103/PhysRevB.83.245114
http://dx.doi.org/10.1103/PhysRevB.72.033101
http://dx.doi.org/10.1103/PhysRevB.72.033101
http://dx.doi.org/10.1088/0305-4470/25/13/017
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.76.035116
http://arXiv:cond-mat/0403055
http://dx.doi.org/10.1209/epl/i2005-10020-8
http://dx.doi.org/10.1209/epl/i2005-10020-8
http://dx.doi.org/10.1103/PhysRevLett.64.2831
http://dx.doi.org/10.1103/PhysRevB.79.195114
http://dx.doi.org/10.1103/PhysRevB.81.085116
http://dx.doi.org/10.1103/PhysRevB.73.165119
http://dx.doi.org/10.1103/RevModPhys.79.801
http://dx.doi.org/10.1103/PhysRevB.47.6740
http://dx.doi.org/10.1103/PhysRevB.46.15753
http://dx.doi.org/10.1103/PhysRevLett.77.1390
http://dx.doi.org/10.1103/PhysRevLett.77.1390
http://dx.doi.org/10.1103/PhysRevLett.92.256401
http://dx.doi.org/10.1103/PhysRevLett.92.256401
http://dx.doi.org/10.1103/PhysRevLett.88.096402
http://dx.doi.org/10.1038/nphys316
http://dx.doi.org/10.1103/PhysRevLett.77.4054
http://dx.doi.org/10.1103/PhysRevLett.77.4054
http://dx.doi.org/10.1103/PhysRevB.83.121411
http://dx.doi.org/10.1103/PhysRevB.83.121411
http://dx.doi.org/10.1103/PhysRevLett.88.096403
http://dx.doi.org/10.1103/PhysRevLett.88.096403
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/PhysRevB.78.155124
http://dx.doi.org/10.1103/PhysRevB.81.054444
http://dx.doi.org/10.1103/PhysRevB.83.115105
http://dx.doi.org/10.1103/PhysRevB.83.115105

