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Thermopower of quantum Hall states in Corbino geometry as a measure of quasiparticle entropy
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Using the Onsager relation between electric and heat transport coefficients, and considering the very different
roles played by the quantum Hall condensate and quasiparticles in transport, we argue that near the center of a
quantum Hall plateau thermopower in a Corbino geometry measures entropy per quasiparticle per quasiparticle
charge. This relation indicates that thermopower measurement in a Corbino setup is a more direct measure of
quasiparticle entropy than in a Hall bar. Treating disorder within the self-consistent Born approximation, we
show through an explicit microscopic calculation that this relation holds on an integer quantum Hall plateau
at low temperatures. Applying this to non-Abelian quantum Hall states, we argue that Corbino thermopower
at sufficiently low temperature becomes temperature independent and measures the quantum dimension of
non-Abelian quasiparticles that determines the topological entropy they carry.
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I. INTRODUCTION

Candidate fractional quantum Hall (FQH) states which
exhibit non-Abelian quasiparticle excitations have been pre-
dicted to appear in the second Landau level (LL) for certain
filling fractions.1,2 Recent proposals for performing intrin-
sic fault-tolerant quantum computation using non-Abelian
anyons3,4 have revived interest at these filling factors, and in
particular on the nature of their quasiparticles excitations. At
present the most promising candidate for non-Abelian FQH
state (based on numerical studies5) seems to be ν = 5/2,
which is thought to be described by the Moore-Read state1 or
its particle-hole conjugate.6 Experimentally, the quasiparticle
charge has been measured via tunneling between opposite
edge states across quantum point contacts7,8 as well as
local charge measurement,9 and found to be consistent with
theoretical predictions expected for non-Abelian quasiparti-
cles. In particular the observation of an“even-odd” effect10

alternating between e/4 and e/2 quasiparticles,11 as well as
the recently reported phase slips12 in the interference pattern,
are suggestive of the non-Abelian nature of the quasiparticle
excitations. However these experiments need to be reconciled
with each other, which would require a detailed understanding
of all aspects of the experiments. Such an understanding
requires careful analysis of possible complications due to
edge reconstruction,13 nonequilibrium edge distributions, and
coupling of the edge state to bulk quasiparticles.14

In light of possible complications associated with the edge,
alternative approaches using bulk measurements to directly
probe the non-Abelian nature of the quasiparticles have been
proposed.15–17 The basic idea behind them is the observation
that in the presence of non-Abelian quasiparticles, the system
has a ground state degeneracy � which grows exponentially
with the number of quasiparticles Nq : � ∼ dNq where d > 1
is the quantum dimension of the non-Abelian quasiparticle.
This leads to a temperature independent entropy (except below
an energy scale which is related to the coupling between
quasiparticles and decays exponentially with their separation)
due to this degeneracy:18

SD = kβ log � = kβNq log d + O(1). (1)

This non-Abelian or topological entropy, due to ground
state degeneracy associated with the presence of non-Abelian
quasiparticles, is an important part of the total entropy:

Stot = SD + Sn(T ), (2)

where Sn(T ) is the temperature dependent entropy due
to normal sources. At sufficiently low temperatures Sn(T )
approaches zero and SD dominates Stot, thereby allowing
experimentalists to measure the topological entropy using
probes sensitive to entropy. In particular, it was pointed out
in Ref. 15 that thermopower is one of the possible probes,
because it measures entropy per mobile electron under suitable
conditions. In fact, the topological entropy might already be
a significant contributor to thermopower measured near 5/2
in a recent experiment.19 We note that thermopower had been
measured in the quantum Hall (QH) regime before.20,21

A QH liquid can be viewed as a macroscopic condensate
which has a gap for charged excitations; in the case of a FQH
liquid these quasiparticle excitations carry fractional charge
and possibly non-Abelian statistics. The QH condensate does
not carry any entropy; hence all the entropy must be carried
by the quasiparticles. In the presence of a thermal gradient
the thermal response (which is proportional to the entropy)
can only come from the entropy carried by the quasiparticles;
this can be viewed as a response to an “entropical force.” In a
thermopower measurement the application of a temperature
gradient ∇T leads to an electric potential gradient ∇V ,
as no current is allowed to flow through the system. The
thermal response must be canceled by the electric response
to voltage gradient so the net current is zero. In the Hall
bar geometry where the thermopower measurement has been
considered earlier,15 the electric response is dominated by the
QH condensate. As a result the thermal and electric responses
come from very different sources. This difference may lead
to substantial suppression of the thermopower signal when
disorder is present, as disorder can have a strong effect on the
quasiparticles, potentially leading to their localization and thus
suppressing their response to a thermal gradient. On the other
hand, disorder has virtually no effect on the condensate; a very
weak voltage gradient can induce a sufficient current response
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FIG. 1. (Color online) Schematic representation of current re-
sponses to thermal and voltage gradients in an infinite Hall bar
setup in (a) clean and (b) disordered limits. The thermal response
is due to entropy carried by quasiparticles, while the voltage response
is dominated by the quantum Hall condensate. In the clean limit
(a), both current responses are in the transverse (Hall) channel. A
thermal gradient applied from left to right leads to a corresponding
voltage difference along the same direction. The current induced by
the thermal gradient (red arrow), is canceled exactly by the voltage-
induced current dominated by condensate flow (blue arrow), resulting
in zero net current flowing through the sample. The equilibrium edge
current is represented by the thick black arrows. In the disordered
limit (b), thermal gradient induced current is strongly suppressed by
pinning or localization of quasiparticles, leading to a corresponding
suppression in the compensating condensate current induced by
voltage gradient. As a result the voltage response is also suppressed. In
the presence of disorder the thermal gradient induced current includes
both longitudinal and Hall components, and the voltage gradient is
no longer parallel to thermal gradient.

to compensate for the thermal gradient. For this reason the
quasiparticle entropy is detectable in Hall bar thermopower
measurement only when they are mobile, which requires
somewhat elevated temperatures15 (see Fig. 1 for an illustration
of this point).

The purpose of this paper is to point out that thermopower
in a Corbino setup21 (see Fig. 2) is a more direct and
thus much better measure of quasiparticle entropy. This is
because in the Corbino geometry the zero-current condition
that results from a cancellation of the thermal and voltage
responses only applies to the longitudinal current (or current
along the radial direction); there is no constraint on the Hall
channel current, which simply runs around the annulus. The
crucial point here is that the longitudinal current (from both
thermal and voltage gradients) comes from quasiparticles only,
with no condensate or edge state contribution. As a result,
disorder affects the thermal and electric response on equal
footing, therefore it does not suppress thermopower even in
the presence of localization effects. (Because we are always
working at nonzero temperature, quasiparticles can still hop
even if they are localized at T = 0.) Another way to understand
this is that since the quasiparticle current is zero, there is no
pinning force on them, thus the electric and entropical forces
must be balanced, even in the presence of disorder.

The difference between thermopower in Hall bar and
Corbino geometries is best illustrated by analyzing the

T0

T T0

V

FIG. 2. (Color online) Schematic representation of thermopower
measurement in a Corbino disk geometry with disorder. A thermal
gradient applied in the radial direction leads to a corresponding
voltage difference, with no net current flowing along the same
direction; there is no constraint on the circular current flowing along
the angular direction. Since the condensate current (represented by
the black line, including edge current) is always in the Hall channel
and thus flowing along the angular direction, it plays no role in the
current balance along the radial direction. As a result the zero radial
current condition must be satisfied by balancing quasiparticle current
responses to both thermal and voltage gradients, and thus dictated
by quasiparticle properties only. Since the net quasiparticle current is
zero, disorder plays a much lesser role here than in Hall geometry.

transport equations in the presence of an electric field and
a temperature gradient:

j = L11∇φ − L12 ∇T

T
, (3)

jQ = L21∇φ − L22 ∇T

T
, (4)

where j and jQ are the respective charge and heat currents,
∇φ is the applied electric field, T is the temperature, and Lαβ

are the response coefficients which are tensor quantities in
the presence of a magnetic field. The thermopower in a Hall
bar geometry, which is given by the zero-current condition in
both the transverse and longitudinal directions (j = 0), is also
a tensor quantity:

QH = 1

T
L12(L11)−1; (5)

it relates ∇φ with ∇T through

∇φ = QH∇T . (6)

On the other hand, in a Corbino geometry setup a temperature
gradient applied in the radial direction leads to a voltage
gradient in the radial direction only. The thermopower which
is defined by the zero-current condition in the radial direction
is then given as

QC = 1

T

L12
rr

L11
rr

, (7)

which reduces to a number that depends on the longitu-
dinal components of the electric (L11

rr ) and thermal (L12
rr )

responses only. These longitudinal components are dominated
by quasiparticles, and are equally affected by the presence
of disorder. The condensate current, which only flows in the
Hall channel, is in the angular direction and orthogonal to
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the radial component, and therefore does not contribute to the
thermopower measurement.

The central result of this paper is that the Corbino ther-
mopower is (approximately) equal to entropy per quasiparticle
per quasiparticle charge:

QC ≈ Stot

e�Nq

, (8)

where e� is the quasiparticle charge, which is opposite for
electron and holelike quasiparticles. Equation (8) can be
understood as the consequence of balancing the electric force
due to the electric field with the “entropical force” due to the
thermal gradient experienced by the quasiparticle:

e�∇φ = Stot

Nq

∇T . (9)

This is valid when the quasiparticle density is sufficiently low.
Since the quasiparticles are not flowing, the above is expected
to be valid even in the presence of disorder, and when the
quasiparticles are localized at T = 0.

In the following sections we explore these ideas in greater
detail and use various arguments to establish Eq. (8). By apply-
ing Onsager relations in the analysis of transport equations (3)
and (4) for the Corbino geometry, we show that Eq. (8) is valid
in the dilute quasiparticle regime. Since the analysis is quite
general and only based on the behavior of the quasiparticle
contribution to the transport coefficients, it should apply
equally for the integer and fractional QH effects. In Sec. III
we establish Eq. (8) for a specific model of noninteracting
electrons in the integer QH regime and the presence of disorder
through microscopic calculation. In Sec. IV we explore the
possibility of using Eq. (8) to probe the topological entropy
carried by the non-Abelian quasiparticles and measure their
quantum dimension d.

II. CORBINO THERMOPOWER

We consider a QH plateau at the total filling factor ν in a
Corbino geometry setup. At zero temperature for a sufficiently
clean and uniform sample, quasiparticles are absent at the
center of the QH plateau and the system only consists of the QH
condensate. As the magnetic field B is decreased (increased)
from its value at the center of the QH plateau B0, quasielectrons
(quasiholes) are introduced even at zero temperature, whose
numbers grow linearly with the deviation of the magnetic field
�B = B − B0:

Nq =
∣∣∣∣
(

e

e�

)
�B

B0

∣∣∣∣Ne, (10)

where Ne is the number of electrons. Additional quasiparticles
or quasiholes are thermally activated at finite temperature;
for sufficiently low temperature one type dominates the other
(depending on which side of the plateau one is at). In the
following we assume that this is the case and consider the
contribution to transport by either quasiparticles or quasiholes
only.

We can split the total charge current j = jq + jcond into a
quasiparticle current jq and condensate current jcond. The latter
only flows in the Hall channel and gives rise to quantized Hall
transport without dissipation. If the temperature of the inner

and outer radii in a Corbino thermopower measurement is fixed
so that there is no thermal gradient, then under the application
of a radial electric gradient the heat current jQ, which is carried
by quasiparticles only, will be proportional to the quasiparticle
charge current. We can thus write

jQ = 	jq = 	
(
e�jqn

)
, (11)

where jqn denotes the quasiparticle number current. The above
equation (11) is similar to the definition of Peltier heat which
normally relates the heat current to total current. In our case
	 relates the heat current to quasiparticle current only and
hence corresponds to the heat carried by each quasiparticle.
To proceed further we subtract the QH condensate contribution
from the response coefficient of the electric field. As already
mentioned in the previous section, only the Hall channel has
contributions from both the condensate and quasiparticles,
therefore we can separate out the quasiparticle contribution
to the Hall conductivity L̃11

xy via

L̃11
rθ = L11

rθ − νe2

h
, (12)

whereas the longitudinal electrical conductivity L11
rr = L̃11

rr ,
along with the longitudinal and off-diagonal thermal responses
L12

rr = L̃12
rr and L12

rθ = L̃12
rθ , are completely dominated by

the quasiparticles. In terms of the quasiparticle transport
coefficients, 	 can be expressed as

	 = L̃21(L̃11)−1. (13)

From the definition (11) it is clear that 	 corresponds to the
heat carried by each quasiparticle divided by its charge. While
in principle it is a tensor, we expect it to be very close to (if
not exactly) a pure number (or scalar), since jQ and jq should
be parallel to each other on physical ground. We thus focus
on its diagonal component 	rr in the following. Using the
fact 	(B) = 	(−B) and by virtue of the Onsager relations,22

which can be expressed for the quasiparticle contribution to
the transport coefficients,

L̃
αβ

ab (B) = L̃
βα

ba (−B), (14)

the diagonal component of the 	 in the Corbino geometry
setup can be expressed as

	rr = L̃11
rθ L̃

21
θr + L̃11

rr L̃
21
rr(

L̃11
rθ

)2 + (
L̃11

rr

)2 = L̃11
rθ L̃

12
θr + L̃11

rr L̃
12
rr(

L̃11
rθ

)2 + (
L̃11

rr

)2 . (15)

Close to the center of the QH plateau the quasiparticle
contributions to the transport coefficients are expected to
behave as those of a Hall insulator:23 L̃11

rr → 0 and L̃11
rθ ∝

(L̃11
rr )2, which leads to

L̃11
rθ � L̃11

rr . (16)

Therefore, in the dilute quasiparticle regime or close to the
center of the QH plateau the off-diagonal component vanishes
much faster than the longitudinal component, we can thus
neglect terms involving L̃11

rθ in Eq. (15), which reduces to

	rr = L̃12
rr

L̃11
rr

= L12
rr

L11
rr

= T QC. (17)
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The above relation gives an interpretation of thermopower in
the Corbino geometry

QC = Heat per quasiparticle

e�T
= Stot

e�Nq

, (18)

which is the entropy per quasiparticle per quasiparticle
charge, as advertised in Eq. (8). Notice that in the above
derivation the condition for a Hall insulator is not essential;
to satisfy Eq. (8) we only require that close to the center of
the QH plateau the quasiparticle contribution to off-diagonal
conductivity is much smaller than the diagonal conductivity.
This condition on the conductivity [Eq. (16)] can be empir-
ically justified for the case of QH plateaus by examining
the experimentally observed relation between the Hall and
longitudinal resistivity,24,25

Rrr = αrB
dRrθ

dB
= αrB

d�Rrθ

dB
, (19)

where αr is an order 1 constant independent of the magnetic
field B, and �Rrθ is the deviation of Hall resistivity from the
quantized plateau value (due to quasiparticle contribution).
Since d�Rrθ

dB
∼ �Rrθ

�B
, we have

Rrr ∼ B0

�B
αr�Rrθ � �Rrθ . (20)

Also due to the fact that on the plateau the quantized Hall
conductance due to QH condensate dominates the quasipar-
ticle contributions to the conductivity tensor, the latter is
proportional to the quasiparticle contributions to the resistivity
tensor, justifying Eq. (16). In the next section we lend further
support to Eq. (8) by performing a microscopic calculation for
Corbino thermopower treating disorder in the self-consistent
Born approximation (SCBA) on an integer QH plateau.

III. CORBINO THERMOPOWER: IQHE

In Sec. III A we calculate the thermopower on an integer
quantum plateau in a Corbino geometry with disorder treated
within SBCA. In Sec. III B we show that for low temperatures
the Corbino thermopower scales like the entropy per quasi-
particle per quasiparticle charge.

A. Corbino Thermopower on an IQH plateau

The electric field response L11
rr can be calculated using the

Kubo formula. We then use the relation26

L12
ij (T ,μ) =

∫ ∞

−∞
dε

ε − μ

e

(
−∂nF

∂ε

)
L11

ij (T = 0,ε) (21)

to calculate the thermal response coefficient L12
rr . In Eq. (21),

nF represents the Fermi-Dirac distribution and μ is the
chemical potential. This above relationship, which holds in
a magnetic field, was also shown to be valid in the presence
of disorder in Ref. 26, where both the off-diagonal and
diagonal conductivity on an IQH plateau were calculated
treating disorder within SCBA. The longitudinal electrical

conductivity is

L11
rr = e2ω2

c

8πh

∫ ∞

−∞
dε

(
−∂nF

∂ε

)

×
∑

n

[(n + 1)ImGn(ε)ImGn+1(ε)], (22)

where n corresponds to the Landau level (LL) index, ωc =
eB/m is the cyclotron frequency, and Gn(ε) is the SCBA
dressed Green’s function for the nth LL given by

Gn(z) = 1

z − h̄ωn − �(z)
, (23)

where h̄ωn = (n + 1/2)h̄ωc. Assuming a random impurity
potential V with a white noise distribution 〈V (r)V (r′)〉av =
2πl2

Bh̄2σ 2δ(r − r′), the SCBA self-energy � in the high field
approximation (σ � ωc) can be written as

�(ω + iδ) = ω − ωL

2
− iσ

√
1 −

(
ω − ωL

2σ

)2

, (24)

where ωL is the energy of the LL nearest to ε and σ is a
measure of the white noise disorder potential. The disorder
broadened density of states (DOS) is given as

ρn(ε) = 1

2π2l2
Bh̄σ

√
1 −

(
ε − ωL

2h̄σ

)2

, (25)

and is semielliptical with a semiminor axis 2h̄σ . The disorder
broadened LL density of states for the lowest LL is plotted in
Fig. 3 which also indicates the quasiparticle/quasihole regimes.

The expression (22) can be used in Eq. (21) to calculate the
longitudinal thermal response L12

rr which can then be used to
calculate the Corbino thermopower given by Eq. (7). For an
isolated LL, it can be expressed as a two-parameter scaling

II I II I

Quasi electrons Quasi holes

4 2 0 2 4

0.5 ωc

σ

ρn

FIG. 3. (Color online) Disorder broadened density of states
for the isolated lowest Landau level within self-consistent Born
approximation. The red (vertical) line represents the position of the
lowest Landau level energy, which is the transition point between
two integer quantum Hall phases, and separates the “quasi-electrons”
and “quasi-holes” regions. Regions I and II are defined and discussed
later in the paper (see text for details).
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FIG. 4. (Color online) Corbino thermopower measured in units
of μV/K for the isolated lowest Landau level plotted as a
function of (ε − 0.5h̄ωc)/(h̄σ ), for different values of kβT /(h̄σ ) =
0.25, 0.5, 0.75, and 1.

function of [μ − (n + 1/2)h̄ωc]/(h̄σ ) and h̄σ/kβT with the
scaling function plotted for different values of h̄σ/kβT in
Fig. 4. In order to better understand features, the Corbino
thermopower of an isolated LL it is best to orient oneself and
understand the disorder broadened density of states (DOS)
which in the SCBA is semielliptical with a semiminor axis
2h̄σ as indicated in Fig. 3. Away from the tails of the disorder
broadened DOS the thermopower indicates divergent behavior
as a function of the temperature T , reminiscent of an insulator.
This behavior is anticipated away from the tails of the disorder
broadened DOS and near the center of the QH plateau where
quasielectrons (quasiholes) are thermally activated and the
thermopower should naively correspond to the entropy per
quasiparticle per quasiparticle charge.

Furthermore, the Corbino thermopower changes sign at
the position of the LL where the disorder broadened DOS
is maximized. This sign change is due to the fact that transport
switches from electron-dominated to hole-dominated regimes;
as a result the charge of the relevant quasiparticles change sign.
The overall features of the Corbino thermopower of an isolated
LL already indicates behavior anticipated by the entropy per
quasiparticle per quasiparticle charge definition.

We plot in Fig. 5 Corbino thermopower with contributions
from all LLs taken into account, as a function of the
chemical potential for fixed disorder strength h̄σ = 0.05h̄ωc

at different temperatures. As expected, we see a periodic
behavior from one LL to another, further justifying the absence
of the QH condensate contribution. The sign change in the
thermopower when the chemical potential in halfway between
two neighboring LLs, which corresponds to the center of a
QH plateau, has a similar origin to the sign change at the
QH transition points discussed above: This is due to the fact
that transport to the right of the center of the QH plateau is
dominated by thermally activated electrons in the higher LL,
and holes to the left in the lower LL. As mentioned earlier
in this regime the quasiparticle contribution to the transport
coefficients exhibit Hall insulating behavior, and as we show
in the next section the thermopower for low temperatures is
equal to the entropy per quasiparticle per quasiparticle charge.

0.0125
0.025
0.0375
0 .05

0 1 2 3 4

1500

1000

500

0

500

1000

1500

QC

FIG. 5. (Color online) Corbino thermopower calculated for fixed
disorder h̄σ = 0.05 in units of h̄ωc at different temperatures kβT =
0.0125, 0.025, 0.375, and 0.05. The thermopower QC is measured
in μ V/K and the chemical potential ε is in units of h̄ωc.

In the next section we establish that this relation is exact at low
temperatures near the center of the integer QH plateau.

B. Corbino thermopower and entropy per quasiparticle

Next we analyze the entropy per quasiparticle per quasi-
particle charge and its relation to the Corbino thermopower.
The entropy is the partial derivative of the grand canonical
potential � with respect to the temperature T , S = −∂�/∂T .
The grand canonical potential in the presence of the disorder
broadened LL DOS for an isolated LL can be written as

� = −kBT
Nφ

πσ

∑
n

∫ 2h̄σ+h̄ωn

−2h̄σ+h̄ωn

dε log(1 + eβ(μ−ε))ρn(ε),

(26)

where Nφ = A/2πl2
B is the degeneracy of a single LL. In the

following we concentrate on a single LL only, neglecting the
effects of LL mixing. This assumption can be formally justified
by working in the high field approximation h̄ωc � h̄σ . In this
limit the entropy is a periodic function of the chemical potential
μ. The total entropy for an isolated LL S = S+ + S− can be
split into contributions from quasielectrons and quasiholes Sα ,
α = +(−) for quasielectrons (quasiholes). It is advantageous
for what follows to express Sα in terms of the number of
quasielectrons (quasiholes) Nα

q as

Sα(T ,μ) = (−1)α+1
∫ h̄ωc/2

−2σα+h̄ωc/2
dε

(ε − μ)

kβT 2

∂nF

∂ε
Nα

q (ε),

(27)

where we have used the fact that ρn(ε) = ∂Nq(ε)/∂ε and
performed an integration by parts on Eq. (26), and then taken
the derivative with respect to the temperature. The number of
quasiparticles Nα

q can be expressed as

Nα
q (μ) = (−1)α

Nφ

πσ

∫ μα

−2h̄σα+h̄ωc/2
dε

√
1 −

(
ε − 1/2h̄ωc

2h̄σ

)2

,

(28)

with μ+ � h̄ωc/2 (electron dominating) and μ− � h̄ωc (hole
dominating), and with our definition we always have Nα

q > 0.
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The thermally activated quasiparticle can then be expressed as

Nα
q (T ,μ) =

∫ ∞

−∞
dε

∂nF

∂ε
Nα

q (μ). (29)

To compare the Corbino thermopower calculated in the pre-
vious section to the entropy per quasiparticle per quasiparticle
charge in the low temperature limit we start by identifying
two different regions as shown in Fig 3. For the sake of clarity
we now restrict our analysis to quasielectrons only, since the
analysis for quasiholes is similar. We relax this constraint in our
final answers which are general and apply equally to both types
of quasiparticles. Regions I and II for quasielectrons are given
as 0 < μ < −2σ + h̄ωc/2 and −2σ + h̄ωc/2 < μ < h̄ωc/2,
respectively (see Fig. 3). In region I the quasiparticles are
purely thermally activated and obey Boltzmann statistics, the
diagonal response functions exhibit behavior similar to an
insulator and hence divergent thermpower (see Fig. 4). In
contrast, region II contains a finite density of quasielectrons
even at T = 0 and the thermopower depends in particular on
the details of disorder strength and the chemical potential.

For region I working in the low temperature limit kβT �
−2σ − μ + h̄ωc/2, the quasiparticles obey Boltzmann statis-
tics and one can replace the derivative of the Fermi function
∂nF /∂ε in Eqs. (21), (22), and (27) by eβ(ε−μ). In this limit
the entropy can be expressed as (a similar situation arises for
quasiholes),

S+ = − ∂

∂T

[
eβ(μ+2σ−1/2)

∫ δ

0
dεe−βεN+

q (T = 0,ε → 0)

]
,

(30)

where δ is a small region where the derivative of the Fermi
function overlaps with the LL broadened density of states
and with leading order behavior for N+

q (T = 0,ε → 0) =
2/3(x/σ )3/2. With the same approximation for Eq. (29) the
entropy per quasiparticle per quasiparticle charge in region I
can be expressed as,

Sα

eNα
q

= (−1)α
k2
βT

e

∂

∂T

[
log

(
eβ(μ+2σα−1/2)

×
∫ δ/(kβT )

0
due−uu3/2

)]
. (31)

Similarly one can use the same approximation to evaluate Eqs.
(21) and (22) in region I giving the Corbino thermopower near
the center of the QH plateau,

Qα
C = (−1)α

k2
βT

e

∂

∂T

[
log

(
eβ(μ+2σα−1/2)

∫ δ/(kβT )

0
due−uu

)]
,

(32)

where α = +(−) gives the Corbino thermopower expression
to the right (left) of the center of the QH plateau in the low
temperature regime. This gives an explicit verification of the
interpretation of the Corbino thermopower as the entropy per
quasiparticle per quasiparticle charge

Qα
C = Sα

eNα
q

= α
k2
β

e

(μ + 2σα − 1/2)

T
+ · · · . (33)
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FIG. 6. (Color online) Numerical attained ratio of the entropy
per quasiparticle per quasiparticle charge S/(eNq ) and the Corbino
thermopower QC for the quasielectron region of an isolated lowest
Landau level for kβT /h̄σ = 0.01.

In the opposite regime (region II) where the quasiparticles
resemble a degenerate Fermi gas for kBT � h̄σ , we recover a
Mott-like expression for the Corbino thermopower,

QC = α
k2
β

e
T

π2

3

1

L11
xx

dL11
xx

dε

∣∣∣∣
ε=μ

. (34)

Similarly the entropy per quasiparticle per quasiparticle
charge can be expressed as

S+

eN+ = α
k2
β

e
T

π2

3

1

N+
q

dN+
q

dε

∣∣∣∣
ε=μ

. (35)

In the latter case while we do not have an exact equality,
we still find QC scales like the entropy per quasiparticle
per quasiparticle charge with the constant of proportionality
depending on the specific model for disorder, and other
details. The deviation from equality gets progressively worse
as the chemical potential approaches the LL energies, where
the distinction between quasielectron and quasihole becomes
ambiguous. This is evident in Fig. 6 where the numerically
attained ratio of entropy per quasiparticle per quasiparticle
charge S/(eNq ) and Corbino thermopower QC is plotted as
a function of the chemical potential μ. Fig. 6 also indicates
the two are equal in Region I which is near the center of the
QH plateau. In Region II the two are no longer equal; however
they have the same (linear) T dependence and hence a constant
ratio in the low T limit.

IV. APPLICATION TO NON-ABELIAN QUANTUM
HALL STATES

It is clear that Eq. (8) can be used to probe entropy carried by
non-Abelian quasiparticles in non-Abelian QH liquids, which
is dominated by the topological entropy SD at low temperature.
The best place to do this is near the center of the QH plateau,
where the quasiparticle density is low. This is opposite to
the case of Hall bar geometry,15 in which case thermopower
measures total entropy carried by the quasiparticles (divided
by number of electrons), one thus needs to be near the edge
of QH plateau to have higher quasiparticle density and thus
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entropy. Here since it is entropy per quasiparticle that is
measured, the low-density regime is preferable. There are
several advantages of working near the plateau center, where
the physics in general is simpler. Among them, we mention:
(i) We do not need to worry about the residue coupling among
quasiparticles that can lift the ground state degeneracy, as they
decay exponentially with quasiparticle separation. (ii) We do
not need to worry about competing states that may appear
(possibly in parts of the sample), which can carry substantial
entropy.

Quantitatively, we expect Corbino thermopower to saturate
to a finite value in the low temperature limit that depends on
the quasiparticle’s quantum dimension:

QC(T → 0) = (kβ/e�) log d. (36)

For the specific case of 5/2, we expect |e�| = |e|/4 and d =√
2,1 thus

|QC(T → 0)| = (4kβ/e) log
√

2 ≈ 1.2 × 10−4V/K, (37)

which is at least one order of magnitude larger than what has
been observed in the FQH regime below 0.1K . In the Corbino
geometry, the sign of QC changes when one moves through the
plateau center, as one goes from the quasiparticle dominated to
quasihole dominated regime. To approach the saturation value
of Eq. (36), we need the temperature to be sufficiently low

such that Sn(T ) � SD . Assuming that the quasiparticles form
a Wigner crystal in a completely clean sample, this happens
for T � TD , where the characteristic temperature TD is the
Debye temperature of the Wigner crystal, estimated in Ref. 15
[see its Eq. (13)]. We note this would be a lower bound
for realistic samples, as disorder can pin the Wigner crystal
(or perhaps individual quasiparticles), and open gaps in the
magnetophonon spectra; this tends to suppress Sn(T ) at low
temperature, and pushes the saturation temperature higher.

One caveat to keep in mind is for samples with some
inhomogeneity, there are preexisting quasiparticles and quasi-
holes (with equal average density) at the center of the QH
plateau, and their contributions to QC would cancel due to
their opposite charge. In that case one does need to move away
from the plateau center, such that the number of quasiparticles
or quasiholes induced by the deviation dominates the preex-
isting ones. This may put some stringent constraints on the
sample quality for the observability of the behavior indicated
in Eq. (36).

ACKNOWLEDGMENTS

One of us (K.Y.) thanks R. R. Du for useful correspondence
that motivated the present work. This work was supported in
part by NSF Grant No. DMR-1004545 (K.Y.).

1G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991); M. Greiter,
X. G. Wen, and F. Wilczek, Phys. Rev. Lett. 66, 3205 (1991).

2N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999).
3A. Kitaev, Ann. Phys. (Leipzig) 303, 2 (2003).
4C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma,
Rev. Mod. Phys. 80, 1083 (2008).

5R. H. Morf, Phys. Rev. Lett. 80, 1505 (1998); E. H. Rezayi and
F. D. M. Haldane, ibid. 84, 4685 (2000); X. Wan, K. Yang, and
E. H. Rezayi, ibid. 97, 256804 (2006); X. Wan, Z.-X. Hu, E. H.
Rezayi, and K. Yang, Phys. Rev. B 77, 165316 (2008); A. E. Feiguin,
E. Rezayi, Kun Yang, C. Nayak, and S. Das Sarma, ibid. 79, 115322
(2009); M. R. Peterson, T. Jolicoeur, and S. Das Sarma, ibid. 78,
155308 (2008); M. R. Peterson, Th. Jolicoeur, and S. Das Sarma,
Phys. Rev. Lett. 101, 016807 (2008); Gunnar Moller and Steven H.
Simon, Phys. Rev. B 77, 075319 (2008); H. Wang, D. N. Sheng,
and F. D. M. Haldane, ibid. 80, 241311 (2009); M. Storni, R. H.
Morf, and S. Das Sarma, Phys. Rev. Lett. 104, 076803 (2010).

6S.-S. Lee, S. Ryu, C. Nayak, and M. P. A. Fisher, Phys. Rev. Lett.
99, 236807 (2007); M. Levin, B. I. Halperin, and B. Rosenow, ibid.
99, 236806 (2007).

7M. Dolev, M. Heiblum, V. Umansky, A. Stern, and D. Mahalu,
Nature (London) 452, 829 (2008); I. P. Radu, J. B. Miller, C. M.
Marcus, M. A. Kastner, L. N. Pfeiffer, and K. W. West, Science
320, 899 (2008); X. Lin, C. Dillard, M. A. Kastner, L. N. Pfeiffer,
and K. W. West, e-print arXiv:1201.3648.

8R. L. Willet, L. N. Pfeiffer, and K. W. West, Proc. Natl. Acad. Sci.
106, 8853 (2009).

9Vivek Venkatachalam, Amir Yacoby, Loren Pfeiffer, and Ken West,
Nature (London) 469, 185 (2011).

10E. K. Akhmedov and M. Frigerio, Phys. Rev. Lett. 96, 061802
(2006); P. Bonderson, A. Kitaev, and K. Shtengel, ibid. 96, 016803
(2006).

11R. L. Willett, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 82,
205301 (2010).

12Sanghun An, P. Jiang, H. Choi, W. Kang, S. H. Simon, L. N. Pfeiffer,
K. W. West, and K. W. Baldwin, e-print arXiv:1112.3400.

13X. Wan, K. Yang, and E. H. Rezayi, Phys. Rev. Lett. 88, 056802
(2002); K. Yang, ibid. 91, 036802 (2003); X. Wan, E. H. Rezayi,
and K. Yang, Phys. Rev. B 68, 125307 (2003); S. Jolad and J. K.
Jain, Phys. Rev. Lett. 102, 116801 (2009); S. Jolad, D. Sen, and
J. K. Jain, Phys. Rev. B 82, 075315 (2010).

14B. Rosenow, B. I. Halperin, S. H. Simon, and A. Stern, Phys. Rev.
B 80, 155305 (2009); W. Bishara and C. Nayak, ibid. 80, 155304
(2009).

15K. Yang and B. I. Halperin, Phys. Rev. B 79, 115317 (2009).
16N. R. Cooper and A. Stern, Phys. Rev. Lett. 102, 176807 (2009).
17G. Gervais and K. Yang, Phys. Rev. Lett. 105, 086801 (2010).
18K. Yang, e-print arXiv:0807.3341v1.
19W. E. Chickering, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,

Phys. Rev. B 81, 245319 (2010).
20H. Obloh, K. von Klitzing, and K. Ploog, Surf. Sci. 170, 292

(1986); R. Fletcher, M. D’Iorio, A. S. Sachrajda, R. Stoner,
C. T. Foxon, and J. J. Harris, Phys. Rev. B 37, 3137 (1988);
C. Ruf, H. Obloh, B. Junge, E. Gmelin, K. Ploog, and G. Weimann,
ibid. 37, 6377 (1988); U. Zeitler, J. C. Maan, P. Wyder, R. Fletcher,
C. T. Foxon, and J. J. Harris, ibid. 47, 16008 (1993); V. Bayot,
X. Ying, M. B. Santos, and M. Shayegan, Europhys. Lett. 25, 613
(1994); X. Ying, V. Bayot, M. B. Santos, and M. Shayegan, Phys.
Rev. B 50, 4969 (1994); V. Bayot, E. Grivei, H. C. Manoharan,
X. Ying, and M. Shayegan, ibid. 52, 8621 (1995); B. Tieke,
U. Zeitler, R. Fletcher, S. A. J. Wiegers, A. K. Geim, J. C. Maan,
and M. Henini, Phys. Rev. Lett. 76, 3630 (1996); Jian Zhang, S. K.
Lyo, R. R. Du, J. A. Simmons, and J. L. Reno, ibid. 92, 156802
(2004).

195107-7

http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1103/PhysRevLett.66.3205
http://dx.doi.org/10.1103/PhysRevB.59.8084
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/PhysRevLett.80.1505
http://dx.doi.org/10.1103/PhysRevLett.84.4685
http://dx.doi.org/10.1103/PhysRevLett.97.256804
http://dx.doi.org/10.1103/PhysRevB.77.165316
http://dx.doi.org/10.1103/PhysRevB.79.115322
http://dx.doi.org/10.1103/PhysRevB.79.115322
http://dx.doi.org/10.1103/PhysRevB.78.155308
http://dx.doi.org/10.1103/PhysRevB.78.155308
http://dx.doi.org/10.1103/PhysRevLett.101.016807
http://dx.doi.org/10.1103/PhysRevB.77.075319
http://dx.doi.org/10.1103/PhysRevB.80.241311
http://dx.doi.org/10.1103/PhysRevLett.104.076803
http://dx.doi.org/10.1103/PhysRevLett.99.236807
http://dx.doi.org/10.1103/PhysRevLett.99.236807
http://dx.doi.org/10.1103/PhysRevLett.99.236806
http://dx.doi.org/10.1103/PhysRevLett.99.236806
http://dx.doi.org/10.1038/nature06855
http://dx.doi.org/10.1126/science.1157560
http://dx.doi.org/10.1126/science.1157560
http://arXiv.org/abs/arXiv:1201.3648
http://dx.doi.org/10.1073/pnas.0812599106
http://dx.doi.org/10.1073/pnas.0812599106
http://dx.doi.org/10.1038/nature09680
http://dx.doi.org/10.1103/PhysRevLett.96.061802
http://dx.doi.org/10.1103/PhysRevLett.96.061802
http://dx.doi.org/10.1103/PhysRevLett.96.016803
http://dx.doi.org/10.1103/PhysRevLett.96.016803
http://dx.doi.org/10.1103/PhysRevB.82.205301
http://dx.doi.org/10.1103/PhysRevB.82.205301
http://arXiv.org/abs/arXiv:1112.3400
http://dx.doi.org/10.1103/PhysRevLett.88.056802
http://dx.doi.org/10.1103/PhysRevLett.88.056802
http://dx.doi.org/10.1103/PhysRevLett.91.036802
http://dx.doi.org/10.1103/PhysRevB.68.125307
http://dx.doi.org/10.1103/PhysRevLett.102.116801
http://dx.doi.org/10.1103/PhysRevB.82.075315
http://dx.doi.org/10.1103/PhysRevB.80.155305
http://dx.doi.org/10.1103/PhysRevB.80.155305
http://dx.doi.org/10.1103/PhysRevB.80.155304
http://dx.doi.org/10.1103/PhysRevB.80.155304
http://dx.doi.org/10.1103/PhysRevB.79.115317
http://dx.doi.org/10.1103/PhysRevLett.102.176807
http://dx.doi.org/10.1103/PhysRevLett.105.086801
http://arXiv.org/abs/arXiv:0807.3341v1
http://dx.doi.org/10.1103/PhysRevB.81.245319
http://dx.doi.org/10.1016/0039-6028(86)90977-5
http://dx.doi.org/10.1016/0039-6028(86)90977-5
http://dx.doi.org/10.1103/PhysRevB.37.3137
http://dx.doi.org/10.1103/PhysRevB.37.6377
http://dx.doi.org/10.1103/PhysRevB.47.16008
http://dx.doi.org/10.1209/0295-5075/25/8/009
http://dx.doi.org/10.1209/0295-5075/25/8/009
http://dx.doi.org/10.1103/PhysRevB.50.4969
http://dx.doi.org/10.1103/PhysRevB.50.4969
http://dx.doi.org/10.1103/PhysRevB.52.R8621
http://dx.doi.org/10.1103/PhysRevLett.76.3630
http://dx.doi.org/10.1103/PhysRevLett.92.156802
http://dx.doi.org/10.1103/PhysRevLett.92.156802


YAFIS BARLAS AND KUN YANG PHYSICAL REVIEW B 85, 195107 (2012)

21H. van Zalinge, R. W. van der Heijden, and J. H. Wolter, Phys. Rev.
B 67, 165311 (2003).

22L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265
(1931).

23S. Kivelson, D. H. Lee, and S. C. Zhang, Phys. Rev. B 46, 2223
(1992).

24H. L. Stromer et al., Solid State Commun. 84, 95 (1992); see also
T. Rotger, G. J. C. L. Bruls, J. C. Maan, P. Wyder, K. Ploog,
G. Weimann et al., Phys. Rev. Lett. 62, 90 (1989).

25S. H. Simon and B. I. Halperin, Phys. Rev. Lett. 73, 3278
(1994).

26M. Jonson and S. M. Girvin, Phys. Rev. B 29, 1939 (1984).

195107-8

http://dx.doi.org/10.1103/PhysRevB.67.165311
http://dx.doi.org/10.1103/PhysRevB.67.165311
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRev.38.2265
http://dx.doi.org/10.1103/PhysRev.38.2265
http://dx.doi.org/10.1103/PhysRevB.46.2223
http://dx.doi.org/10.1103/PhysRevB.46.2223
http://dx.doi.org/10.1016/0038-1098(92)90302-P
http://dx.doi.org/10.1103/PhysRevLett.62.90
http://dx.doi.org/10.1103/PhysRevLett.73.3278
http://dx.doi.org/10.1103/PhysRevLett.73.3278
http://dx.doi.org/10.1103/PhysRevB.29.1939

