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Finite wave vector pairing in doped two-leg ladders
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We consider the effects of umklapp processes in doped two-leg fermionic ladders. These may emerge either
at special band fillings or as a result of the presence of external periodic potentials. We show that such umklapp
processes can lead to profound changes of physical properties and in particular stabilize pair-density wave
phases.
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I. INTRODUCTION

As is well illustrated by the example of the one-dimensional
Hubbard model,1 umklapp processes in strongly correlated
systems may lead to a profound restructuring of the ground
state. Indeed, at half filling when the Fermi wave vector is such
that 4kF = 2π , umklapp scattering processes connect opposite
Fermi points and open a spectral gap for single-particle
excitations. In a similar way umklapp processes in undoped
two-leg fermionic ladders are known to generate a variety of
insulating states.2–5 In both cases these umklapp processes
become relevant at the particular density of one electron
per site, independently of the details of the interactions. In
multiband systems such as the two-leg ladder there are other
kinds of umklapp processes that can connect Fermi points
at certain other band fillings, which generally depend on
the microscopic details of both the band structure and the
interactions.

One example where such processes may play a crucial role
is the “telephone number compound” Sr14−xCaxCu24O41.6,7

X-ray scattering techniques have established the presence of
a standing wave in the hole density without a significant
lattice distortion in this material.6 The simplest explanation
for these findings is a crystalline state of pairs of holes.8,9 The
physical origin of the hole crystal is likely to be the long-ranged
Coulomb interaction between ladders. Treating this interladder
Coulomb interaction in a mean-field approximation leads to
a model of decoupled ladders subject to a (self-consistent)
periodic potential.9 The latter introduces umklapp processes
and an important question of current interest is what effects
these have both on the ground state and excitations of the
ladders.

A second example in which umklapp processes may be
important is x = 1/8 doped La2−xSrxCuO4.10 In this material
regular “stripe” order is formed below a critical temperature.11

Stripes in neighboring planes are perpendicular to each other
and are shifted by one lattice spacing.12 The unit cell in the
CuO planes contains four sites, which can be thought of
as forming two undoped and two doped chains of atoms.
Hence the period in the direction perpendicular to the CuO
planes is 4. On the other hand, the doped chains are 3/4
filled. As a result the period of the potential induced by the
neighboring planes is also 4, which coincides with the average
distance between holes in the doped chains. A simple model
describing this situation is given by doped two-leg ladders

in the presence of a periodic potential. It is well established
that La1.875Sr0.125CuO4 exhibits rather exotic two-dimensional
(2D) superconducting behavior as a result of the CuO planes
being effectively decoupled from one another.13,14 Similar
dynamical layer decoupling has recently been observed in
heavy fermion superconductor CeRhIn5.15

Umklapp processes can in principle also be induced by
imposing external periodic potentials. This has recently been
demonstrated by adsorbing noble gas monolayers on the
surface on carbon nanotubes.16

From a theoretical point of view, there is one particular case,
in which it is known that umklapp processes have very interest-
ing physical consequences. This occurs in the so-called Kondo-
Heisenberg model17,18 (KHM). The latter describes a situation
where the two legs of the ladder are inequivalent. Leg 1 is half
filled and as a consequence of umklapp interactions has a large
Mott gap, while leg 2 has a density of less than one electron per
site. At low energies tunneling between the legs is not allowed
due to the presence of a large Mott gap in leg 1, but virtual pro-
cesses lead to a Heisenberg exchange interaction between elec-
tron spins on the two legs. The resulting model describing the
low-energy physics of such a two-leg ladder consists of a spin
S = 1/2 Heisenberg chain (leg 1) interacting via exchange in-
teractions with a one-dimensional electron gas (1DEG, leg 2).
Generically the Fermi momentum of the 1DEG will be incom-
mensurate with the lattice. It was demonstrated in Ref. 17 that
this KHM exhibits quasi-long-range order of a particular com-
posite order parameter at a finite wave vector. More recently it
was shown18 that there also is quasi-long-range superconduct-
ing order with wave number π , constituting an example of a 1D
Fulde-Ferrell-Larkin-Ovchinnikov state19 in the absence of a
magnetic field. In very recent work20 it was demonstrated that
the pair-density wave (PDW) state is in fact much more general
and in particular does not require the legs to be inequivalent.

In the following we consider spin-1/2 fermions on a two-
leg ladder with Hubbard and nearest-neighbor density-density
interactions. In addition we allow an external periodic potential
to be present. The Hamiltonian is given by

Hladd(K) = −t
∑
m,σ

2∑
�=1

a
†
�,m+1,σ a�,m,σ +a

†
�,m,σ a�,m+1,σ

− t⊥
∑
m,α

a
†
1,m,σ a2,m,σ + a

†
2,m,σ a1,m,σ
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+U
∑
m

2∑
�=1

n�,m,↑n�,m,↓ + V⊥
∑
m

n1,mn2,m

+V‖
∑
m

2∑
�=1

n�,mn�,m+1+
∑
m

2∑
�=1

W� cos(Km) n�,m,

(1)

where a�,m,σ are annihilation operators for spin-σ electrons on
site m of leg � of the ladder and n�,m,σ = a

†
�,m,σ a�,m,σ . U is

the Hubbard interaction strength, V⊥ and V‖ are the density-
density interaction strengths along the rung and leg directions,
respectively, and the periodic potential is characterized by
its strength on each leg W1,2 and the wave number of its
modulation, K . The lattice model (1) has U(1) × SU(2)
symmetry, with an additional Z2 symmetry if W1 = W2. It
is useful to rewrite the periodic potential term as∑

m

cos(Km)[W+(n1,m + n2,m) + W−(n1,m − n2,m)], (2)

where W± = (W1 ± W2)/2. A nonzero W− breaks the sym-
metry between the two legs of the ladder. In the following we
consider a case where W− = 0 (“4kb umklapp”) and one where
W+ = 0 (“3kb + kab umklapp”). A schematic diagram of
the ladder geometry can be seen in Fig. 1. In order see which
wave numbers K will lead to the most pronounced effects for
weak interactions and small W1,2 it is useful to consider the
band structure of Hladd in the absence of interactions. It is useful
to introduce the bonding (b) and antibonding (ab) variables by

cj,n,σ = 1√
2

[a1,n,σ − (−1)j a2,n,σ ], (3)

where j = 1,2 = b,ab. In terms of these operators the
noninteracting tight-binding Hamiltonian Hladd,0 is diagonal
in momentum space,

Hladd,0 =
2∑

j=1

∑
k

εj (k)c†j,σ (k)cj,σ (k), (4)

where cj,σ (k) = L−1/2 ∑
n eikncj,n,σ and

ε1(k) = −2t cos(k) − t⊥, ε2(k) = −2t cos(k) + t⊥. (5)

The corresponding band structure is shown in Fig. 1(b). For
weak interactions the low-energy degrees of freedom occur in
the vicinities of nkb and nkab where n is an integer and kb, kab

are the Fermi momenta of the bonding and antibonding bands,
respectively. It is then clear that external potentials with wave
numbers K = n1kb + n2kab will affect the low-energy degrees
of freedom most strongly. In the following we concentrate on
the cases K = 3kb + kab and K = 4kb. As we will see, in the
case of strong interactions but small t⊥ an analogous picture
applies.

This paper is organized as follows. In Sec. II we derive the
low-energy effective field theories in the “band” and “chain”
limits of the Hamiltonian (1) and discuss how we account for
the external periodic potential. In Sec. III we consider the 4kb

umklapp process in both band and chain representations of the
model. By means of renormalization-group (RG) methods we
derive the effective low-energy theories describing the strong-
coupling fixed points. In Sec. IV we analyze the effects of
the 3kb + kab umklapp process at low energies in both band
and chain representations of the model. Section V presents
density-matrix renormalization-group (DMRG) calculations
in intermediate parameter regimes. Section VI contains the
conclusions. A number of technical points are discussed in
several appendixes.

II. LOW-ENERGY DESCRIPTION

There are two complementary ways of deriving a field
theory description of the lattice Hamiltonian (1), each of which
applies to a particular limit of the model. One may start by
considering the noninteracting Hamiltonian, diagonalizing the
tight-binding model by transforming to bonding and antibond-
ing variables and subsequently treating the interaction using
perturbative RG methods.5,21–25 Hereinafter this approach will
be called the “band representation.” Alternatively, one may
start by considering two strongly interacting uncoupled chains
and treat the across rung hopping t⊥ and density-density
interaction V⊥ as perturbations.26–28 This approach will be
referred to as the “chain representation.” In the following
subsections we summarize both approaches in turn.

(a) (b)

kabkab

kbkb EF

0
k

E
k

π

FIG. 1. (Color online) (a) Extended Hubbard ladder with different leg and rung hopping amplitudes and density-density interactions.
(b) Noninteracting band structure for the tight-binding model on the ladder, with the Fermi wave vectors labeled.
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A. Band representation U,Vj � t,t⊥

Here the starting point is the tight-binding model obtained
by dropping all interaction terms in the Hamiltonian (1). The
resulting model is diagonalized in terms of the bonding and
antibonding (b/ab) variables (3), resulting in split bonding
and antibonding bands (4) as depicted in Fig. 1(b). As we
are interested in the low-energy behavior of the system,
we linearize the spectrum around the Fermi points. The
low-energy projections of the lattice fermion operators are then

cj,n,σ ∼ √
a0[Rj,σ (x)eikj x + Lj,σ (x)e−ikj x], (6)

where L(x) and R(x) are left- and right-moving fermion fields
close to the Fermi points, kb (kab) is the Fermi wave vector in
the bonding (antibonding) band, and a0 is the lattice spacing,
which serves as the short-distance cutoff of the theory. The
interactions are conveniently expressed in terms of currents,5

which following Ref. 29 we define as

IR
ij = 1

2Ri,σ εσσ ′ Rj,σ ′ , I aR
ij = 1

2Ri,σ (εσ a)σσ ′Rj,σ ′ , (7)

JR
ij = 1

2R
†
i,σ Rj,σ , J aR

ij = 1
2R

†
i,σ σ a

σσ ′Rj,σ ′ , (8)

and similarly for left-moving fermion fields with
R ↔ L. The low-energy Hamiltonian then takes the

form H = ∫
dx [H0 + HU + HW ], where

H0 =
2∑

j=1

vj (−iR
†
j,σ ∂xRj,σ + iL

†
j,σ ∂xLj,σ ),

HU =
∑
i,j

c̃
ρ

ij J
R
ij J L

ij − c̃σ
ij J

aR
ij J aL

ij +
∑
i 
=j

f̃
ρ

ij J
R
ii J

L
jj−f̃ σ

ij J aR
ii J aL

jj ,

HW =
∑
P∈S

∑
γ=±

Wγ,P δK,P

[
ρ

(γ )
P (x) + H.c.

]
. (9)

Here ρ
(γ )
P (x) are the Fourier components of the low-energy

projections of n1,l ± n2,l , cf. Eq. (2), with momenta close
to P ; these components are discussed in some detail in
Appendix A. The “4kF ” harmonics of the density operator
include S = {2kb + 2kab,4kb,4kab,3kb + kab,3kab + kb}. In
the following analysis we consider two particular cases with
P = 4kb and P = 3kb + kab. P = 4kab and P = 3kab + kb

can be analyzed in a similar manner to the cases considered
by exchange of band indices. The case P = 2kb + 2kab is left
for future studies. We note that generically the “2kF ” response
is suppressed away from special fillings, where at least one
band is completely filled. The response at “2kF ” will not be
considered in this work. The 4kF components of the density
are obtained by integrating out the high-energy degrees of
freedom perturbatively in U , see Appendix B, and are given
in terms of the currents as

ρ
(+)
4kb

(x) + H.c. = (
IL

11

)†
IR

11 + (
IR

11

)†
IL

11,

ρ
(+)
4kab

(x) + H.c. = (
IL

22

)†
IR

22 + (
IR

22

)†
IL

22,

ρ
(+)
2kb+2kab

(x) + H.c. = 8
{(

IL
12

)†
IR

21 + (
IR

21

)†
IL

12

}
, (10)

ρ
(−)
kb+3kab

(x) + H.c. = 2
{(

IL
22

)†
IR

21 + (
IL

21

)†
IR

22 + (
IR

22

)†
IL

21 + (
IR

21

)†
IL

22

}
,

ρ
(−)
3kb+kab

(x) + H.c. = 2
{(

IL
11

)†
IR

12 + (
IL

12

)†
IR

11 + (
IR

11

)†
IL

12 + (
IR

12

)†
IL

11

}
.

The initial conditions for the coupling constants defined in Eq. (9) for the extended Hubbard model are

c̃
ρ

ii = U + V⊥ + 4V‖
[
1 − 1

2 cos(2kia0)
]
,

c̃
ρ

ij = U − V⊥ + 4V‖
[

cos[(kb − kab)a0] − 1
2 cos[(kb + kab)a0]

]
,

f̃
ρ

ij = U + 3V⊥ + 4V‖
[
1 − 1

2 cos[(kb + kab)a0]
]
,

c̃σ
ii = U + V⊥ + 2V‖ cos(2kia0),

f̃ σ
ij = c̃σ

ij = U − V⊥ + 2V‖ cos[(kb + kab)a0].

The analysis which we carry out in the band representation requires the bosonized Hamiltonian. Following Ref. 27, we
bosonize the Hamiltonian according to

Rd,σ ∼ κd,σ√
2π

ei
√

4πϕd,σ , Ld,σ ∼ κd,σ√
2π

e−i
√

4πϕ̄d,σ , d = 1,2 = b,ab, (11)

where ϕd,σ (ϕ̄d,σ ) is the right (left) chiral component of a canonical boson field and {κd,σ ,κd ′,σ ′ } = 2δd,d ′δσ,σ ′ are Klein factors
to ensure the anticommutation of different species of fermions. The boson fields have commutation relations

[ϕd,σ (x),ϕd ′,σ ′(x ′)] = −[ϕ̄d,σ (x),ϕ̄d ′,σ ′ (x ′)] = i

4
sgn(x − x ′)δd,d ′δσ,σ ′ , [ϕd,σ (x),ϕ̄d ′,σ ′(x ′)] = i

4
δd,d ′δσ,σ ′ , (12)

which enforce anticommutation relations for fermions of the same species. Then, we change to spin and charge bosons according to

d,c = 1√
2

[ϕd,↑ + ϕd,↓ + ϕ̄d,↑ + ϕ̄d,↓], d,s = 1√
2

[ϕd,↑ − ϕd,↓ + ϕ̄d,↑ − ϕ̄d,↓],

(13)

�d,c = 1√
2

[ϕd,↑ + ϕd,↓ − ϕ̄d,↑ − ϕ̄d,↓], �d,s = 1√
2

[ϕd,↑ − ϕd,↓ − ϕ̄d,↑ + ϕ̄d,↓],
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where  and � are dual bosons obeying [�(x),(x ′)] = iϑ(x − x ′), where ϑ(y) is the Heaviside step function. This
relationship also implies that [∂x�(x),(x ′)] = iδ(x − x ′) are canonically conjugate. The resulting bosonized Hamiltonian is
given by

H0 + HU =
2∑

d=1

vd

2π

∑
γ=c,s

[(∂xd,γ )2 + (∂x�d,γ )2] + c̃
ρ

dd

(2πa0)2

1

8π
[(∂xd,c)2 − (∂x�d,c)2]

+ f̃
ρ

12

4π (2πa0)2
[∂x1,c∂x2,c − ∂x�1,c∂x�2,c] +

2∑
d=1

c̃σ
dd

(2πa0)2

[
cos(

√
8πd,s) − 1

8π
[(∂xd,s)

2 − (∂x�d,s)
2]

]

+ 2f̃ σ
12

(2πa0)2

[
cos(

√
2π (1,s + 2,s)) cos(

√
2π (�1,s − �2,s)) − 1

8π
(∂x1,s∂x2,s − ∂x�1,s∂x�2,s)

]
+
[
c̃
ρ

12 − c̃σ
12

(2πa0)2
cos(

√
2π (�1,s − �2,s)) − c̃

ρ

12 + c̃σ
12

(2πa0)2
cos(

√
2π (1,s − 2,s))

]
cos(

√
2π (�1,c − �2,c))

− 2c̃σ
12

(2πa0)2
cos(

√
2π (�1,c − �2,c)) cos(

√
2π (1,s + 2,s)). (14)

There is a convenient way to classify the ground-state phase
of the ladder in terms of the spin and charge bosons. Following
Ref. 5, phases will be classified by the number of spin and
charge bosons which remain gapless. In particular, we will use
the notation CmSn where m is the number of gapless charge
bosons and n is the number of gapless spin bosons.

B. Chain representation t⊥ � t,U,t2/U

The field theory for the chain representation of Eq. (1) is
derived in a succession of steps, outlined below; a detailed
derivation can be found in Ref. 28. An important feature of
the chain representation is that longer range density-density
interactions along the chain direction∑

j,l

∑
m�2

V‖,mnj,lnj,l+m (15)

can be easily accommodated. As long as V‖,m are sufficiently
small and decreasing with m, the main effect of this extended
interaction is to decrease the value of Kc in Eq. (20). We
will make use of this device for tuning the value of Kc in the
following.

The main assumption of the derivation is that the interchain
hopping t⊥ is small in comparison to the high-energy cutoffs,
which for V⊥,V‖ � U are given by the single chain bandwidth
and the exchange energy scale (∼ t2/U at large U ). The
Hamiltonian is first bosonized for t⊥ = V⊥ = W1,2 = 0 using
standard results for the one-dimensional (extended) Hubbard
model.1,30 The resulting theory (as long as V‖ is not too large)
is the sum of four Gaussian models for spin and charge bosonic
fields in each chain. Denoting the bosonic fields by 

(i)
j where

i = c,s denotes the spin or charge sector and j = 1,2 denotes
the chain, we form symmetric and antisymmetric combinations
of the fields,

c = 1√
2

(


(c)
1 + 

(c)
2

)
, f = 1√

2

(


(c)
1 − 

(c)
2

)
,

(16)

s = 1√
2

(


(s)
1 + 

(s)
2

)
, sf = 1√

2

(


(s)
1 − 

(s)
2

)
.

In the absence of a periodic potential and away from commen-
surate fillings, the c field decouples from the other fields. It
is then described by a Gaussian (Tomanaga-Luttinger) theory
with the Hamiltonian density

Hc = vc

2

[
Kc(∂x�c)2 + K−1

c (∂xc)2], (17)

where �c is the dual field to c, Kc < 1 is the Luttinger
parameter in the charge sector, and vc is the charge velocity.
The exact dependence of the two parameters in the Gaussian
theory on the underlying lattice parameters is complicated,
but for V‖ = 0 can be extracted from the exact solution of the
one-dimensional Hubbard model.1,31

The remaining bosonic fields are refermionized in terms of
six Majorana fermion fields. For the right-moving components
we have

χ0
R = κsf√

πa0
sin(

√
4πφsf ), χ3

R = κsf√
πa0

cos(
√

4πφsf ),

χ1
R = κs√

πa0
sin(

√
4πφs), χ2

R = κs√
πa0

cos(
√

4πφs),

ξ 3
R = κf√

πa0
sin(

√
4πφf ), ηR = κf√

πa0
cos(

√
4πφf ),

(18)

where φa are the right-moving chiral components of the
canonical Bose fields a (a = f,s,sf ) and κa are Klein
factors fulfilling {κa,κb} = 2δa,b. Analogous expressions with
R replaced by L and φ by φ̄ hold for the left-moving modes.

The next step of the derivation introduces the interchain
tunneling t⊥. This induces a hybridization between the η and
χ0 fermions. Following Ref. 28 we examine the part of the
Hamiltonian which is quadratic in terms of the η and χ0

Majorana fermions. We linearize the spectrum about the wave
vector Q = t⊥/

√
vcvs where E(Q) = 0 and introduce the new

Majorana fermions ξ
1,2
R,L which diagonalize the aforementioned

quadratic part of the Hamiltonian. The new Majorana fermions

195103-4



FINITE WAVE VECTOR PAIRING IN DOPED TWO-LEG . . . PHYSICAL REVIEW B 85, 195103 (2012)

are given by(
χ0

R

ηR

)
=
√

2

vs + vc

(√
vc cos(Qx)

√
vc sin(Qx)

−√
vs sin(Qx)

√
vs cos(Qx)

)(
ξ 1
R

ξ 2
R

)
,

(
χ0

L

ηL

)
=
√

2

vs + vc

(√
vc cos(Qx) −√

vc sin(Qx)√
vs sin(Qx)

√
vs cos(Qx)

)(
ξ 1
L

ξ 2
L

)
.

(19)

In terms of these new variables the low-energy Hamiltonian
takes the form

H = Hc + H0 + Vint + HW, (20)

Hc = vc

2

[
Kc(∂x�c)2 + K−1

c (∂xc)2
]
, (21)

H0 = ivc

2

(
ξ 3
L∂xξ

3
L − ξ 3

R∂xξ
3
R

)+ iu

2

∑
a=1,2

(
ξa
L∂xξ

a
L − ξa

R∂xξ
a
R

)
+ ivs

2

3∑
a=1

(
χa

L∂xχ
a
L − χa

R∂xχ
a
R

)
, (22)

Vint = −2
(
ξ 3
Rξ 3

L

)[
gσ,−

(
χa

Rχa
L

)+ gc,ss

(
ξ 1
Rξ 1

L − ξ 2
Rξ 2

L

)]
− gρ,−

(
ξ 1
Rξ 1

L − ξ 2
Rξ 2

L

)2 − 2gc,st

(
ξ 1
Rξ 1

L − ξ 2
Rξ 2

L

)
×

3∑
a=1

(
χa

Rχa
L

)− 2gσ,+
3∑

a>b,a,b=1

(
χa

Rχa
L

)(
χb

Rχb
L

)
, (23)

HW =
∑
P∈S

∑
σ=±

Wσ,P δK,P

[
ρ

(σ )
P (x) + H.c.

]
. (24)

Here vc,s are the charge and spin velocities of uncoupled
chains, S = {4kF ,4kF ± Q,4kF ± 2Q}, and

u = 2vcvs

vs + vc

. (25)

The Hamiltonian Hc + H0 + Vint has the same symmetry
U(1) × SU(2) × Z2 as the underlying lattice model for W1,2 =
0. The coupling parameters of the continuum Hamiltonian are
determined by the underlying lattice model (1),

gσ− = α0V⊥
2

, gσ+ = 1

2
πvsgλ, gc,ss = u

(
α0

vs

V⊥ − 2gk

)
,

gc,st = u

(
α0

vc

V⊥ + πgλ

)
, gρ,− = vsvc

(vs + vc)2
α0V⊥, (26)

where α0 is a short-distance cutoff, gk characterizes the four-
fermion interaction in the f sector, which for |Kc − 1| � 1
is given by gk ≈ 2π (1/Kc − 1), and gλ is the strength of
the marginally irrelevant spin-current interaction for a single
extended Hubbard chain, which is known only for small U

and V‖. The notable differences between this formulation and
the band representation is the presence of several different
velocities vc 
= vs 
= u; for large intrachain interactions these
differences can be significant. The low-energy projections of
the periodic potential with wave numbers close to 4kF are
derived in Appendix B,

ρ
(+)
4kF

(x) ∼ iF

2
ei

√
4πc

{
ξ 3
Rξ 3

L+ vs

(vs + vc)

[
ξ 1
Rξ 1

L−ξ 2
Rξ 2

L

]}
,

(27)

ρ
(+)
4kF −2Q(x) ∼ ivsF

2(vs + vc)
ei

√
4πc

(
ξ 1
L − iξ 2

L

)(
ξ 1
R + iξ 2

R

)
,

(28)

ρ
(+)
4kF +2Q(x) ∼ ivsF

2(vs + vc)
ei

√
4πc

(
ξ 1
R − iξ 2

R

)(
ξ 1
L + iξ 2

L

)
,

(29)

ρ
(−)
4kF −Q(x) = −iF

√
vs

2(vs + vc)
ei

√
4πc

[(
ξ 1
R + iξ 2

R

)
ξ 3
L

+ ξ 3
R

(
ξ 1
L − iξ 2

L

)]
, (30)

ρ
(−)
4kF +Q(x) = −iF

√
vs

2(vs + vc)
ei

√
4πc

[(
ξ 1
R − iξ 2

R

)
ξ 3
L

+ ξ 3
R

(
ξ 1
L + iξ 2

L

)]
. (31)

We note that ρ
(+)
4kF

(x) and ρ
(+)
4kF ±2Q(x) are even under inter-

change of chains 1 and 2, while ρ
(−)
4kF ±Q(x) are odd.

C. Correspondence between chain and band representations

The correspondence between chain and band representa-
tions is as follows:

4kF ↔ 2(kb + kab),

4kF + 2Q ↔ 4kb,

4kF − 2Q ↔ 4kab, (32)

4kF + Q ↔ 3kb + kab,

4kF − Q ↔ 3kab + kb.

Without loss of generality, we will consider the 4kF + Q and
4kF + 2Q umklapp scattering processes. The following anal-
yses are easily performed for Q → −Q and yield analogous
results.

III. 4kb UMKLAPP

In this section we consider the 4kb umklapp scattering
process. This may become activated at commensurate filling
within the bonding band5 or at incommensurate fillings for an
applied external potential modulated at 4kb. In the following
we analyze band and chain limits of Eq. (1) in turn and
discuss the zero-temperature phase diagram. The 4kb Mott
insulating phase in the two-leg ladder has been analyzed
using RG in the band representation in a very recent work
by Jaefari and Fradkin,20 which appeared while our paper
was being completed. The main result of this analysis is the
existence of a pair-density wave phase. As our discussion
differs substantially (both in details of the RG procedure, the
derivation of the low-energy projections of observables and the
analysis of dominant correlations), we nevertheless present it
in detail in the following.

A. Band representation

Here our general approach is to consider the one-loop RG
equations for the Hamiltonian (9) in the presence of the 4kb
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umklapp interaction term. In the field theory limit the latter
becomes

HW = ũ
ρ

11

2

[(
IL

11

)†
IR

11 + (
IR

11

)†
IL

11

]
(33)

= − u
ρ

11

(2πa0)2 cos(
√

8π1,c). (34)

In the notations of Refs. 23 and 29, the one-loop RG equations
are

ċ
ρ

11 = −α1

4

[(
c
ρ

12

)2 + 3
(
cσ

12

)2
]

+ (
u

ρ

11

)2
,

ċ
ρ

12 = − 1
4

[
c
ρ

11c
ρ

12 + 3cσ
11c

σ
12

]− 1
4

[
c
ρ

12c
ρ

22 + 3cσ
12c

σ
22

]
+ 1

2

[
c
ρ

12f
ρ

12 + 3cσ
12f

σ
12

]
,

ċ
ρ

22 = −α1

4

[(
c
ρ

21

)2 + 3
(
cσ

21

)2
]
,

ċσ
11 = −(cσ

11

)2 − α1

2
cσ

12

(
c
ρ

12 + cσ
12

)
,

ċσ
12 = − 1

4

[(
c
ρ

11 + c
ρ

22

)
cσ

12 + (
c
ρ

12 + 2cσ
12

)(
cσ

11 + cσ
22

)]
(35)

+ 1
2

[
c
ρ

12f
σ
12 + cσ

12f
ρ

12 − 2cσ
12f

σ
12

]
,

ċσ
22 = −(cσ

22

)2 − α1

2
cσ

12

(
c
ρ

12 + cσ
12

)
,

ḟ
ρ

12 = 1
4

[(
c
ρ

12

)2 + 3
(
cσ

12

)2]
,

ḟ σ
12 = −(f σ

12

)2 + 1
2cσ

12

(
c
ρ

12 − cσ
12

)
,

u̇
ρ

11 = c
ρ

11 u
ρ

11,

where α1 = (v1 + v2)2/(4v1v2) and the coupling constants
have been rescaled by g̃ij = gijπ (v1 + v2). Equations (35)
agree with the RG equations reported in Ref. 5 up to a factor
of 2 in the equation for u

ρ

11.
Further progress is made by numerically integrating these

equations. We consider the case where the umklapp interaction
emerges at a particular doping of an extended Hubbard ladder.
We further restrict our discussion to (sufficiently) small values
of V⊥/U and V‖/U . Then, the numerical integration of
Eqs. (35) gives

c
ρ

11,u
ρ

11 → ∞, with c
ρ

11/u
ρ

11 → 1, (36)

while all other couplings remain small (their ratios to c
ρ

11
vanish).

The coupling constants which flow to strong coupling are
only in the bonding charge (1,c) sector of the bosonized
Hamiltonian (14) and cause the 1,c boson to become massive.
Now, we employ two-cutoff scaling,30 where we integrate out
the now massive 1,c boson and its disordered dual �1,c

perturbatively in the remaining small couplings. Expanding
the partition function to second order in the small couplings,
we obtain an effective action

Seff ≈ S̃0 + 〈S̃int〉1,c − 1
2

[〈
S̃2

int

〉
1,c

− 〈S̃int〉2
1,c

]+ · · · , (37)

with

〈O〉1,c =
∫

D1,c e−S1,c O, (38)

S1,c =
∫

dxdτ

{(
1 + c

ρ

11

8πv1(2πa0)2

)[
v1(∂x1,c)2 + 1

v1
(∂τ1,c)2

]
− u

ρ

11

(2πa0)2
cos

√
8π1,c

}
, (39)

S̃int =
∫

dxdτ

{
f

ρ

12

(2πa0)2

1

4π

[
∂x1,c∂x2,c + 1

v1v2
∂τ1,c∂τ2,c

]
+ c

ρ

12 − cσ
12

(2πa0)2
cos(

√
2π (�1,c − �2,c)) cos(

√
2π (�1,s − �2,s))

− c
ρ

12 + cσ
12

(2πa0)2
cos(

√
2π (�1,c − �2,c)) cos(

√
2π (1,s − 2,s))

− 2
cσ

12

(2πa0)2
cos(

√
2π (�1,c − �2,c)) cos(

√
2π (1,s + 2,s))

}
, (40)

and S̃0 describes all other terms in the action which do not feature 1,c bosons. The action for the bonding charge boson S1,c is
an effective Sine-Gordon model.30 The RG flow of the coupling u

ρ

11 pins the charge boson 1,c to zero. Thus 〈1,c〉1,c = 0 and
two-point functions obey

〈eiβ�1,c(τ,x)e−iβ ′�1,c(τ ′,x ′)〉1,c ∝ δβ,β ′e−r1/ξ ,

〈∂y1,c(τ,x)∂y ′1,c(τ ′,x ′)〉1,c ∝ ∂y∂y ′
e−2r1/ξ

(2r1/ξ )2
, (41)

〈∂y1,c(τ,x)e−iβ ′�1,c(τ ′,x ′)〉1,c = 0,

where y = x,v1τ and r2
1 = v2

1(τ − τ ′)2 + (x − x ′)2. The first relation follows from topological charge conservation in the
sine-Gordon model and the second follows from the properties of massive bosons in one-dimensional systems. For all other
operator product expansions we use those of the corresponding Gaussian models. To second order in the perturbative expansion

195103-6



FINITE WAVE VECTOR PAIRING IN DOPED TWO-LEG . . . PHYSICAL REVIEW B 85, 195103 (2012)

the effective Hamiltonian density is of the form

Heff = v̄2

2π

[
1

K2,c

(∂x2,c)2 + K2,c(∂x�2,c)2

]
+

2∑
d=1

v̄d

2π
[(∂xd,s)

2 + (∂x�d,s)
2]

+ c̄σ
dd

[
cos(

√
8πd,s) − 1

8π
[(∂xd,s)

2 − (∂x�d,s)
2]

]
+ 2f̄ σ

12

[
cos(

√
2π (1,s + 2,s)) cos(

√
2π (�1,s − �2,s))

− 1

8π
(∂x1,s∂x2,s − ∂x�1,s∂x�2,s)

]
+ λ cos(

√
2π (1,s − 2,s)) cos(

√
2π (�1,s − �2,s)), (42)

where λ is a coupling constant generated in the RG procedure,
which is second order in the remaining small couplings. The
λ term carries conformal spin and as a result only has minor
effects at weak coupling.17 The structure of the low-energy
effective field theory Heff is the same as for the KHM.17 We
therefore can take over the RG analysis of Ref. 32 in order
to infer the phase diagram. In the KHM there are two distinct
phases: for ferromagnetic Heisenberg exchange interactions
between the spin chain and the one-dimensional electron gas
(1DEG) the RG flow is toward weak coupling and approaches
a C1S2 fixed point, described by a three-component Luttinger
liquid Hamiltonian for the 2,c, 1,s , and 2,s bosons. On
the other hand, for antiferromagnetic Heisenberg exchange
interactions between the spin chain and the one-dimensional
electron gas (1DEG) the RG flow is toward strong coupling.
Spin gaps open in both spin sectors and one ends up with a
C1S0 phase.

Which phase the Hamiltonian (42) flows to under RG
depends on the values of the bare couplings and concomitantly
the ratios V‖/U and V⊥/U .

1. C1S2 phase

For Hubbard model initial conditions the RG flow of
Eq. (42) is always toward weak coupling as discussed
by Balents and Fisher.5 This corresponds to ferromagnetic
exchange between the spin chain and the one-dimensional
electron gas (1DEG) in the KHM. More generally, we find
that this phase occurs for f̌ σ

12 > 0, where f̌ σ
12 is the initial

value of the coupling f̄ σ
12 after integrating out the 1,c boson

in our two-cutoff RG scheme. Integrating the RG equations
(35) with extended Hubbard model initial conditions (11) we
observe that the values of f σ

12 after the initial flow in our
two-cutoff scheme are positive, as long as V‖/U and V⊥/U

are sufficiently small. Assuming that f̌ σ
12 are close to the values

of f σ
12 after the initial flow33 this implies that the extended

Hubbard model (1) with a half filled bonding band describes a
C1S2 phase as long as V‖/U and V⊥/U are sufficiently small.

2. C1S0 phase

Using the interpretation of Eq. (42) as the low-energy limit
of a KHM, there is a second parameter regime, namely the
one corresponding to antiferromagnetic exchange interaction
between the spin chain and the 1DEG. Here it is known that the
RG flow is toward a strong-coupling phase in which both spin
bosons become gapped.17 This phase occurs when f̌ σ

12 < 0.
Following through the same arguments as in the C1S2 case,

we conclude that the resulting C1S0 phase occurs when V‖/U ,
V⊥/U are sufficiently large. In other words, the Coulomb
interactions should not be screened too strongly in order for
the C1S0 phase to exist.

Next we turn to the characterization of the physical
properties of the C1S0 phase. In this we are guided by the
existing field theory17,18 and numerical18 studies of the KHM.
In particular it is known that the KHM exhibits unconventional
finite wave vector pairing.18 In terms of the field theory the
C1S0 phase is characterized by17

〈cos(
√

8π1,c)〉 
= 0, 〈cos(
√

2π (1,s + 2,s))〉 
= 0,
(43)

〈cos(
√

2π(�1,s − �2,s))〉 
= 0.

Concomitantly �1,c, (�1,s + �2,s) and 1,s − 2,s are fluc-
tuating fields, i.e., one-point functions of vertex operators
of these fields vanish and (appropriate) two-point functions
decay exponentially. Using the fact that the expectation
values (43) are nonzero and that the only remaining gapless
degree of freedom is the antibonding charge sector we
can establish the dominant quasi-long-range order in the
C1S0 phase. To this end we consider the following order
parameters:

(1) Bonding charge-density wave (bCDW),

ObCDW (n) = 1

2

∑
σ=↑,↓

(a†
1,n,σ + a

†
2,n,σ )(a1,n,σ + a2,n,σ ). (44)

Bosonizing this at vanishing interactions gives

ObCDW (x) ∼ a0

√
2

π
∂x1,c − 1

π
sin(2kbx +

√
2π1,c)

× cos(
√

2π1,s) + · · · . (45)

(2) Charge-density wave (CDW),

OCDW (n)

=
∑

σ=↑,↓
a
†
1,n,σ a1,n,σ + a

†
2,n,σ a2,n,σ

∼ a0

√
2

π
∂x(1,c + 2,c) − 1

π
cos(

√
2π1,s)

× sin(2kbx +
√

2π1,c) − 1

π
cos(

√
2π2,s)

× sin(2kabx +
√

2π2,c) + Aei
√

2π (1,c+2,c)

× cos(
√

2π (�1,s − �2,s)) cos[2(kab + kb)x] + · · · ,
(46)
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where A is an amplitude which vanishes in the U → 0 limit.
The interaction-induced terms for the charge-density-wave
operator are derived in Appendix B. Using that certain
operators obtain expectation values in the C1S0 phase (43),

we find that the leading contribution is

OCDW (n)|C1S0 ∼ Ã cos[2(kb + kab)n]ei
√

2π2,c + · · · . (47)

(3) d-wave superconductivity (SCd),

OSCd (n) = a1,n,↑a2,n,↓ + a2,n,↑a1,n,↓

∼ 2ei
√

2π�1,c cos(
√

2π1,s) − 2ei
√

2π�2,c cos(
√

2π2,s)

+ 2ei
√

2π�1,c cos(2kbx +
√

2π1,c) − 2ei
√

2π�2,c cos(2kabx +
√

2π2,c) + · · · . (48)

(4) Antibonding pairing (abP)

OabP (n) = (a†
1,n,↑ − a

†
2,n,↑)(a†

1,n+1,↓ − a
†
2,n+1,↓) − (a†

1,n,↓ − a
†
2,n,↓)(a†

1,n+1,↑ − a
†
2,n+1,↑)

∼ A0e
−i

√
2π�2,c

{
cos

[
2kab

(
x + a0

2

)
+

√
2π2,c

]
+ cos(

√
2π2,s) sin(kaba0)

}
+ ei

√
2π�2,c{[C1 cos(

√
4π+,s) − C3 cos(

√
4π�−,s)] cos(

√
2π1,c + 2kbx)

+[C2 cos(
√

4π+,s) − C4 cos(
√

4π�−,s)] sin(
√

2π1,c + 2kbx)} + · · · , (49)

where the amplitudes Ca vanish in the U → 0 limit,
+,s = (1,s + 2,s)/

√
2 and �−,s = (�1,s − �2,s)/

√
2.

The interaction-induced contribution in the bosonized ex-
pression (49) is derived in Appendix C. Using that some of
the operators occurring in Eq. (49) have nonzero expectation
values in the C1S0 phase (43), we conclude that the leading
contribution is

OabP (n)

∣∣∣∣
C1S0

∼ (−1)nC̃ei
√

2π�2,c + · · · . (50)

The bosonized form (50) of OabP (n) coincides with the PDW
order parameter identified by Berg et al. in the low-energy
description of the KHM,18 and with the analogous order
parameter OPDW proposed by Jaefari and Fradkin for the
doped two-leg ladder.20

Using the bosonized expressions of the various order pa-
rameters together with Eq. (43) we obtain the following results
for the long-distance asymptotics of correlation functions in
the C1S0 phase,

〈OCDW (x) O†
CDW (0)〉

∝ x−2 + cos[2(kb + kab)x]
A

|x|K2,c
+ · · · ,

〈ObCDW (x) O†
bCDW (0)〉 ∝ e−|x|/ξb (at 2kb) + · · · ,

〈OSCd (x) O†
SCd (0)〉 ∝ cos(2kabx)

1

|x|K2,c

1

|x|1/K2,c
+ · · · ,

〈OabP (x) O†
abP (0)〉 ∝ (−1)x/a0

|x|1/K2,c
+ · · · , (51)

where ξb is the correlation length for the bonding charge boson
and K2,c is the Luttinger parameter for the charge sector of the
antibonding band. These results suggest that there are two
different regimes:

(1) K2,c < 1. Here the slowest decay of correlations is
between the 2kab + 2kb components of OCDW . Hence the
C1S0 phase is identified as an incommensurate charge-density
wave.

(2) K2,c > 1. Here the slowest decay of correlations is
between the staggered components ofOabP and concomitantly
the C1S0 phase exhibits unconventional fluctuation supercon-
ductivity with finite wave number pairing. This “pair-density
wave” phase was identified in Ref. 20.

Which regime is realized depends on the precise values of
the microscopic parameters V⊥, V‖. Integration of the RG
equations (35) suggests that both regimes of K2,c can be
realized, although K2,c < 1 seems to be the more generic case.

As we mentioned before, the above analysis pertains to the
case in which the umklapp interaction is present automatically
as a consequence of the bonding band being half filled. In
the case when the umklapp interaction is induced through
an external periodic potential, we expect the same physics to
emerge at low energies and in particular both C1S2 and C1S0
phases to exist.

B. Chain representation

We now consider the effects of the 4kb umklapp interaction
in the chain representation. In order to simplify the analysis we
will focus on the case of extended density-density interactions
along the chains, which have the effect of decreasing the value
of Kc (see the discussion at the beginning of Sec. II B). The
low-energy projection of the umklapp term is

HW = λ

∫
dx
[
iei

√
4πKcc

(
ξ 1
R − iξR

2

)(
ξ 1
L + iξ 2

L

)+H.c.
]
,

(52)
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where we have rescaled the boson field c to absorb the
Luttinger parameter in the kinetic term of the Hamiltonian.
The perturbation HW has scaling dimension d = 1 + Kc < 2
(for generic repulsive interactions) and so this term is relevant
in the RG sense. For long-range Coulomb interactions along
the chains the Luttinger parameter becomes small Kc � 1
and this term is strongly relevant in the RG sense. It will
therefore dominate the marginal four-fermion interactions
in Eq. (20) and should be treated first. The umklapp term
is simplified by combining the Majorana fermions into a
complex (Dirac) fermion according to R = (ξR

1 + iξR
2 )/

√
2

and L† = (ξ 1
L − iξ 2

L)/
√

2 and then bosonizing R,L in terms

of a Bose field ̄ and its dual field �̄ following Ref. 30. This
gives

HW = 2λ

π

∫
dx cos[

√
4π (

√
Kcc + ̄)]. (53)

We proceed by carrying out a canonical transformation

± = 1√
2

(
√

Kcc ± ̄), �± = 1√
2

(
�c√
Kc

± �̄

)
,

(54)

where �c is the field dual to c. In terms of the new bosonic
fields the Hamiltonian density can be written as

H = v

2
[K(∂x�+)2 + K−1(∂x+)2] + m cos(

√
8π+)

+v

2
[K(∂x�−)2 + K−1(∂x−)2] + g1∂x�+∂x�− + g2∂x+∂x− + ivc

2

(
ξ 3
L∂xξ

3
L − ξ 3

R∂xξ
3
R

)
+ ivs

2

∑
a

(
χa

L∂xχ
a
L − χa

R∂xχ
a
R

)− 2gσ−
(
ξ 3
Rξ 3

L

)∑
a

(
χa

Rχa
L

)− 2gσ+
∑
a>b

(
χa

Rχa
L

)(
χb

Rχb
L

)
−(ξ 1

Rξ 1
L − ξ 2

Rξ 2
L

)[
2gc,ss

(
ξ 3
Rξ 3

L

)+ gρ,−
(
ξ 1
Rξ 1

L − ξ 2
Rξ 2

L

)+ 2gc,st

∑
a

(
χa

Rχa
L

)]
, (55)

where g1,2 and m are redefined coupling constants and

v= 1

2

√
(vc + ũ/Kc)(vc + ũKc), K2 =Kc

ũ + vcKc

vc + ũKc

. (56)

As we are considering strongly repulsive interactions we have
K � 1. By construction the cosine term in the sine-Gordon
model for the + boson is strongly relevant and will reach
strong coupling before any of the other running couplings
becomes large. In other words, the umklapp-induced gap in
the + sector will be large compared to all other low-energy
scales.

In the next step we want to integrate out the + boson,
similarly to what we did in the band representation. To this
end we express the ξ 1,2 Majorana fermions in terms of the
Dirac fermions R and L and then proceed to bosonize them.
The four-fermion interactions that involve the ξ 1,2 Majorana
fermions are proportional to(

ξ 1
Rξ 1

L − ξ 2
Rξ 2

L

)
= 1

2

[(
ξ 1
R + iξ 2

R

)(
ξ 1
L + iξ 2

L

)+ (
ξ 1
R − iξ 2

R

)(
ξ 1
L − iξ 2

L

)]
,

= R†L† + RL ∼ i

2π
cos[

√
2π (�+ + �−)]. (57)

When integrating out the + boson we therefore only generate
interactions proportional to cos(

√
8π�−), which are irrelevant

as K � 1. At energies small compared to the mass gap of the
+ boson, the effective Hamiltonian density has the form

Heff = ṽ

2
[K̃ (∂x�−)2 + K̃−1 (∂x−)2]

+ ivc

2

[
ξ 3
L∂xξ

3
L − ξ 3

R∂xξ
3
R

]+ ivs

2

[
χa

L∂xχ
a
L − χa

R∂xχ
a
R

]

− 2g̃σ−
(
ξ 3
Rξ 3

L

)∑
a

(
χa

Rχa
L

)−2g̃σ+
∑
a>b

(
χa

Rχa
L

)(
χb

Rχb
L

)
,

(58)

where g̃ are renormalized couplings, ṽ is the renormalized
velocity, and K̃ is the renormalized Luttinger parameter. The
effective Hamiltonian (58) is remarkably similar in form to
the field theory limit of the KHM with the difference that
the velocity of the singlet and triplet Majorana modes are not
equal.

In order to analyze the effective theory (58) further we carry
out a RG analysis, which gives

˙̃gσ− = − 2

πvs

g̃σ−g̃σ+, ˙̃gσ+ = − g̃2
σ−

πvc

− g̃2
σ+

πvs

. (59)

These RG equations are easily integrated. Defining g± =
g̃σ−

π
√

vcvs
± g̃σ+

πvs
, Eqs. (59) become ġ± = ∓g2

±, which have the
solution

g±(l) = g±(l0)

1 ± g±(l0)(l − l0)
. (60)

Assuming that gσ,± renormalize only weakly from their bare
values up to the RG time l0 at which the + sector reaches
strong coupling, we conclude that

g̃σ,±(l0) > 0. (61)

This then implies that the RG flow of g+ is always toward weak
coupling. On the other hand, g− flows to a strong-coupling
C1S0 fixed point if

g̃σ−(l0) > g̃σ+(l0)
√

vc

vs

. (62)
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In order to get a sense of what this requirement implies in
terms of the underlying microscopic theory we consider the
case when g̃σ±(l0) are close to their bare values and U,V‖,V⊥
are small. Then

gσ− ∼ V⊥a0

2
, gσ+ ∼ a0[U + 2 cos(2kF a0)V‖], (63)

where a0 is the lattice spacing and kF ≈ π/2.

V⊥ � 2
√

vc

vs

(U − 2V‖). (64)

Hence, just as was the case for the weak-coupling analysis of
the previous subsection, having repulsive interactions between
neighboring sites is crucial for driving the systems into a
C1S0 phase. Having established the existence of a C1S0
phase in the chain representation, the next step would be to
determine which correlations are dominant. This is difficult
for the following reason. General local observables can be
expressed in terms of Ising models, but it remains an open
problem to determine how products of Ising order and disorder
operators transform under Eq. (19).

IV. 3kb + kab UMKLAPP

In this section we consider the 3kb + kab umklapp process.
Unlike in the 4kb case, where the umklapp emerged automat-
ically for a particular value of the doping as a result of the
Hubbard interaction, we now need to introduce an external
periodic potential with the appropriate modulation.

A. Chain representation

The 3kb + kab umklapp is most easily treated in the chain
representation. We add to the low-energy Hamiltonian (20) the
term

HW = λ

∫
dx[ρ(−)

4kF,0+Q(x) + H.c.]

= −iλ

∫
dx
{[

cos(
√

4πc)ξ 1
R − sin(

√
4πc)ξ 2

R

]
ξ 3
L

+ ξ 3
R

[
cos(

√
4πc)ξ 1

L + sin(
√

4πc)ξ 2
L

]}
. (65)

The scaling dimension of HW is d = 1 + Kc < 2 and the
umklapp is therefore strongly relevant in the RG sense for the
case of strong, long-ranged repulsive interactions (Kc � 1);
see the discussion at the beginning of Sec. II B. In this case,
the umklapp term quickly flows to strong coupling under
RG, while other interactions remain small in comparison.
However, a naı̈ve mean-field treatment of the umklapp term
is not possible as it would break a (hidden) continuous U(1)
symmetry of the Hamiltonian. In order to analyze the effects
of HW we therefore perform a field redefinition (in the path
integral),

ξ 1
R = cos(

√
4πc)r + sin(

√
4πc)r0,

ξ 2
R = − sin(

√
4πc)r + cos(

√
4πc)r0,

(66)
ξ 1
L = cos(

√
4πc)l − sin(

√
4πc)l0,

ξ 2
L = sin(

√
4πc)l + cos(

√
4πc)l0.

The new fields r0, l0, r , l are fermionic in nature and
the Jacobian of Eq. (66) is unity. The transformation (66)

diagonalizes the umklapp interaction and removes from it the
total charge boson c,

HW = iλ
(
ξ 3
Lr + lξ 3

R

)
. (67)

The Lagrangian density then reads

L = 1

8π

[
v−1

c (∂τ)2 + vc(∂x)2
]+

√
Kcrr0(∂τ − iu∂x)

−
√

Kcll0(∂τ + iu∂x) + 1

2
r(∂τ − iu∂x)r

+ 1

2
r0(∂τ−iu∂x)r0 + 1

2
l(∂τ + iu∂x)l + 1

2
l0(∂τ + iu∂x)l0

+ 1

2
ξ 3
R(∂τ − ivc∂x)ξ 3

R + 1

2
ξ 3
L(∂τ + ivc∂x)ξ 3

L

+ 1

2

3∑
a=1

[
χa

R(∂τ − ivs∂x)χa
R + χa

L(∂τ + ivs∂x)χa
L

]
+ iλ(ξ 3

Lr + lξ 3
R) + Vint, (68)

where we have defined  = √
4π/Kcc and

Vint = −2gs,cc

(
ξ 3
Rξ 3

L

)
(rl − r0l0) − gρ,−(rl − r0l0)2

− 2
[
gc,st (rl − r0l0) + gσ,−

(
ξ 3
Rξ 3

L

)]∑
a

(
χa

Rχa
L

)
− 2gσ,+

∑
a>b

(
χa

Rχa
L

)(
χb

Rχb
L

)
. (69)

To make further progress we now drop the terms containing
rr0∂ and ll0∂. These terms carry nonzero Lorentz spin and
do not produce singularities in perturbation theory. We also
note that the corresponding interaction vertices do not induce
a mass for the r0 or l0 fermions.

Inspection of Eq. (68) then indicates that the umklapp
interaction acts as a mass term for the fermions (r,ξ 3

L) and
(l,ξ 3

R) and the neglected terms renormalize these gaps, in
accordance with the scaling dimension of the original HW .
These substantial gaps allow us to integrate out the Fermi
fields r,l,ξ 3

R,L, leading to the following effective theory at low
energies:

Heff = Hc+i
u

2
(l0∂xl0−r0∂xr0)+ ivs

2

∑
a

(
χa

L∂xχ
a
L−χa

R∂xχ
a
R

)
+ 2g̃c,st (r0l0)

∑
a

(
χa

Rχa
L

)− 2g̃σ+
∑
a>b

(
χa

Rχa
L

)(
χb

Rχb
L

)
.

(70)

This effective Hamiltonian is of the same form as Eq. (58),
found in the analysis of the 4kF + 2Q umklapp, so it also
is similar to the KHM. If the four-fermion couplings are
large, such that we can perform a mean-field treatment, the
resulting theory is a C1S0 phase, where the charge boson c

remains massless, while the r0, l0, and χ Majorana fermions
have dynamically generated masses. To extract the low-energy
behavior of our effective Hamiltonian with weak four-fermion
coupling, let us consider the RG equations

˙̃gc,st = − 2

πvs

g̃c,st g̃σ+, (71)

˙̃gσ+ = − g̃2
c,st

πu
− g̃2

σ+
πvs

. (72)
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These equations can be integrated in the same way as Eq. (59).
The RG flow is toward a C1S0 strong-coupling phase if

g̃c,st (l1) > g̃σ+(l1)

√
u

vs

, (73)

where l1 is the RG time at which the umklapp interaction
strength λ reaches strong coupling. Considering the case when
the renormalized couplings are close to their original values
we find that Eq. (73) is generically satisfied as for repulsive
interactions vs < vc.

In summary, depending on the values of the coupling con-
stants the effective Hamiltonian (70) describes either a C1S2 or
a C1S0 phase. When the criterion (73) is not met, the effective
Hamiltonian flows to weak coupling under RG and we end up
in a C1S2 phase, where only the antisymmetric charge boson
obtains a mass. Pairing fluctuations may occur with finite wave
vector, but the correlations are unlikely to be dominant in the
absence of a spin gap. On the other hand, if Eq. (73) is fulfilled
there is a spin gap and it is tempting to speculate that at low
energies strong superconducting correlations exist. The deter-
mination of the long-distance asymptotics of local operators
in this C1S0 phase is difficult, because their field theory ex-
pressions generally involve Ising order and disorder operators
and it is not known how these transform under Eq. (19).

B. Band representation

In the band representation the 3kb + kab umklapp scattering
adds a term to the Hamiltonian (9) of the form

HW = λ̃

∫
dx
(
IL

11

)†
IR

12 + (
IL

12

)†
IR

11 + H.c. (74)

In the absence of the umklapp interaction, the one-loop
RG equations have been derived in Refs. 5 and 29. The
additional terms in the one-loop RG equations are most easily
derived using operator product expansions. The one-loop RG
equations are found to be of the form

ċ
ρ

11 = −α2

4

[(
c
ρ

12

)2 + 3
(
cσ

12

)2
]

+ 2λ2,

ċ
ρ

12 = −1

4

[
c
ρ

11c
ρ

12 + 3cσ
11c

σ
12

]− 1

4

[
c
ρ

12c
ρ

22 + 3cσ
12c

σ
22

]
+ 1

2

[
c
ρ

12f
ρ

12 + 3cσ
12f

σ
12

]+ λ2,

ċ
ρ

22 = −α2

4

[(
c
ρ

21

)2 + 3
(
cσ

21

)2]
,

ċσ
11 = −(cσ

11

)2 − α2

2
cσ

12

(
c
ρ

12 + cσ
12

)
,

ċσ
12 = −1

4

[(
c
ρ

11 + c
ρ

22

)
cσ

12 + (
c
ρ

12 + 2cσ
12

)(
cσ

11 + cσ
22

)]
(75)

+ 1

2

[
c
ρ

12f
σ
12 + cσ

12f
ρ

12 − 2cσ
12f

σ
12

]
,

ċσ
22 = −(cσ

22

)2 − α2

2
cσ

12

(
c
ρ

12 + cσ
12

)
,

ḟ
ρ

12 = 1

4

[
(cρ

12)2 + 3
(
cσ

12

)2]+ λ2,

ḟ σ
12 = −(f σ

12)2 + 1

2
cσ

12

(
c
ρ

12 − cσ
12

)
,

λ̇ = λ

2

[
c
ρ

11 + c
ρ

12 + f
ρ

12

]
,

where α2 = (v1 + v2)/4v1v2 and the coupling constants have
been rescaled according to

cij = c̃ij

π (vi + vj )
, fij = f̃ij

π (vi + vj )
,

(76)

λ = λ̃√
2πv1π (v1 + v2)

.

The next step is then to numerically integrate Eq. (75) in an
attempt to infer the strong-coupling fixed point. To be explicit,
let us consider a particular example at vanishingly weak
coupling, when the 3kb + kab umklapp interaction emerges
at a particular band filling. In the absence of interactions the
Fermi momenta of bonding/antibonding bands are

kb = arccos

(
− t⊥ + μ

2t

)
, kab = arccos

(
t⊥ − μ

2t

)
. (77)

For the umklapp to be present as a result of the Hubbard inter-
actions we require 3kb + kab = 2π . For the ladder with 2t⊥ =
t this corresponds to a chemical potential of μ = −0.245 898t ,
resulting in vb = 1.983 80ta0, vab = 1.855 70ta0, and con-
comitantly α = 1.0011. Integrating the RG equations leads
to a flow with f σ

12 → 0, c
ρ

12 → ∞, and

c
ρ

11 → − 1
2c

ρ

12, c
ρ

22 → − 1
2c

ρ

12, f
ρ

12 → 1
2c

ρ

12,
(78)

cσ
11 → −c

ρ

12, cσ
22 → −c

ρ

12, cσ
12 → c

ρ

12.

In the case when U = 8V‖ = 16V⊥ and umklapp coupling
λ̃ = U , the RG flow is f

ρ

12 → ∞ while

cσ
ij

f
ρ

12

→ 0,
f σ

12

f
ρ

12

→ 0,
c
ρ

11

f
ρ

12

→ 0.9869,
c
ρ

12

f
ρ

12

→ 0.1648,

c
ρ

22

f
ρ

12

→ −0.006 568,
λ

f
ρ

12

→ 0.7169. (79)

Provided the extended interactions are sufficiently weak, we
find the same pattern of diverging couplings, but the final
ratios depend on v1,2. In the band representation it is difficult
to analyze the fixed-point Hamiltonian further and we leave
this for future studies.

V. NUMERICAL RESULTS: DMRG

In this section we use the density matrix renormalization
group (DMRG) algorithm34,35 to study the extended Hubbard
model on the two-leg ladder. Hubbard-like models have been
previously studied using DMRG, both on single chains and
multiple-leg ladders.36–43 In the following we first consider
the case where the umklapp interaction does not play a role
and analyze the resulting “generic strong-coupling regime” in
Sec. V A. Having established this crucial reference point,
we then turn to the case where the umklapp interaction is
marginally relevant.

A. Generic strong-coupling regime

For sufficiently small extended interactions, the (weak-
coupling) RG flow of the model is toward a strong-coupling
fixed point described by a SO(6) Gross-Neveu model,5,21,23,44

which can be analyzed by exact methods.45 In this theory
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FIG. 2. (Color online) DMRG data (solid) and power-law fits (dashed) for (a) the superconducting d-wave order parameter OSCd , and
(b) the antibonding pairing order parameter OabP on the 64 × 2 ladder with t = t⊥ = 1, U = 4, V‖ = V⊥ = 0, and N = 110 electrons.
Oscillations present in both two-point functions are contributions from subleading terms.

three of the bosons, �−,c, +,s , and −,s , become massive
under the RG flow while the remaining massless charge boson
+,c is described by a U(1) Luttinger liquid theory. These
fields are related to the previously introduced bosonic fields
by �±,d = (�1,d ± �2,d )/

√
2 and ±,d = (1,d ± 2,d )/

√
2

for d = c,s. The values to which the bosons become pinned by
the RG flow can be extracted from a classical analysis of the
effective theory. Following such an analysis, the asymptotic
form of the two-point function of the order parameters
discussed in Sec. III A2 are found to be5,44

〈OCDW (x) O†
CDW (0)〉Generic

∝ A1x
−2 + A2 cos[2(kb + kab)x]x−2Kc ,

(80)
〈OSCd (x)O†

SCd (0)〉Generic ∝ |x|−1/2Kc ,

〈OabP (x)O†
abP (0)〉Generic ∝ |x|−1/2Kc ,

where Kc is the Luttinger parameter for the remaining massless
+,c boson. The 2kF response of the CDW and bCDW order
parameters are blocked by the presence of a spin gap, as is
discussed in Appendix A. The second term in the two-point
function of the charge-density-wave (CDW) order parameter
is interaction induced, with the amplitude A2 vanishing in the
U → 0 limit; further discussion of interaction-induced terms
may be found in Appendix B.

As an example of the generic strong-coupling regime, we
present results for the Hamiltonian (1) on the 64 × 2 ladder
with t = t⊥ = 1, U = 4, and V‖ = V⊥ = W1,2 = 0. As is usual
with DMRG calculations, we take open boundary conditions
on the ends of the ladder.35 We consider the system with N =
110 electrons and keep up to m = 1500 density-matrix states
in the DMRG simulation, leading to truncation errors of ∼3 ×
10−6. Performing an extrapolation of the ground-state energy
per site against the number of density-matrix states kept in
the calculation allows one to estimate the relative error in
quantities calculated by the DMRG algorithm. We define the
relative error in the ground-state energy per site ε = (Ē0 −
ĒDMRG)/Ē0, where Ē0 is the extrapolated value and ĒDMRG is
the measured value for the ground-state energy per site. In this
case, we find that m = 1500 density-matrix states results in a
relative error of ε ≈ 5 × 10−4.

Figure 2 shows the calculated two-point functions of the
SCd and abP order parameters and appropriate power-law fits.
Additional oscillations at 2kab are observed in the two-point
function of the antibonding pairing order parameter, which
may be due to a small amplitude for the power-law decay term
and/or a large spin-correlation length for the exponentially
decaying terms. This would be consistent with a small spin gap
in the system. The power-law fits to the two-point functions
give the Luttinger parameter for the massless +,c boson as
Kc ≈ 0.45.

Figure 3 show the one-point function of the density operator
across leg 1 of the ladder. The oscillations in the density are
induced by the the open boundary conditions on the ends of the
ladder. The presence of a spin gap in the system suppresses the
2kF response (Friedel oscillations) in the ladder, consequently
the leading-order oscillations occur at 4kF = 2(kb + kab),
known as “Wigner crystal” oscillations.46 We fit the Wigner
crystal oscillations to the standard form,46

〈n(x)〉4kF
= ρ + A

sin (4kF x + ϕ)

sin
(

π
L+1x

)2Kc
, (81)

where A and ϕ are fitting parameters, ρ is the average
electron density, and L is the length of the ladder. Additional
oscillations which arise in the one-point function of the density
operator are from the subleading contributions to the density
operator, such as those discussed in Appendix B. In the
presented fit we use the value for the Luttinger parameter
extracted from the two-point functions of the SCd and abP
order parameter. The value of the Luttinger parameter is also
consistent with the long-distance asymptotics of the two-point
function of the charge-density operator, as would be expected
from the analysis of the one-point function.

It is clear that the dominant correlations for the discussed
generic strong-coupling regime depend upon the microscopic
parameters of the Hamiltonian (1). For the case which we have
considered, the Luttinger parameter Kc < 1/2 and the phase is
best described by charge-density-wave correlations, with the
leading contribution arising from the 2(kb + kab) interaction-
induced component of the charge density.
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FIG. 3. (Color online) DMRG data (solid) and fit (dashed) for
the one-point function of the density operator on leg 1 of the the
64 × 2 ladder with t = t⊥ = 1, U = 4, V‖ = V⊥ = 0, and N = 110
electrons. The fit function parameters take values ρ = 0.857, A =
0.0054, and 2Kc = 0.91. The bonding and antibonding wave vectors
are given by kb = ρbπ/2 = 1.17π/2 and kab = ρabπ/2 = 0.55π/2,
with ρb (ρab) the average density in the bonding (antibonding) band.
The fit function takes the form (81) and is discussed in Ref. 46 for
the 4kF Wigner crystal oscillations. Additional oscillations arise from
the subleading contributions of the charge density.

B. 4kb Umklapp

As is discussed in detail in Sec. III, there are two possible
phases when the 4kb umklapp interaction is present and
marginally relevant for the considered initial conditions. We
consider in turn the C1S2 phase and the C1S0 phase which
may occur as a result of the 4kb umklapp modifying the RG
equation. To that end we have carried out DMRG computations
on the Hamiltonian

H = Hladd(π ) + μ−
∑
j,σ

(c†1,j,σ − c
†
2,j,σ )(c1,j,σ − c2,j,σ ),

(82)

where Hladd(K) is given by Eq. (1) and the bonding band is at
quarter filling. The additional term in Eq. (82) corresponds to
a chemical potential for the antibonding pair and is introduced
for convenience so that the antibonding density can be varied
while keeping the interaction parameters constant. A quarter
filled bonding band requires an applied external potential of
wave vector 4kb = π to activate the 4kb umklapp interaction.

The reason for studying the model (82) rather than the
doped ladder with half filled bonding band but without external
potential is that in the latter both the Mott gap and spin gaps
depend on the interaction strengths U , V‖, V⊥ and therefore
cannot be tuned independently. As a result, spin and charge
gaps can be comparable in size and small, which makes a
numerical analysis extremely challenging. In fact, our DMRG
results for this case are inconclusive in the sense that we have
not found convincing evidence for the existence of a C1S0
phase.

On the other hand, applying an external potential as in
Eq. (82) allows us to control the Mott gap in the bonding sector
without significantly affecting spin gaps. A sizable Mott gap
makes the numerical analysis much simpler.

1. C1S2 phase

The RG analysis of Sec. III shows that for sufficiently
weak extended interactions (small V‖,V⊥) the RG flow of the
extended Hubbard model in the presence of a 4kb umklapp
interaction is toward a C1S2 fixed point. The two-point
functions of the order parameters discussed in Sec. III then
have the following forms:

〈OCDW (x) O†
CDW (0)〉C1S2

∝ A3 cos(2kabx)|x|−K2,c−K2,s + A4 cos(2kbx)|x|−K1,s

+A5x
−2 + · · · ,

〈ObCDW (x) O†
bCDW (0)〉C1S2 ∝ e−|x|/ξb (at 2kb) + · · · ,

〈OSCd (x)O†
SCd (0)〉C1S2 ∝ cos(2kabx)|x|−K2,c−1/K2,c + · · · ,

〈OabP (x)O†
abP (0)〉C1S2 ∝ A6 cos(2kabx)|x|−K2,c−1/K2,c

+A6|x|−K2,s−1/K2,c + · · · , (83)

where Aj are unknown amplitudes, ξb is the bonding charge
boson correlation length, and K2,c (K2,s) is the Luttinger
parameter for antibonding charge (spin) sector.

In this section we present DMRG results for the 64 ×
2 extended-Hubbard ladder with t = 2t⊥ = 1, U = 8V⊥ =
8V‖ = 4, and applied external potential of period 4kb = π and
amplitude W1 = W2 = 1.5. The chemical potential μ− has
been adjusted so that the total electron number is N = 90
with the bonding band at quarter filling. Up to m = 1200
density-matrix states were kept in the simulations, leading
to truncation errors of ∼10−6. This corresponds to a relative
error in the ground-state energy per site of ε ≈ 10−4.

The presence of a charge gap in the bonding sector is
confirmed by the examination of the Green’s functions in the
bonding [Gb(n)] and antibonding [Gab(n)] bands. The RG
analysis suggests that Gab(n) decays as a power law, whereas
Gb(n) decreases with distance as an exponential multiplied by
a power law.

The bonding Green’s function is shown in Fig. 4(a), where
the leading oscillations at kb have been removed by performing
a fit to the Green’s function and dividing out the oscillatory
part. So, in Fig. 4(a) we plot

Gb(n) = Gb,Full(n)

cos (kbx)
,

where Gb,Full(n) is the full bonding Green’s function with
oscillations at kb. The leading oscillation has been removed
in order to elucidate the long-distance behavior of the Green’s
function. In this case the asymptotic behavior is well described
by an exponential multiplied by a power law, as predicted
by the RG analysis. We perform a similar procedure for
the antibonding Green’s function in Fig. 4(b), where the
leading oscillations occur at kab. The power-law decay of
the antibonding Green’s function is in agreement with the
RG analysis. The form of both Green’s functions is consistent
with the expectations of the C1S2 phase, with a single massive
charge boson in the bonding sector of the theory.

Having established the presence of a charge gap in the
bonding sector, we now consider the two-point functions of
the order parameters (83), shown in Fig. 5. As with our
analysis of the Green’s function, the two-point functions of the
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FIG. 4. (Color online) DMRG data (solid) and fits (dashed) for (a) the bonding Green’s function Gb(n) = 〈cb(32)c†b(32 + n)〉 with kb

oscillations removed (see text), and (b) the antibonding Green’s function Gab(n) = 〈cab(32)c†ab(32 + n)〉 with kab oscillations removed.
Additional oscillations in both cases are due to subleading contributions of the Green’s functions. For both figures the 64 × 2 ladder is
considered with t = 2t⊥ = 1, U = 8V⊥ = 8V‖ = 4, and W+ = 1.5. The chemical potential μ− was chosen such that the bonding band is
quarter filled for the system with N = 90 electrons. Fit functions are of the form predicted by the RG analysis.

antibonding pairing order parameter and the superconducting
d-wave order parameter, shown in Figs. 5(a) and 5(b), respec-
tively, have had the leading-order 2kab oscillation removed.
Both two-point functions show power-law decay with the
same exponent, giving an approximate value for the Luttinger
parameter in the antibonding charge sector K2,c ≈ 0.35.

Figure 6 shows the two-point function of the charge-
density-wave (CDW) order parameter. At intermediate dis-
tances this is well described by x−2 decay, while for large
distances it decays at slower than x−2 and oscillates with wave
number 2kab, as predicted from the bosonization analysis (83).
Subleading 4kb contributions are also observed. The long-
distance decay is consistent with K2,s = 1, as expected from
SU(2) symmetry. The dominant correlations for considered
parameters are of the charge-density-wave type.

2. C1S0 4kb Mott insulator phase

As has been discussed in Sec. III A2, in order for the
C1S0 4kb Mott insulating phase to occur, it is necessary for

the interchain exchange interaction to be antiferromagnetic
after the initial RG procedure. This can always be achieved
provided the interchain density-density interaction coupling is
large V⊥ > U , such that for the initial conditions the exchange
interaction is antiferromagnetic and remains so under the RG
procedure.

At the C1S0 fixed point, the 4kb Mott insulator phase is
characterized by the following asymptotic forms of the two-
point functions:

〈OCDW (x) O†
CDW (0)〉

∝ A8x
−2 + A9 cos

(
2(kb + kab)x

)|x|−K2,c + · · · ,
〈ObCDW (x) O†

bCDW (0)〉
∝ e−|x|/ξb (at 2kb) + · · · ,

〈OSCd (x) O†
SCd (0)〉

∝ cos(2kabx)|x|−K2,c−1/K2,c + · · · ,
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FIG. 5. (Color online) DMRG data (solid) and fit functions (dashed) for (a) the two-point function of the antibonding pairing order
parameter OabP with the 2kab oscillations removed (see text), and (b) the two-point function of the superconducting d-wave order parameter
OSCd with 2kab oscillations removed on the 64 × 2 ladder with t = 2t⊥ = 1, U = 8V⊥ = 8V‖ = 4, and W+ = 1.5. The chemical potential has
been adjusted so that N = 90 coincides with a quarter filled bonding band. Fit functions are of the form given in Eqs. (83).
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FIG. 6. (Color online) DMRG data (solid) and x−2 guide (dashed)
for the two-point function of the charge-density-wave order parameter
OCDW on the 64 × 2 ladder with t = 2t⊥ = 1, U = 8V⊥ = 8V‖ = 4,
and W+ = 1.5. The chemical potential has been adjusted so that
N = 90 coincides with a quarter filled bonding band. Sub-x−2 decay
is observed with oscillations at ∼2kab at large distances.

〈OabP (x) O†
abP (0)〉

∝ A10 cos(2kabx)|x|−K2,c−1/K2,c

+A11 cos(2kbx)|x|−1/K2,c + · · · , (84)

where Ad are unknown amplitudes.
We present results for the Hamiltonian (82) on the 96 × 2

ladder with t = 2t⊥ = 1, V⊥ = 5, V‖ = 0, and U = 4. The
chemical potential μ− is used to set the total number of
electrons to N = 88 while maintaining the bonding band at
quarter filling. A periodic potential with period 4kb = π and
amplitude W+ = 1 is applied to the bonding band. Up to
m = 2000 density-matrix states were kept in the calculations,
giving truncation errors of ∼10−7. The increased number
of states in the procedure results in a relative error for the
ground-state energy per site of ε ≈ 2 × 10−5.

The presence of a spin gap in both bands and a charge gap
in the bonding band is inferred from the forms of the two-point
functions (84) and the Green’s functions shown in Fig. 7. The

RG analysis predicts that the bonding Green’s function should
decay exponentially, while the antibonding Green’s function
should decay as an exponential multiplied by a power law. In
Fig. 7(a) the bonding Green’s function [Gb(n)] is shown with
an exponential fit and is well described by exponential decay,
implying both spin and charge gaps in the bonding sector.
Figure 7(b) shows the antibonding Green’s function with the
leading oscillation at wave vector kab removed in order to more
clearly show the exponential multiplied by power-law fit, as
predicted by the RG analysis. The break in the plot of Gab(n)
close to n = 28 is a result of removing the oscillation; for this
point the fit and Gab(n) differ in sign while both magnitudes
are close to zero. The fit gives an approximate value for the Lut-
tinger parameter in the antibonding charge sector K2,c ≈ 0.27.

With both Green’s functions being consistent with the C1S0
phase, the two-point functions of the order parameters in Eqs.
(84) are now considered. The two-point functions for the SCd
order parameter and the abP order parameter are presented
in Figs. 8(a) and 8(b) respectively. In both cases the leading
oscillation at frequency 2kab has been removed in order to
elucidate the form of the decay, which in both cases is well
described by a power law with an exponent consistent with
K2,c ≈ 0.27. The absence of power-law decay with exponent
1/K2,c for the antibonding pairing order parameter is not
inconsistent with being in the C1S0 phase, as the amplitude
A11 is interaction dependent and may be much smaller than
the amplitude A10 of the subleading decay, in which case at
short distances the subleading decay would dominate.

The two-point function of the charge-density-wave order
parameter is shown in Fig. 9. At long distances there are large
wavelength oscillations with wave vector 2kb + 2kab decaying
at sub-x−2, consistent with the bosonization predictions for
the C1S0 phase (84). The exact form of the decay of the
2kb + 2kab oscillations cannot be accurately extracted in the
L = 96 system, due to the large spin correlation length and
the amplitudes A8 and A9 being unknown.

The two-point function of the bonding charge-density-wave
order parameter can also be calculated, however information
is not easily extracted from this two-point function due to the
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FIG. 7. (Color online) DMRG data (solid) and fit function (dashed) for (a) the bonding Green’s function Gb(n) = 〈cb(48)c†b(48 + n)〉, and
(b) the antibonding Green’s function Gab(n) = 〈cab(48)c†ab(48 + n)〉, with the kab oscillation removed (see text), for the 96 × 2 ladder with
t = 2t⊥ = 1, U = 4, V‖ = 0, Vy = 5, W+ = 1, and N = 88 electrons. The chemical potential μ− was chosen such that this corresponds to a
quarter filled bonding band. Oscillations in both plots are from other contributions to the Green’s function. The break in data of (b) at n = 29
is a remnant of removing the kab oscillations.
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FIG. 8. (Color online) DMRG data (solid) and fit functions (dashed) for (a) the absolute value of the two-point function of the
superconducting d-wave order parameter OSCd with 2kab oscillations removed (see text), and (b) the absolute value of the two-point function of
the antibonding pairing order parameter OabP on the 96 × 2 ladder with t = 2t⊥ = 1, U = 4, V‖ = 0, Vy = 5, W+ = 1, and N = 88 electrons.
The chemical potential μ− was chosen such that this corresponds to a quarter filled bonding band.

long spin-correlation length and unknown interaction-induced
amplitudes of 4kF components of the bonding charge-density
operator, which are similar in form to those in Eqs. (B10).

As discussed in detail in Sec. III A2, there are two possi-
bilities for the dominant correlation in the 4kb Mott insulator,
depending upon K2,c. For the presented case, K2,c < 1 and
the dominant correlations are of charge-density-wave type,
arising from the interaction-induced 2kb + 2kab component of
the charge density.

VI. CONCLUSIONS

In this work we have established a mechanism for finite
wave vector pairing in doped fermionic ladders with equiv-
alent legs. This mechanism is driven by umklapp scattering
processes, which occur either at special band fillings as a
result of electron electron interactions, see also Ref. 20, or
are induced by “externally” applied periodic potentials. The
latter can arise via charge-density-wave formation driven by
the (three-dimensional) long-ranged Coulomb interaction in
real crystal structures. We have applied renormalization-group
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FIG. 9. (Color online) The two-point function of charge-density-
wave order parameter OCDW (solid) and x−2 power law (dashed) for
the 96 × 2 ladder with t = 2t⊥ = 1, U = 4, V⊥ = 5, and W+ = 1. A
chemical potential applied to the antibonding band is used to set the
electron number to N = 88 with the bonding band quarter filled.

(RG) methods in the low-energy limit of the lattice model
(1) for (i) weak interactions (band representation) and (ii)
arbitrary interaction strength but very small tunneling along
the rung direction (chain representation). In both cases we
have found that the theory describing the strong-coupling fixed
point is the same as the low-energy description of the so-called
Kondo-Heisenberg Model (KHM).17,18 In the case of the 4kb

Mott insulator analyzed in Sec. III, this fact may be anticipated
on the basis of the following arguments. The 4kb umklapp
scattering process leads to formation of a Mott gap � within
the bonding band. At low energies the charge dynamics is
blocked by the Mott gap and at energies small compared to �

one is left with spin degrees of freedom, that can be thought
of in terms of an effective spin-1/2 Heisenberg chain. The
antibonding degrees of freedom remain gapless, and at low
energies compared to � the most important interaction with
the bonding degrees of freedom is then through an effective
spin-exchange interaction. The resulting picture is an effective
KHM, where the spin-1/2 chain corresponds to the bonding
band and the role of the interacting 1D electron gas is played
by the antibonding band. The low-energy limit is crucial for
these considerations to hold, because in the lattice model (1)
electron number in the bonding band is not conserved.

Another important difference between the effective KHM
that emerges as the low-energy description of the ladder and the
lattice KHM considered in Refs. 17 and 18 is that the effective
exchange interaction between the bonding and antibonding
bands is not a priori antiferromagnetic. In the case of weakly
interacting Hubbard chains it is in fact ferromagnetic, which re-
sults in a C1S2 phase as the exchange interaction is marginally
irrelevant. On the other hand, we found that extended density-
density interactions (we explicitly consider repulsive nearest-
neighbor interactions) can cause this exchange interaction to
become antiferromagnetic. In this case the low-energy sector
of the theory is a C1S0 phase, where the remaining gapless
degree of freedom describes the antibonding charge sector
and is characterized by its Luttinger parameter K2,c. The
dominant correlations are then either of superconducting PDW
(if K2,c > 1) or CDW (if K2,c < 1) type.

The activation of the umklapp scattering process at 3kb +
kab results in a similar low-energy description, although here
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the remaining massless degree of freedom ̃2 is significantly
more complicated: it is a combination of the symmetric charge
boson c and the U(1) doublet Majorana fermions ξ 1,2, which
are themselves comprised of the SU(2) singlet Majorana
fermion from the antisymmetric spin sector and a Majorana
fermion from the antisymmetric charge sector. The composite
nature of this gapless degree of freedom makes the analysis
of ground-state correlations difficult and we leave this issue to
future studies.

It has been shown in Refs. 47 that taking into account the
crystal structure of, e.g., CuO-based ladders leads to significant
differences in both the ground-state properties and the phase
diagram of the two-leg ladder. It would be interesting to
generalize the above treatment of umklapp interactions to the
case of CuO ladders and to study how such scattering effects
the ground-state properties of the system.
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APPENDIX A: CHARGE-DENSITY OPERATOR

At commensurate fillings, or by applying an appropriate
external periodic potential, umklapp scattering processes can
be activated in the doped ladder. In this case, oscillatory
components of the charge density which are usually sup-
pressed away from commensurate fillings now feature in the
Hamiltonian. In this appendix we consider the 2kF and 4kF

harmonics of the charge-density operator in the band and chain
representations in turn.

1. 2kF Components of the charge density

We first consider the 2kF harmonics in the band represen-
tation. The number operators on each leg of the ladder can
be expressed in terms of the bonding/antibonding fermions
introduced in Eq. (3) as

n1,j,α + n2,j,α = c
†
b,j,αcb,j,α + c

†
ab,j,αcab,j,α,

(A1)
n1,j,α − n2,j,α = c

†
b,j,αcab,j,α + c

†
ab,j,αcb,j,α.

Linearizing about the Fermi surface and taking the continuum
limit as in Eq. (6), we obtain the following decompositions:

n1,j,α + n2,j,α ∼ a0ρ
(+)
0,α (x) + a0

[
ρ

(+)
2kb,α

(x) e2ikbx + ρ
(+)
2kab,α

(x) e2ikabx + H.c.
]+ · · · ,

(A2)
n1,j,α − n2,j,α ∼ a0

[
ρ

(−)
kb+kab,α

(x) ei(kb+kab)x + H.c.
]+ · · · ,

where
ρ

(+)
0,α (x) = R

†
b,αRb,α + L

†
b,αLb,α + R

†
ab,αRab,α + L

†
ab,αLab,α,

ρ
(+)
2kb,α

(x) = L
†
b,αRb,α, ρ

(+)
2kab,α

(x) = L
†
ab,αRab,α, (A3)

ρ
(−)
kb+kab,α

(x) = L
†
ab,αRb,α + L

†
b,αRab,α.

We note that ρ0,α(x), ρ2kb,α(x), and ρ2kab,α(x) are even under interchange of legs 1 and 2 of the ladder, while ρkb+kab,α(x) is
odd. The components can then be bosonized following Ref. 30 and Eqs. (11)–(13). This leads to the following expressions for
components of the charge-density operator:

ρ
(+)
0 (x) =

∑
α

ρ
(+)
0,α (x) ∼ 1√

2π
∂x+,c,

ρ
(+)
2kb

(x) =
∑

α

ρ
(+)
2kb,α

(x) ∼ −2i ei
√

π (+,c+−,c) cos[
√

π (+,s + −,s)],

(A4)
ρ

(+)
2kab

(x) =
∑

α

ρ
(+)
2kab,α

(x) ∼ −2i ei
√

π(+,c−−,c) cos[
√

π (+,s − −,s)],

ρ
(−)
kb+kab

(x) ∼ −2i ei
√

π+,c [e−i
√

π�−,c cos(
√

π [+,s − �−,s]) − ei
√

π�−,c cos(
√

π [+,s + �−,s])],

where ±,d = (1,d ± 2,d )/
√

2 and �±,d = (�1,d ± �2,d )/
√

2 for d = c,s. In the final term we have used that κb,↑κab,↑ ≡
κb,↓κab,↓ and (κb,σ κab,σ )2 = −1. Here we note that the 2kF response of the charge density in spin gapped phases is blocked as
each term features a spin boson.

Having moved to a new basis of bosons, the ± bosons, we can consider refermionizing the spin bosons and the antisymmetric
charge bosons using the identities30

ei
√

π+,s ∼ μ1μ2 + iσ1σ2, ei
√

π�+,s ∼ σ1μ2 + iμ1σ2,

ei
√

π−,s ∼ μ3μ4 + iσ3σ4, ei
√

π�−,s ∼ σ3μ4 + iμ3σ4, (A5)

ei
√

π−,c ∼ μ5μ6 + iσ5σ6, ei
√

π�−,c ∼ σ5μ6 + iμ5σ6,
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where μi and σi are Majorana fermions. Then the 2kF components of the charge-density operator can be expressed in terms of
the Majorana fermions as

ρ
(+)
2kb

(x) ∝ −2i ei
√

π+,c [μ5μ6 + iσ5σ6] [μ1μ2μ3μ4 − σ1σ2σ3σ4] ,

ρ
(+)
2kab

(x) ∝ −2i ei
√

π+,c [μ5μ6 − iσ5σ6] [μ1μ2μ3μ4 + σ1σ2σ3σ4] ,

ρ
(−)
kb+kab

(x) ∝ −4i ei
√

π+,c [σ1σ2μ3σ4σ5μ6 − iμ1μ2σ3μ4μ5σ6] .

Similar expressions are obtained in the chain description with leg indices substituted for band indices.

APPENDIX B: 4kF DENSITY COMPONENTS IN THE BAND PICTURE

To derive the 4kF components of the charge density, we consider the on-site Hubbard interaction

U

L∑
m=1

[n1,m,↑n1,m,↓ + n2,m,↑n2,m,↓], (B1)

which gives a contribution Sint = S
(1)
int + S

(2)
int to the action

S
(1)
int = −U

2

∫
d2y[c†b,↑cb,↑ + c

†
ab,↑cab,↑](y)[c†b,↓cb,↓ + c

†
ab,↓cab,↓](y),

(B2)

S
(2)
int = −U

2

∫
d2y[c†b,↑cab,↑ + c

†
ab,↑cb,↑](y)[c†b,↓cab,↓ + c

†
ab,↓cb,↓](y).

We then decompose the continuum fields into their high- and low-energy parts, e.g.,
cb(x) = cb,<(x) + cb,>(x). (B3)

The 4kF components of the charge density are then found by taking the average

−〈c†b(x)cb(x)Sint〉> (B4)

over the high-energy degrees of freedom and keeping only the 4kF oscillating parts. For example, we obtain a contribution

U

2

〈
c
†
b,↑,<(x)cb,↑,>(x)

∫
dydτ c

†
b,↑,>cb,↑,<[c†b,↓,<cb,↓,< + c

†
ab,↓,<cab,↓,<]

〉
>
, (B5)

where we now use that

〈cb,↑,>(x) c
†
b,↑,>(τ,y)〉 = Gb,>(−τ,x − y) = −

∫
k>�

dk

2π
e−ik(x−y)−εb(k)τ (B6)

is short ranged in τ , so it becomes

U

2
c
†
b,↑,<(x)

∫
dτdy Gb,>(−τ,x − y)cb,↑,<(y)[c†b,↓,<cb,↓,< + c

†
ab,↓,<cab,↓,<](y). (B7)

Next we linearize about the Fermi surface, which decomposes the fermion operators into their chiral components

cb,↑,<(y) � Rb,↑eikby + Lb,↑e−ikby (B8)

and then we replace the arguments of the left- and right-moving fermions by x, which is justified as the Green’s function is also
short ranged in x − y. Implementation of this procedure leads to the following results for the 4kF components of the charge
density:

ρ
(+)
4kb

(x) ∼ UGb,>(3kb)
∑

α=↑,↓
L
†
b,αRb,αL

†
b,−αRb,−α,

ρ
(+)
4kab

(x) ∼ UGab,>(3kab)
∑

α=↑,↓
L
†
ab,αRab,αL

†
ab,−αRab,−α,

ρ
(+)
2kb+2kab

(x) ∼ U

2
[Gb,>(kab + 2kb) + Gb,>(kb + 2kab)]

∑
α=↑,↓

{2L
†
b,αRb,αL

†
ab,−αRab,−α

+2L
†
b,αRab,αL

†
ab,−αRb,−α + L

†
b,αRab,αL

†
b,−αRab,−α + L

†
ab,αRb,αL

†
ab,−αRb,−α}, (B9)

ρ
(−)
kb+3kab

(x) ∼ U

2
[3Gb,>(kab + 2kb) + Gab,>(3kab)]

∑
α=↑,↓

{L†
ab,αRab,αL

†
ab,−αRb,−α + L

†
ab,αRab,αL

†
b,−αRab,−α},

ρ
(−)
3kb+kab

(x) ∼ U

2
[3Gab,>(kab + 2kb) + Gb,>(3kb)]

∑
α=↑,↓

{L†
b,αRb,αL

†
b,−αRab,−α + L

†
b,αRb,αL

†
ab,−αRb,−α}.
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These expressions can be bosonized following Ref. 30, giving

ρ
(+)
4kb

(x) ∼ −2UGb,>(3kb) ei
√

4π+,c ei
√

4π−,c ,

ρ
(+)
4kab

(x) ∼ −2UGab,>(3kab) ei
√

4π+,c e−i
√

4π−,c ,

ρ
(+)
2kb+2kab

(x) ∼ C2kb+2kab
ei

√
4π+,c [cos(

√
4π−,s) + cos(

√
4π�−,s) − cos(

√
4π�−,c)], (B10)

ρ
(−)
3kb+kab

(x) ∼ C3kb+kab
ei

√
4π+,c [e−i

√
πϕ̄−,c cos(

√
πϕ−,s) − ei

√
πϕ−,c cos(

√
πϕ̄−,s)],

ρ
(−)
kb+3kab

(x) ∼ Ckb+3kab
ei

√
4π+,c [e−i

√
πϕ−,c cos(

√
πϕ̄−,s) − ei

√
πϕ̄−,c cos(

√
πϕ−,s)],

where Cp are nonuniversal prefactors that are proportional to U for small interactions and the fields ϕ±,d and ϕ̄±,d are chiral
components of the boson field ±,d for d = c,s which satisfy

±,d = ϕ±,d + ϕ̄±,d ,

�±,d = ϕ±,d − ϕ̄±,d .

Once more we may refermionize Eqs. (B10) in terms of the new basis of bosons, i.e.,

R1 + iR2 ∼ κ+,s√
πa0

ei
√

4πϕ+,s , L1 + iL2 ∼ κ+,s√
πa0

e−i
√

4πϕ̄+,s ,

R3 + iR4 ∼ κ−,s√
πa0

ei
√

4πϕ−,s , L3 + iL4 ∼ κ−,s√
πa0

e−i
√

4πϕ̄−,s , (B11)

R5 + iR6 ∼ κ−,c√
πa0

ei
√

4πϕ−,c , L5 + iL6 ∼ κ−,c√
πa0

e−i
√

4πϕ̄−,c ,

where κ are Klein factors introduced to ensure that different Majoranas anticommute. This choice of basis for the Majorana
fermions will make the “dictionary” (32) between the “band” representation and the “chain” representation particularly clear.
The 4kF components of the charge density are local with respect to the Majoranas,

ρ
(+)
4kb

(x) ∝ ei
√

4π+,c [R5L6 − R6L5 + i(R5L5 + R6L6)] ,

ρ
(+)
4kab

(x) ∝ ei
√

4π+,c [R5L6 − R6L5 − i(R5L5 + R6L6)] ,

ρ
(+)
2kb+2kab

(x) ∝ ei
√

4π+,c i [2R4L4 + R5L5 − R6L6] , (B12)

ρ
(−)
3kb+kab

(x) ∝ ei
√

4π+,c [(L5 + iL6)R3 − (R5 + iR6)L3] ,

ρ
(−)
kb+3kab

(x) ∝ ei
√

4π+,c [(R5 − iR6)L3 − (L5 − iL6)R3] .

1. “4kF” density components in the chain picture

In this section we determine the Fourier components with momenta close to 4kF of the low-energy projections of
n1,l ± n2,l , cf. Eq. (2), in the chain picture. For uncoupled chains we have

n1,l ± n2,l

∣∣∣
t⊥=0

∝
∑
n∈Z

ρ̃
(±)
2nkF

(x)e2inkF x . (B13)

For nonzero t⊥ this expressions gets modified to

n1,l ± n2,l ∝
∑
P∈S±

ρ
(±)
P (x)eiPx, (B14)

where S± are appropriately defined sets of momenta. Our starting point is the bosonized expression for the 4kF components of the
charge density of the extended Hubbard chains describing the uncoupled legs � = 1,2 of the ladder (i.e., t⊥ = 0 = V⊥ = W1,2),

ρ
(�)
4kF

(x) ∼ F̃ ei4kF xei
√

8π
(c)
� + H.c., (B15)

where F̃ is a nonuniversal amplitude. The sum of the 4kF densities of the two legs can be expressed in terms of the rotated boson
basis (16) as

ρ̃
(+)
4kF

(x) ∼ 2F̃ cos(4kF x +
√

4πc) cos(
√

4πf ). (B16)
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We will now take into account the effects of a nonzero t⊥ by following through the same steps as in the analysis of
the Hamiltonian in Sec. II B. Refermionizing in terms of Majorana fermions using the identities

κ̃ei
√

π(f +�f ) = √
πa0

(
ξ 3
R + iηR

)
,

(B17)
κ̃e−i

√
π (f +�f ) = √

πa0
(
ξ 3
L + iηL

)
,

where κ̃ is a Klein factor and κ̃2 = 1, leads to

cos(
√

4πf ) = iπa0
(
ξ 3
Rξ 3

L + ηRηL

)
. (B18)

Finally, performing the rotation (19) we arrive at

cos(
√

4πf ) ≈ iπa0

{
ξ 3
Rξ 3

L + vs

vs + vc

[
ξ 1
Rξ 1

L − ξ 2
Rξ 2

L − 1

2
e2iQx

(
ξ 1
R − iξ 2

R

) (
ξ 1
L + iξ 2

L

)− 1

2
e−2iQx

(
ξ 1
R + iξ 2

R

) (
ξ 1
L − iξ 2

L

) ]}
.

(B19)

Substituting Eq. (B19) into Eq. (B16) then gives us expressions for the Fourier components of the total symmetric charge density
of the ladder for nonzero t⊥:

ρ
(+)
4kF

(x) ∼ iF ei
√

4πc

[
ξ 3
Rξ 3

L + vs

vs + vc

(
ξ 1
Rξ 1

L − ξ 2
Rξ 2

L

)]
,

ρ
(+)
4kF +2Q(x) ∼ iFvs

2 (vs + vc)
ei

√
4πc

(
ξ 1
L + iξ 2

L

) (
ξ 1
R − iξ 2

R

)
,

ρ
(+)
4kF −2Q(x) ∼ iFvs

2 (vs + vc)
ei

√
4πc

(
ξ 1
L − iξ 2

L

) (
ξ 1
R + iξ 2

R

)
,

and F = F̃ πa0 is a nonuniversal constant. The analogous analysis for the antisymmetric combination of charge densities gives
the following result:

ρ
(−)
4kF −Q(x) = −iF

√
vs

2 (vs + vc)
ei

√
4πc

[(
ξ 1
R + iξ 2

R

)
ξ 3
L + ξ 3

R

(
ξ 1
L − iξ 2

L

)]
, (B20)

ρ
(−)
4kF +Q(x) = −iF

√
vs

2 (vs + vc)
ei

√
4πc

[(
ξ 1
R − iξ 2

R

)
ξ 3
L + ξ 3

R

(
ξ 1
L + iξ 2

L

)]
, (B21)

where F is the same nonuniversal constant as in the (+) component case.

APPENDIX C: HIGHER HARMONICS OF THE BOND-CENTERED ANTIBONDING SUPERCONDUCTING ORDER
PARAMETER

We consider the order parameter for bond-centered pairing in the antibonding band:

B(j ) = cab,↑(j )cab,↓(j + 1) − cab,↓(j )cab,↑(j + 1),

and consider the higher-order term generated by the four-fermion interaction. We integrate out the high-energy part of the
Hubbard interaction (B2) by splitting the fermion operators into fast (high-energy >) and slow (low-energy <) components as
shown in Eq. (B3). We separate the “mixed” part of the bond-centered pairing order parameter into four contributions:

O1 = cab,↑,>(x)cab,↓,<(x + a0), O3 = cab,↑,<(x)cab,↓,>(x + a0),
(C1)

O2 = −cab,↓,>(x)cab,↑,<(x + a0), O4 = −cab,↓,<(x)cab,↑,>(x + a0).

We now discuss in some detail the perturbative averaging of the operator O1 with respect to the interaction term S
(1)
int . We have

〈
O1S

(1)
int

〉
>

= −U

2

∫
d2y

〈
cab,↑,>(x)cab,↓,<(x + a0)

× [c†ab,↑,<cab,↑,< + c
†
ab.↑,<cab,↑,> + c

†
ab,↑,>cab,↑,< + c

†
ab,↑,>cab,↑,> + b ↔ ab](y)

× [c†ab,↓,<cab,↓,< + c
†
ab.↓,<cab,↓,> + c

†
ab,↓,>cab,↓,< + c

†
ab,↓,>cab,↓,> + b ↔ ab](y)

〉
>

.
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This can now be averaged over the high-energy parts and the resulting expression evaluated in the continuum limit by
following the same steps as in Appendix B. We then bosonize, following Ref. 30, and the result is〈

O1S
(1)
int

〉
>

∼ U

2

κab,↓κab,↑
(2π )2

iei
√

2π�2,c{Gab,↑,− cos(
√

2π1,c + 2kbx) cos(
√

4π+,s − kaba0)

+Gab,↑,− sin(
√

2π1,c + 2kbx) sin(
√

4π+,s − kaba0)

+ iGab,↑,+ sin(
√

2π1,c + 2kbx) cos(
√

4π+,s − kaba0)

− iGab,↑,+ cos(
√

2π1,c + 2kbx) sin(
√

4π+,s − kaba0)}, (C2)

where Gab,↑,± = Gab,↑(2kb − kab) ± Gab,↑(kab − 2kb). These terms arise from the four-fermion products,

Rab,↓(x + a0)Lab,↑(x)L†
b,↓(x)Rb,↓(x), Lab,↓(x + a0)Rab,↑(x)R†

b↓(x)Lb,↓(x).

These describe the coupling of “2kb” density oscillations in the bonding band to bond-centered hole pairs in the antibonding
band. Carrying out the analogous analyses for O2, O3, and O4 we find that the sum of the contributions is given by〈

BS
(1)
int

〉 ∼ ei
√

2π�2,c [C1 cos(
√

2π1,c + 2kbx) + C2 sin(
√

2π1,c + 2kbx)] cos(
√

4π+,s) + · · · , (C3)

where the complex coefficients C1,2 are given in terms of Gab,↑,± and where we have retained only the terms which contribute
power-law decay to the two-point function. Terms which have zero expectation value in the 4kb Mott insulator, e.g., contributions
proportional to sin(

√
4π+,s) or sin(

√
4π�−,s), have been dropped from Eq. (C3). The order parameter B being bond centered

is important; the contributions (C3) which decay as a power law in the 4kb Mott insulating phase vanish due to cancellation in
the site-centered case. Following through the same steps for S

(2)
int we find that〈

BS
(2)
int

〉 ∼ −ei
√

2π�2,c [C3 cos(
√

2π1,c + 2kbx) + C4 sin(
√

2π1,c + 2kbx)] cos(
√

4π�−,s) + · · · . (C4)

Combining the two contributions gives the following result for the interaction-induced contribution to the low-energy projection
of B(j ):

〈BSint〉 ∼ ei
√

2π�2,c {[C1 cos(
√

4π+,s) − C3 cos(
√

4π�−,s)] cos(
√

2π1,c + 2kbx)

+ [C2 cos(
√

4π+,s) − C4 cos(
√

4π�−,s)] sin(
√

2π1,c + 2kbx)} + · · · . (C5)
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46S. A. Söffing, M. Bortz, I. Schneider, A. Struck, M. Fleischhauer,

and S. Eggert, Phys. Rev. B 79, 195114 (2009).
47P. Chudzinski, M. Gabay, and T. Giamarchi, Phys. Rev. B 76,

161101(R) (2007); 78, 075124 (2008).

195103-22

http://dx.doi.org/10.1103/PhysRevB.64.033103
http://dx.doi.org/10.1103/PhysRevLett.105.146403
http://dx.doi.org/10.1103/PhysRevLett.105.146403
http://dx.doi.org/10.1103/PhysRev.135.A550
http://dx.doi.org/10.1103/PhysRevB.85.035104
http://dx.doi.org/10.1103/PhysRevB.48.15838
http://dx.doi.org/10.1103/PhysRevB.53.R2959
http://dx.doi.org/10.1103/PhysRevB.56.6569
http://dx.doi.org/10.1103/PhysRevB.56.6569
http://dx.doi.org/10.1103/PhysRevB.32.7399
http://dx.doi.org/10.1103/PhysRevB.69.155109
http://dx.doi.org/10.1103/PhysRevB.69.155109
http://dx.doi.org/10.1103/PhysRevB.50.252
http://dx.doi.org/10.1103/PhysRevB.50.252
http://dx.doi.org/10.1103/PhysRevB.72.035110
http://dx.doi.org/10.1103/PhysRevB.83.104405
http://dx.doi.org/10.1143/PTPS.160.79
http://dx.doi.org/10.1143/PTPS.160.79
http://dx.doi.org/10.1103/PhysRevB.77.161102
http://dx.doi.org/10.1103/PhysRevB.77.161102
http://dx.doi.org/10.1103/PhysRevB.54.9862
http://dx.doi.org/10.1103/PhysRevLett.79.929
http://dx.doi.org/10.1103/PhysRevLett.79.929
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/PhysRevLett.73.882
http://dx.doi.org/10.1103/PhysRevLett.73.882
http://dx.doi.org/10.1016/S0921-4534(96)00515-1
http://dx.doi.org/10.1016/S0921-4534(96)00515-1
http://dx.doi.org/10.1103/PhysRevB.56.7162
http://dx.doi.org/10.1103/PhysRevB.56.7162
http://dx.doi.org/10.1103/PhysRevB.58.9492
http://dx.doi.org/10.1103/PhysRevB.58.9492
http://dx.doi.org/10.1103/PhysRevB.65.165122
http://dx.doi.org/10.1103/PhysRevB.65.165122
http://arXiv.org/abs/arXiv:cond-mat/9808020
http://dx.doi.org/10.1088/0953-8984/13/3/306
http://dx.doi.org/10.1088/0953-8984/13/3/306
http://dx.doi.org/10.1103/PhysRevB.69.220406
http://dx.doi.org/10.1103/PhysRevB.69.220406
http://arXiv.org/abs/arXiv:cond-mat/9808167
http://dx.doi.org/10.1103/PhysRevB.75.144403
http://dx.doi.org/10.1103/PhysRevB.79.195114
http://dx.doi.org/10.1103/PhysRevB.76.161101
http://dx.doi.org/10.1103/PhysRevB.76.161101
http://dx.doi.org/10.1103/PhysRevB.78.075124

