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BEC of magnons in superfluid 3He-B and symmetry breaking fields
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States with a coherent precession of magnetization such as a homogeneously precessing domain or a persistently
precessing domain created in the superfluid 3He-B represent the macroscopic examples of the Bose-Einstein
condensates of magnons. Once the magnons form one of these states, this many-magnon coherent quantum
state is described by a “single-magnon wave function” (or an order parameter). A suitable external perturbation
may cause the condensate to oscillate around the state of coherent precession, which demonstrates a collective
rigidity of the condensate against scattering a single magnon out of it. The states corresponding to a free coherent
precession of magnetization are degenerate in the phase of precession, so there exist oscillations around such
states with a gapless dispersion relation, known as the Goldstone modes. Here, we present both experimental
and theoretical results of the study of the spin density oscillations superposed on a homogeneously precessing
domain in superfluid 3He-B in the presence of a high-frequency excitation field Brf. We show that the presence of
this field lifts the degeneracy of the precessing state with respect to the phase of precession, that is, it violates the
symmetry of the magnon condensate, and former Goldstone modes become non-Goldstone ones, as they acquire
the energy gap in their spectrum.
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I. INTRODUCTION

Traditionally, the phenomenon of Bose-Einstein condensa-
tion is associated with an ideal Bose gas of identical particles,
the number of which is conserved. The condensate is said
to be present whenever a finite fraction of all the consistent
particles resides in the same lowest single-particle state, all
behaving in exactly the same way. During the last several
decades, the concept of Bose-Einstein condensation has been
extended to various gases of bosonic elementary excitations
in many-body systems, that is, the gases of quasiparticles,
with finite lifetime, the numbers of which are not conserved.1

Bose-Einstein condensation in such a gas can only be realized
if the lifetime of the quasiparticles considerably exceeds the
time they need to scatter with each other to reach thermal
equilibrium among themselves. Bose-Einstein condensation of
quasiparticles has been reported in several physical systems,
such as ensembles of excitons, biexcitons, and polaritons in
semiconductors,2,3 or gases of magnons in certain classes of
quantum magnets4,5 and in superfluid helium-3.6–9

With respect to the purpose of the study presented here,
i.e., to extend Fomin’s work concerning the vibrations of
a magnetic domain undergoing free precession to the case
when this precession is prescribed by an external rf field, it
was more convenient to treat the homogeneously precessing
domain (HPD) in 3He-B “classically,” that is, in terms of the
condensate of Cooper pairs and its order parameter rather than
in terms of the condensate of magnons.

Consider a simple pulse NMR experiment. A volume
(experimental cell) of superfluid 3He-B is placed in the
magnetic field B0 with linear gradient field ∇B along the
z direction (B = B0 + ∇Bz). Steady magnetic field B in-
duces an equilibrium magnetization, that is, the majority of
magnetic momenta are aligned to the field direction. When
a perpendicular rf pulse with sufficient amplitude Brf and a
suitable frequency is applied, then the magnetization (spins) in
3He-B is deflected and precesses around the external magnetic

field. Inhomogeneity in the external magnetic field forces
the differences in frequencies of the spin precession, i.e., it
generates the gradients in the spin part of the order parameter.
Arising spin supercurrents redistribute the spin deflection over
a sample of superfluid 3He-B. A “spin-up” component, i.e.,
with spins pointing up along the magnetic field, flows towards
to lower field, while the “spin-down” component flows towards
to the opposite part of the cell, where magnetic field is higher.
As both components can not pass through the cell walls, these
spin supercurrents have the effect of increasing of the tipping
angle at the low-field side of the cell, while reducing it on the
other. Thus, the magnetic moments on the high-field side are
orientated into the field direction and, once they are parallel,
they stop their precession and form a stationary domain (SD).
However, the magnetic moments on the low-field side are
deflecting until a Leggett angle (�L ∼ 104◦) is reached, above
which the dipole-dipole energy can not be minimized, and
this gives rise to a dipole torque. The dipole torque increases
the frequency of the spin precession and thus lowers the
gradients in the order parameter created due to field gradient
and field inhomogeneity. Thus, a dynamic equilibrium state
is spontaneously set up, where in a localized volume the
spins are precessing coherently in spite of the presence of
inhomogeneous magnetic field forming the B-E condensate of
magnons: homogeneously precessing domain. The precessing
domain and the stationary domain are separated by a domain
wall, which concentrates the gradient energy of the system.
Position of the domain wall is determined by the condition
that the local Larmor frequency at the domain-wall position
equals to the frequency of the coherently precessing domain.

Once such a two-domain structure is created, it represents
a stable configuration. If this structure is slightly perturbed,
it will undergo small oscillations around the homogeneously
precessing state. As the states of a free homogeneous pre-
cession are degenerate in the phase of precession, there are
oscillations with a gapless spectrum in the long-wavelength

184529-11098-0121/2012/85(18)/184529(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.184529


M. KUPKA AND P. SKYBA PHYSICAL REVIEW B 85, 184529 (2012)

HPD

SD

HPD

SD

HPD

SD

HPD

SD

(a) (b) (c) (d)

FIG. 1. A schematic visualization of various kinds of the normal
modes of an oscillating HPD-SD structure: (a) the HPD-SD stable
state, (b) the torsion oscillation mode, (c) the planar mode, and
(d) the first axial surface mode.

limit known as the Goldstone modes. There were a variety of
the gapless oscillation modes found on the background of a
freely precessing two-domain structure. However, if another
external field simultaneously lifts this degeneracy of the
precessing states, the symmetry violation may be associated
with a creation of the energy gap in the spectrum of excitations,
and the Goldstone modes become non-Goldstone ones.

The aim of this article is to present both experimental and
theoretical results of the study of the oscillation modes of the
precessing two-domain structure in superfluid 3He-B in the
presence of the symmetry breaking high-frequency excitation
field Brf.

II. THEORETICAL RESULTS

There are a variety of oscillation modes that can be excited
on the background of the dynamic two-domain structure as
shown in Fig. 1. In principle, these modes can be divided
into two types. While the first one, the so-called twisting
oscillations, represent “phonons in the magnon superfluid,” the
second type is represented by vibrations of the domain wall
itself. The latter are in some aspects analogous to those excited
on the surface of the liquids in the gravitational field. The
above-mentioned oscillation modes superposed on the freely
precessing HPD-SD structure were theoretically studied by
Fomin,10–12 and some of them had already been experimentally
observed: the torsion oscillation mode and the planar mode
using the pulse NMR technique by the Moscow group,13–15

and the axial mode using the continuous NMR technique by
the Košice group.16,17

According to Fomin’s theory,12 the frequency of the torsion
wave propagating in the HPD volume along the magnetic field
reads as

�2 = 2�2
B

8�2
B + 3ω2

L

(
5c2

T − c2
L

)
k2
L. (1)

Here, kL is the corresponding wave vector, �B(T ) is the
Leggett frequency, cT and cL denote the spin-wave velocities
with respect to the direction of the magnetic field, and ωL is the
local Larmor frequency at the domain-wall position, that is,
the frequency of the coherent spin precession. The dispersion
relation of the wave traveling along the HPD-SD interface
(surface mode) was found in the form12
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Here, kT is the transverse wave vector and ∇ωL is the small
gradient in the Larmor frequency due to a gradient in the
applied magnetic field ∇B.

The above-mentioned Fomin’s theoretical results were ob-
tained for a two-domain structure undergoing free precession,
i.e., in the absence of the external forces. This corresponds to
the condition of the HPD excited by a pulse NMR technique.
Then, there is the degeneracy of the precessing states with
respect to the phase of precession present. However, in the
case of a continuous NMR, the high-frequency excitation
field Brf rotating at an angular frequency ωrf in the plane
perpendicular to the direction of static magnetic field B defines
a preference orientation removing thus the U(1) degeneracy of
the precessing states. As a result, the dispersion relations of
the excitations of a precessing two-domain structure in the
long-wavelength region acquire a gap (see the Appendix).
Thus, the dispersion relations of the torsion wave traveling
in the volume of HPD were obtained in the form
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)
, (3)

and that for the wave propagating along the HPD-SD interface
was derived in the form

�2 = 3

4

g∇B

ωrf

√
2

3

(
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×
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Here, g is the magnitude of the gyromagnetic ratio of the 3He
nucleus. Equations (3) and (4) differ from Eqs. (1) and (2) by
the term proportional to gBrfωrf as a result of the symmetry
violation. It plays a role of the energy gap or “an effective
mass.” A detailed derivation of the oscillation modes of the
HPD-SD structure affected by the symmetry breaking field Brf

is presented in the Appendix.

III. EXPERIMENT

Surface oscillation modes and torsion oscillation modes
were studied in two different experiments using slightly
different experimental cells17,18 mounted on the top of a copper
diffusion welded nuclear stage.19 In both experiments, the
HPD was formed and maintained by means of a continuous
high-frequency field Brf generated by the rf coil of Helmholtz
type at the resonance frequency of 462 kHz in the upper part
of the particular experimental cell. The bottom part of both
cells served for the 3He temperature measurements by means
of the Pt NMR thermometer, tuning forks, and vibrating wires.
Temperature scale was calibrated against the temperature of
3He superfluid transition at given pressure. Once the HPD
was formed, the size of the HPD inside of the cell, i.e., the
position of the domain wall, was controlled (and adjusted) by
the magnitude of B0 at a constant value of the field gradient
generated by a gradient coil. Both superconducting magnets,
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FIG. 2. (Color online) Top: absorption and dispersion resonance
characteristics of the surface oscillation mode excited on the back-
ground of the dynamical equilibrium state of the magnon condensate
as measured by the detection technique. Bottom: the resonance
characteristics of the surface modes as a function of the field
gradient.

homogeneous and gradient, were supplied from two separate
constant current sources. In order to avoid the influence of the
horizontal walls of the cell on the surface oscillation modes,
in this case, the domain-wall position was kept in the middle
of the cell.

The deflection of the HPD-SD structure from the steady
state was provided by the application of an additional alter-
nating magnetic field with an axial symmetry generated by
the small longitudinal coil of the Helmholtz type. To excite a
particular oscillation mode (axial or torsion), the frequency
of the additional field was swept in a suitable frequency
range. The response of the HPD-SD structure was detected
using the demodulation technique based on the application of
a high-frequency detector and a low-frequency filter, which
together with a low-frequency lock-in detection allowed us to
measure almost a pure low-frequency resonance signal. The
reference signal for the low-frequency lock-in amplifier was
taken from the generator providing the longitudinal magnetic
field. The field constant of the small longitudinal coil was
determined from the measurements of the position of the
cw-NMR peak in the 3He normal phase for various excitations
of the longitudinal coil.

IV. EXPERIMENTAL RESULTS

The real homogeneously precessing domain is a spatially
finite object. The effect of this spatial finiteness is that the
excitation’s wave vector can take on only a certain set of
discrete values. As a result, the oscillations superposed on
the HPD-SD structure reveal themselves as standing waves
(normal modes). The surface oscillation modes were studied
in a hydrodynamic regime at the pressure of 11 bar. The
measurement technique allowed us to detect nearly ideal
resonance characteristics of the excited surface oscillation
mode (see Fig. 2). Figure 2 confirms that the measured
resonance characteristics correspond to the surface modes
as their resonance frequencies depend on the magnetic field
gradient. Figure 3 presents the dependence of the measured
resonance frequencies on the field gradient. In Fig. 3, two
theoretical dependencies are shown as well, for the first
(ξ0,1 = 3.8317) and the second (ξ0,2 = 7.0156) axial modes
as they were calculated according to Fomin’s expression (2)
for a freely precessing two-domain structure:

�2 = 1

2
√

2

∇ωL

ωL

√(
5c2

T − c2
L

)(
5c2

L + 3c2
T

) ξm,i

R
. (5)

Because the HPD is encircled by an impenetrable cell wall,
the kT in expressions (2), (3), and (4) can take on only
the values that satisfy the condition ∂Jm(kT R)/∂(kT R) = 0,
which implies that kT = ξm,i/R, where ξm, i , are zeros of
the first derivative of the Bessel function of the order of
m (m = 0,1,2, . . .) and R is the radius of the domain wall
assumed to be the same as the radius of the experimental cell.

Obviously, there is a discrepancy between the theoretical
prediction and experimental results. Relying on Fomin’s
theory, we interpreted this difference as a consequence of
the domain-wall thickness.17 The theory neglects the wall
thickness, however, in reality it grows as the field gradient
decreases as

λF =
(

c2
L

ωL∇ω

)1/3

. (6)
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FIG. 3. (Color online) Resonance frequencies of the axial surface
mode as a function of the field gradient measured at the temperature
of 0.49 TC and pressure of 11 bar. Black dashed lines correspond to
the theoretical calculations according to Fomin’s theory for the first
and the second axial modes, while the red line corresponds to the
theoretical model presented.
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Then, the finite domain-wall thickness together with the effect
of magnetic nonwetting20,21 cause that real radius R of the
oscillating domain wall [see expression (5)] is not the same as
the cell radius, but it corresponds to an effective radius. This
interpretation was partially correct and partially wrong.

As it follows from the theoretical calculations presented in
the Appendix, the presence of the high-frequency excitation
field Brf violates the U(1) symmetry of the HPD precession.
Due to this, the dispersion relation is lifted by an additional
frequency shift proportional to the rf-field amplitude Brf.
Assuming that the position of the domain wall is in the middle
of the sufficiently long cell, the frequency of the first axial
mode (kT = ξ0,1/R = 3.8317/R) can be expressed as

�2 = 3

4

g∇B

ωrf

√
2

3

(
5c2

T − c2
L

)

×
√

4√
15

gBrfωrf + 5c2
L + 3c2

T

3

(3.8317)2

R2
. (7)

In expression (7), there are no free parameters that could be
used to adjust theoretical data to the experimental ones. The
line in Fig. 3 represents the dependence calculated by using
Eq. (7) (Brf = 2μT , R = 3 mm). As it can be seen from Fig. 3,
there is a reasonable agreement between the experimental data
and the theoretical prediction for higher-field gradients, but
there is a discrepancy for lower-field gradients. The domain
wall becomes thinner for higher gradients and the experimental
reality satisfies better the premises of the theoretical model.
This is not true for the low-field gradients, where one needs
to take into account the thickness of the domain wall itself
[see expression (6)] and, as it was already mentioned above,
consider an effective radius of the domain wall. Data shown
in Fig. 3 we reckoned for an indirect confirmation of our
theoretical model. In order to make a proper proof of this
model, one needs to realize these measurements at the constant
field gradient and with the constant domain-wall position, and
to measure the dependence of the resonance frequency of the
excited axial mode on the rf-field amplitude Brf directly.

Measurements of the torsion oscillation mode using the
cw-NMR technique were performed at the pressure of 0 bar.18

The torsion mode is related to the oscillations of the phase of
precession of the precessing spins in the bulk of the HPD and its
resonance frequency depends on the HPD length (see below).
The presence of the Brf defines a preference orientation for the
spin density. This field again breaks the U(1) symmetry of the
homogeneously precessing domain with respect to the phase
of precession. A torsion Goldstone mode acquires an energy
gap as a direct consequence of this symmetry violation and
becomes a non-Goldstone mode. As the boundary conditions
are the cell wall at one end and the domain wall at the other
end of HPD, the frequency of the fundamental mode (kT =
ξ0,0/R = 0,kL = π/2L) can be expressed as

�2 = 3�2
B

8�2
B + 3ω2

rf

(
4√
15

gBrfωrf +
(
5c2

T − c2
L

)
π2

6L2

)
, (8)

where L is the HPD length.
Figure 4 shows the dependence of the resonance frequencies

squared on the rf-field amplitude Brf. The line represents the fit
to experimental data using Eq. (8). The fit does not cross zero
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FIG. 4. (Color online) Resonance frequencies squared of the
torsion mode of the HPD as the function of the Brf amplitude
measured at the temperature of 510 μK and pressure of 0 bar. The line
is the fit to experimental data using Eq. (8). Inset shows the resonance
characteristics measured for three rf-field excitations demonstrating
the frequency shift with Brf amplitude.

at zero rf-field amplitude, and this nonzero value corresponds
to the frequency of the free torsion mode, i.e., the second term
in expression (8).

Figure 5 shows the resonance frequencies as a function of
the HPD length. The line is the fit to experimental data using
Eq. (8). The inset to Fig. 5 presents the resonance character-
istics of the excited torsion modes measured at three different
lengths of the HPD. As the HPD becomes shorter, the
resonance frequency rises up, however, the oscillation mode
simultaneously becomes more dissipative reducing thus the
amplitude of its oscillations. As it was shown in Ref. 18,
there are two main processes of the energy dissipation: (i) the
spin diffusion and (ii) the Leggett-Takagi mechanism. The
dissipation rate by the spin diffusion depends on the HPD
length as 1/L2, while this via the Leggett-Takagi mechanism
is linear with HPD length L. Therefore, the dissipation by the
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characteristics measured for three various HPD lengths at the constant
amplitude of Brf .

184529-4



BEC OF MAGNONS IN SUPERFLUID 3He-B AND . . . PHYSICAL REVIEW B 85, 184529 (2012)

spin diffusion dominates when the length of the HPD becomes
shorter.

If the HPD fills up the whole cell (so there is no SD
present and therefore no domain wall), the collective mode [see
Eq. (8)] transforms to its long-wavelength limit with 1/L → 0.
This describes uniform oscillations of magnetization on the
background of HPD, i.e., the NMR in the rotating frame of
reference. In fact, the high-frequency field Brf is static in the
frame of reference rotating at frequency ωrf and therefore
may play the same role as the static magnetic field B does
in a laboratory frame: it aligns magnetization with the field
direction. An additional longitudinal field, which is invariant
to the rotation, applied on this system at a proper frequency
may deflect this magnetization creating NMR in a rotating
frame of reference.

V. CONCLUSION

We presented the theoretical model supported by the exper-
imental data showing that the presence of the high-frequency
magnetic field Brf breaks the U(1) symmetry of the Bose-
Einstein condensate of magnons in superfluid 3He-B formed
as a homogeneously precessing domain and, as a consequence
of this symmetry violation, the Goldstone oscillation modes
of this system, which are gapless in the absence of rf field,
become non-Goldstone in the presence of this field, as they
acquire the energy gap or “mass.”
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APPENDIX

Low-frequency oscillations of a spin density superposed
on its homogeneous precession are investigated. In measure-
ments, the HPD in 3He-B is formed and maintained by the
cw-NMR method. To model such a situation, the components
of the field along the Cartesian axes are chosen in the form
Bx = −Brf cos ωrft , By = Brf sin ωrft , and Bz = −B + z∇B.
The spin motion is coupled with that of the order parameter.
In 3He-B, the order parameter is the rotation matrix that
transforms the orbital coordinates to the spin ones.

In what follows, it is assumed that the orbital reference
frame is fixed in space and that the rotation of the spin reference
frame frame starts from the Balian-Werthamer 3P0 state. It is
convenient to describe this rotation by means of the Euler
angles α(x,y,z,t), β(x,y,z,t), and γ (x,y,z,t) (or better � =
α + γ ). The action of fields α, β, and � reads as

S =
∫ t2

t1

dt

∫
(V )

L dx dy dz, (A1)

where the Lagrangian density is given by the relation

L = χB

g2
(εkin − εgrad − εdip). (A2)

Here, g is the magnitude of the gyromagnetic ratio of 3He
nucleus, χB is the magnetic susceptibility per unit volume of
3He-B, and22–25
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t − (1 − cos β) αt�t + 1

2�2
t + 1

2β2
t

+ g(B − z∇B)[(1 − cos β)αt + (cos β)�t ]

+ gBrf[(�t − αt ) sin β cos(ωrft + α)

−βt sin(ωrft + α)], (A3)

εgrad = 1
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[
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z

− c2
L(1 − cos β)(αx�x + αy�y)

− (
2c2

T − c2
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(1 − cos β)αz�z

+ 1
2c2
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+ 1
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2c2
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z , (A4)

εdip = 2
15 �2

B

[
(1 + cos β)(1 + cos �) − 3

2

]2
. (A5)

The part of local spin density that is induced by the order-
parameter motion is given by

sx = χB

g2
[(�t − αt ) sin β cos α − βt sin α], (A6)

sy = χB

g2
[(�t − αt ) sin β sin α + βt cos α], (A7)

sz = χB

g2
[(�t − αt ) cos β + αt ]. (A8)

Here, αt = ∂α/∂t , αx = ∂α/∂x, αy = ∂α/∂y, αz = ∂α/∂z,
etc. Quantities cL and cT are velocities of two kinds of the
spin waves. �B is the Leggett frequency of the longitudinal
resonance in the 3He-B. In the density of gradient energy εgrad,
the high-frequency oscillations due to the overall precession
are integrated out.

Using the calculus of variations to find an extremum of the
action (A1) leads to the Euler-Lagrange equations for α, β,
and �:

δS

δα(x,y,z,t)
≡ ∂

∂t

∂L
∂αt

+ ∂

∂x

∂L
∂αx

+ ∂

∂y

∂L
∂αy

+ ∂

∂z

∂L
∂αz

− ∂L
∂α

= 0, etc. (A9)

The solutions of these equations extremize the action (A1).
As in the pulsed NMR case,12 the steady-state solution

of the equations of motion is expected to describe a two-
domain structure. In one domain, the spins point along the
positive z direction and are at rest, while in the other, the
spins are deflected off the positive z direction, and all undergo
precession around the z axis throughout the entire volume
with the same frequency and precisely in phase. The angle of
deflection β slightly exceeds 104◦ and varies in such a way that
the dipole-dipole frequency shift compensates for the spatial
variation of the Larmor frequency gBz(z).
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Well inside the homogeneously precessing domain, the
fields α, β, and � are expected to be of the form

αHPD = −ωrft, (A10)

βHPD = arccos(−1/4) + (z − z104)∇β, (A11)

�HPD = 0. (A12)

The point z104 is determined by the condition cos β = −1/4.
Fields αHPD, βHPD, and �HPD satisfy the equations of motion

if z104 and ∇β fulfill the following conditions:

g

(
B + 1√

15
Brf − z104∇B

)
− ωrf = 0 (A13)

and

∇β =
√

15

4

gωrf∇B

�2
B

. (A14)

Equations describing a low-frequency oscillation super-
posed on the HPD are derived by using the standard pro-
cedure of linearization of the equations of motion with
respect to small deviations a, b, and f of the fields α,
β, and � from their values αHPD, βHPD, and �HPD. After
linearization and minor algebraic manipulation, the equations
become

∂2a

∂t2
− 1

8

(
5c2

L + 3c2
T

) (
∂2a

∂x2
+ ∂2a

∂y2

)
− 1

4

(
5c2

T − c2
L

)∂2a

∂z2
− 3

8

(
5c2

T − 3c2
L

)ωrfg∇B

�2
B

∂a

∂z
+

√
15

10
ωrfgBrfa −

√
15

10
ωrf

∂b

∂t

− 1

2

∂2f

∂t2
+ 1

2
c2
L

(
∂2f

∂x2
+ ∂2f

∂y2

)
+ 1

2

(
2c2

T − c2
L

)∂2f

∂z2
+ 3

8

(
2c2

T − c2
L

)ωrfg∇B

�2
B

∂f

∂z
= 0, (A15)

∂2b

∂t2
− c2

T

(
∂2b

∂x2
+ ∂2b

∂y2

)
− c2

L

∂2b

∂z2
+ �2

Bb +
√

15ωrf

4

∂a

∂t
−

√
15

4
(z − z104)g∇B

∂f

∂t
= 0, (A16)

∂2f

∂t2
− c2

L

(
∂2f

∂x2
+ ∂2f

∂y2

)
− (

2c2
T − c2

L

)∂2f

∂z2
+ 3

8
(z − z104)gωrf∇Bf +

√
15

4
(z − z104) g∇B

∂b

∂t
− 5

4

∂2a

∂t2

+ 5

4
c2
L

(
∂2a

∂x2
+ ∂2a

∂y2

)
+ 5

4

(
2c2

T − c2
L

)∂2a

∂z2
+ 15

16

(
2c2

T − c2
L

)gωrf∇B

�2
B

∂a

∂z
= 0. (A17)

The actual HPD has the length L and is formed in a cylindrical
cell of diameter R. The superposed oscillations thus reveal
themselves as standing waves (the normal modes). The normal
modes can be found only if the boundary conditions are known.

The spin current can not penetrate into the walls of the
experimental cell. As the spin current is related to gradients in
the spin part of the order parameter, the normal derivatives of
a, b, or f must vanish at the side cell’s walls. At the top of the
cell, the following condition must be satisfied:

[(
5c2

T − c2
L

)∂a

∂z
+ 2

(
c2
L − 2c2

T

) ∂f

∂z

]
z=z104+L

= 0. (A18)

The condition at the domain wall is different. The wavelength
of the low-frequency oscillations is comparable to the longi-
tudinal and transverse dimensions of the domain and is larger
than the thickness of the domain wall. Therefore, it may be
assumed that (i) the set of points defined by the condition
cos β = −1/4 transforms from a plane into a very slightly
bent surface, and (ii) the domain wall is infinitely thin.

If the plane undergoes a really small deflection, only the
out-of-plane displacements of its points are relevant. That is,
the displacement vector for the plane’s points is ux = uy = 0,
uz = u(x,y,t). Taking a line integral of δS/δα along a line
parallel to the z axis, from z1 to z2 via z104 + u, assuming the
domain wall as infinitely thin, and letting z2 tend to z104 + u,

the following relation is obtained:[
∂L
∂αz

− ∂L
∂αt

∂u

∂t

]
z=z104+u+0

= 0. (A19)

Assuming that a spin pattern in an infinitesimal vicinity
of a point (x,y,z104) displaces as a “solid structure,” another
relation is obtained:[

∂b

∂t
+ ∂u

∂t
∇β

]
z=z104+0

= 0. (A20)

Combining these two, the required condition at the domain
wall is found, which in the linear order of smallness reads
as [

�2
B

∂b

∂t
+

(√
15

8
g∇B

)[(
5c2

T − c2
L

)∂a

∂z

+ 2
(
c2
L − 2c2

T

)∂f

∂z

]]
z=z104+0

= 0. (A21)

A frequency window for the low-frequency oscillations
is assumed to be within frequency range c∇β � ω � �B ,
where c denotes the spin-wave velocity. In this case, Eq. (A16)
provides

b = −
√

15

4 �2
B

[
ωrf

∂a

∂t
− (z − z104) g∇B

∂f

∂t

]
. (A22)
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Substituting this to Eq. (A17) and allowing that �B < ωrf, it
follows that f/a � 1. Due to this, variable f may be omitted
in Eq. (A17) and in the boundary conditions if they appear
together with a. As a result, the following wave equation has
to be solved:(

8

3
+ ω2

rf

�2
B

)
∂2a

∂t2
− 1

3

(
5c2

L + 3c2
T

) (
∂2a

∂x2
+ ∂2a

∂y2

)

− 2

3

(
5c2

T − c2
L

)∂2a

∂z2
+ 4√

15
gωrfBrf a = 0, (A23)

and a solution must satisfy the boundary conditions[
∂2a

∂t2
− g∇B

2ωrf

(
5c2

T − c2
L

)∂a

∂z

]
z=z104

= 0,

[
∂a

∂z

]
z=z104+L

= 0, (A24)

[
∂a

∂r

]
r=R

= 0.

Here, r is the first of the cylindrical coordinates (r,ϕ,z). The
two-domain structure (HPD) formed in the cell can have a bulk
and surface oscillation modes.

The surface modes concentrate near the domain wall. A
general solution that meets these requirements can be written
in the form

a = [a1Jm(kT r) + a2Nm(kT r)] cos m(ϕ − a3)

× cosh(kLz + a4) cos(ωt + a5), (A25)

where m = 0,1,2,3, . . ., Jm is the Bessel function of the order
m, and Nm is the Neumann function of the order m.

The solution (A25) must be finite everywhere in the HPD, it
must satisfy the equations of motion throughout the HPD, and
fulfill the boundary conditions on the HPD surface. Allowing
for all these factors provides a group of modes which are
characterized by a negligible amplitude of b relative to those
of a, and by characteristic frequencies that are the solutions of

the equation

ω2 = 3

4

g∇B

ωrf
ω,

√
2

3

(
5c2

T − c2
L

)
tanh

⎛
⎝ L√

2
3

(
5c2

T − c2
L

) ω,

⎞
⎠,

(A26)

where

ω, =
[

4√
15

ωrfgBrf + 1

3

(
5c2

L + 3c2
T

) (
ξm,i

R

)2

− 8�2
B + 3ω2

RF

3�2
B

ω2

]1/2

. (A27)

In this equation, ξm, i , are zeros of the derivative of the Bessel
function [i.e., the roots of the equation ∂Jm(ξ )/∂ξ = 0].

For very low frequencies, Eq. (A26) simplifies to the form

ω2 = 3

4

g∇B

ωrf

√
2
(
5c2

T − c2
L

)
3

×
√

4√
15

ωrfgBrf + 5c2
L + 3c2

T

3

(
ξm,i

R

)2

× tanh Q(L,Brf,ξm,i), (A28)

where Q(L,Brf,ξm,i) is expressed as

Q(L,Brf,ξm,i) =
L

√
4√
15

ωrfgBrf + 5c2
L+3c2

T

3

( ξm,i

R

)2

√
2
3

(
5c2

T − c2
L

) . (A29)

The bulk modes spread over the whole HPD. The correspond-
ing solution can be written in the form

a = [a1Jm(kT r) + a2Nm(kT r)] cos m(ϕ − a3)

× cos(kLz + a4) cos(ωt + a5). (A30)

For the actual bulk normal modes, the frequencies are the
solutions of the equation

ω2 = 3�2
B

8�2
B + 3ω2

rf

[
4√
15

ωrfgBrf + 1

3

(
5c2

L + 3c2
T

) (
ξm,i

R

)2

+ 2

3

(
5c2

T − c2
L

) [
(2n + 1)π

2 + ϕ ,

L

]2
]

, (A31)

where

tan ϕ , = 3

4

g∇B

ω2ωrf

√
2

3

(
5c2

T − c2
L

)√8�2
B + 3ω2

rf

3�2
B

ω2 − 1

3

(
5c2

L + 3c2
T

) (
ξm,i

R

)2

− 4√
15

ωrfgBrf . (A32)

Here, n = 0,1,2, . . . . For not very low frequencies, Eq. (A31) simplifies to the form

ω2 = 3�2
B

8�2
B + 3ω2

rf

[
4√
15

ωrfgBrf + 1

3

(
5c2

L + 3c2
T

) (
ξm,i

R

)2

+ 2

3

(
5c2

T − c2
L

) [
(2n + 1)π

2

L

]2
]

. (A33)

It is worth to note that the torsion mode we refer to in our article corresponds to the fundamental mode characterized by ξ0,0 = 0
and n = 0.
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21P. Skyba, R. Harakály, Ľ. Lokner, and A. Feher, Phys. Rev. Lett.
75, 477 (1995).

22K. Maki, Phys. Rev. B 11, 4264 (1975).
23K. Maki and H. Ebisawa, Phys. Rev. B 13, 2924 (1976).
24V. P. Mineev and G. E. Volovik, J. Low Temp. Phys. 89, 823

(1992).
25T. S. Misirpashaev and G. E. Volovik, J. Low Temp. Phys. 89, 885

(1992).

184529-8

http://dx.doi.org/10.1038/443403a
http://dx.doi.org/10.1038/417047a
http://dx.doi.org/10.1038/417047a
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nature05117
http://dx.doi.org/10.1038/nature05117
http://dx.doi.org/10.1134/S0021364011130066
http://dx.doi.org/10.1134/S0021364011130066
http://dx.doi.org/10.1103/PhysRevLett.98.265302
http://dx.doi.org/10.1103/PhysRevLett.98.265302
http://dx.doi.org/10.1007/s10909-007-9530-7
http://dx.doi.org/10.1007/s10909-007-9530-7
http://dx.doi.org/10.1103/PhysRevLett.78.86
http://dx.doi.org/10.1103/PhysRevLett.82.4484
http://dx.doi.org/10.1016/0921-4526(92)90198-2
http://dx.doi.org/10.1016/0921-4526(92)90198-2
http://dx.doi.org/10.1007/s10909-005-2300-5
http://dx.doi.org/10.1007/s10909-005-2300-5
http://dx.doi.org/10.1209/epl/i1997-00501-8
http://dx.doi.org/10.1209/epl/i1997-00501-8
http://dx.doi.org/10.1103/PhysRevLett.91.055301
http://dx.doi.org/10.1103/PhysRevLett.91.055301
http://dx.doi.org/10.1103/PhysRevLett.100.155301
http://dx.doi.org/10.1103/PhysRevLett.100.155301
http://dx.doi.org/10.1016/S0011-2275(97)00021-0
http://dx.doi.org/10.1016/S0011-2275(97)00021-0
http://dx.doi.org/10.1103/PhysRevLett.73.1817
http://dx.doi.org/10.1103/PhysRevLett.73.1817
http://dx.doi.org/10.1103/PhysRevLett.75.477
http://dx.doi.org/10.1103/PhysRevLett.75.477
http://dx.doi.org/10.1103/PhysRevB.11.4264
http://dx.doi.org/10.1103/PhysRevB.13.2924
http://dx.doi.org/10.1007/BF00683888
http://dx.doi.org/10.1007/BF00683888
http://dx.doi.org/10.1007/BF00683892
http://dx.doi.org/10.1007/BF00683892

