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Hybridization and interference effects for localized superconducting states in strong magnetic field
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Within the Ginzburg-Landau model, we study the critical field and critical temperature enhancement for
crossing superconducting channels formed either along the sample edges or domain walls in thin-film magnetically
coupled ferromagnet-superconductor bilayers. The corresponding Cooper-pair wave function can be viewed as
a hybridization of two order-parameter (OP) modes propagating along the boundaries and/or domain walls.
Different momenta of hybridized OP modes result in the formation of vortex chains outgoing from the crossing
point of these channels. Near this crossing point, the wave functions of the modes merge, giving rise to the
increase in the critical temperature for a localized superconducting state. The origin of this critical temperature
enhancement caused by the wave-function squeezing is illustrated for a limiting case of approaching parallel
boundaries and/or domain walls. Using both the variational method and numerical simulations, we have studied
the critical temperature dependence and OP structure versus the applied magnetic field and the angle between
the crossing channels.
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I. INTRODUCTION

Recent experimental and theoretical studies of ferromag-
net/superconductor (F/S) heterostructures have revealed a rich
physics of magnetic and transport properties of these systems
(see, e.g., Refs. 1 and 2 for review). A considerable amount
of attention in these studies has been devoted to the effect
of ferromagnetic domain structure on the critical temper-
ature of superconductivity nucleation (see, e.g., Refs. 3–8
and references therein). This effect originates from both
the exchange and electromagnetic (orbital) mechanisms of
interaction between superconducting and magnetic orderings.
The electromagnetic mechanism appears to be a dominant
one for the experimental works which investigate F/S bilayers
designed to suppress the proximity effect (see, e.g., Refs. 8
and 9). The nonuniform magnetic stray field of domain
walls can result in the formation of a localized Cooper-pair
wave function at temperatures exceeding the superconducting
critical temperature in the bulk. Such localized order parameter
(OP) distributions and corresponding phase diagrams have
been studied in Refs. 4–6 for a generic case of a steplike
profile of a stray magnetic field in a superconducting thin
film. At a fixed temperature T for a certain critical amplitude
B0 [Hc2(T ) < B0 � Hc3(T )] of a steplike magnetic stray
field profile, the structure of localized OP wave function
coincides with the one which forms in the vicinity of super-
conductor/vacuum or superconductor/insulator flat interface
in a parallel field equal to B0, where Hc2(T ) and Hc3(T ) =
1.695Hc2(T ) are the critical fields of bulk superconductivity
and surface superconductivity, respectively.10

Certainly, in a restricted sample geometry, the localized
OP wave function should appear not only near the domain
walls, but also at the film edges. Thus, for temperature values
T between Tc2(B0) and Tc3(B0) > Tc2(B0), defined by the
conditions Hc2(Tc2) = B0 and Hc3(Tc3) = B0, respectively,
there appears a set of localized superconducting modes
propagating along the sample edges and/or domain walls and
decaying in the transverse direction. Hereafter, these localized
modes will be called superconducting channels. One can pose
a natural question as to whether the superconducting critical

temperature Tc could be increased due to the overlapping of the
OP modes localized near the various types of superconducting
channels. Indeed, such increase in the Tc value is well known
to occur for two parallel superconductor/vacuum interfaces
(i.e., for a superconducting film) placed in a homogeneous
magnetic field H parallel to the interfaces (see, e.g., Refs. 10
and 11). The critical temperature in this system monotonously
increases with the film thickness decreasing and saturates at
the Tc0 = Tc(H = 0) value in the limit of small thicknesses.
Taking nonparallel boundaries, we get a superconducting
wedge placed in a magnetic field. The squeezing of the
superconducting wave function at a small wedge angle is
known to cause a strong increase in the critical temperature Tc

(see Refs. 12–21).
It is the goal of our work to analyze the effect of

such wave-function squeezing on the critical temperature
enhancement for various types of crossing superconducting
channels localized near the sample edges and/or domain walls.
Within the linearized Ginzburg-Landau model, we carried out
the calculations of the critical temperature of localized super-
conductivity for a simple hybrid system consisting of a thin
superconducting film placed in a nonuniform stray magnetic
field of straight domain boundaries in a ferromagnetic substrate
underneath. An origin of the critical temperature enhancement
can be clearly demonstrated for a generic example of parallel
boundaries. Generalizing the textbook solution for the critical
field of a thin superconducting film,10,11 we consider two
model problems: (i) parallel domain boundary and sample
boundary separated by the distance D; (ii) two parallel domain
boundaries at the separation D. In both cases, the dependence
of critical temperature Tc versus the distance D reveals a
maximum at the value of the order of the magnetic length
LB = √

h̄c/|e|B0, where h̄ is a Planck constant and e = −|e|
is an electron charge. At this distance, the wave functions
of the OP modes localized near neighboring domain walls
or near the domain wall and the sample edge merge and
form a single superconducting channel. Turning now to the
case of nonparallel domain walls (which cross at the angle
ϕ0 � π/2) or a domain wall crossing a sample boundary
at a certain small angle ϕ0, one can expect that the most
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favorable conditions for superconductivity nucleation realize
at the distance ∼LB/ϕ0 from the crossing point. As a result, for
rather small angles ϕ0 � π/2, the center of the energetically
favorable OP distribution is shifted from the crossing point.
This shift is accompanied by the striking phenomenon: the
critical temperature Tc of the localized superconductivity
monotonously increases when the tilting angle ϕ0 tends to
zero. Such behavior makes the dependence Tc(ϕ0) nonanalytic
at ϕ0 = 0 where the critical temperature exhibits a jump to the
value Tc3 (Tc2) for the case of the domain wall crossing the
sample edge (for two crossing domain walls).

In our work, we suggest a simple variational procedure
which allows us to get an approximate solution of a linearized
Ginzburg-Landau equation describing the hybridization of the
localized superconducting states for an arbitrary ϕ0 angle. We
find out that different momenta of hybridized OP modes are
responsible for the formation of vortex chains outgoing from
the crossing point of the channels. The effect of these chains
on the OP trial function appears to be extremely important for
rather large ϕ0 angles close to π/2. The important effect of
such vortex chain can be illustrated for the simplest example
of the superconductivity nucleation at the wedge corner. Our
calculations show that, only taking into account the vortex
chain, one can get a proper crossover to the Hc3 field with
the increase in the wedge angle up to the flat one. The
solution of a generic problem describing the superconductivity
nucleation in a wedge allows us to find appropriate trial wave
functions for superconducting OP nucleating near the domain
walls intersecting the film edge or near the crossing point of
domain boundaries. The change in the ϕ0 angle is found to be
accompanied by the change in the orientation of vortex chains
and the intervortex distance. Our analytical findings based on
the variational procedure are in a good agreement with direct
numerical simulations.

By applying an external magnetic field perpendicular to
the film plane, one can observe the increase in the critical
temperature of the domain-wall superconductivity due to the
partial magnetic field compensation inside the domains. Using
both variational and numerical approaches, we have composed
the phase diagram of the F/S bilayer in the plane temperature
T —external magnetic field H and discuss the transitions
between different superconducting states by varying temper-
ature T , external magnetic field H , and magnetic stray field
amplitude B0.

The paper is organized as follows. In Sec. II, we mainly
focus on the variational analysis of the superconductivity
nucleation and interference of localized superconducting
states. In Sec. III, we present the results of direct numerical
simulations which support our analytical findings. Finally, the
results are summarized in Sec. IV.

II. VARIATIONAL APPROACH

We start our study of the hybridization and interference
effects for interacting superconducting channels forming in a
thin-film magnetically coupled F/S bilayer with the Ginzburg-
Landau (GL) variational procedure focusing on the analysis of
appropriate trial wave functions. Let us analyze the problem
of the OP nucleation in a thin superconducting film placed
in the nonuniform magnetic field B(r) = Hz0 + b(r) induced

by the external sources and the magnetic domain walls in
a ferromagnetic substrate, respectively. Note that we will
restrict ourselves to the case of a steplike distribution of the
magnetic stray fields of the domain walls and neglect the
effect of the magnetic field components parallel to the film
plane. In particular, for a single domain wall, we take b(r) =
z0B0sign(̃x), where the x̃ axis is directed perpendicular to the
corresponding domain wall. Thus, we neglect the deviations
from this steplike field model caused by a finite thickness of
a superconducting film and decay of the magnetic stray field
at large distances from the domain walls (see discussion in
Refs. 6, 23, and 24).

A. Linearized Ginzburg-Landau model

The superconducting critical temperature Tc can be rou-
tinely determined from the linearized GL equation[

−i∇ − 2e

h̄c
A(r)

]2

�(r) = 1

ξ 2(T )
�(r) (1)

as the highest possible value: Tc = maxT , corresponding
to the lowest “energy level” E ∝ ξ−2(T ) of the eigenvalue
problem (1). Here, �(r) is the OP distribution, A(r) is the
vector potential corresponding to the total magnetic field B(r),
m is the electron mass, and ξ (T ) = ξ0/

√
1 − T/Tc0 is the

superconducting coherence length. Alternatively, Tc is known
to be determined from the variational problem

1

ξ 2(T )
=

∫ |[−ih̄∇ − 2eA(r)/c]�(r)|2d2r

h̄2
∫ |�(r)|2d2r

, (2)

and the integration is performed over the superconducting
volume. The wave function �(r) satisfies the boundary
condition [

−ih̄
∂

∂n
− 2e

c
An(r)

]
�(r)

∣∣∣∣
�

= 0, (3)

where n is a unit vector normal to the sample boundary �.
The complex-valued wave function �(r) can be written

in the form �(r) = f (r)ei�(r), where f (r) and �(r) are the
absolute value and the phase of �(r), respectively. Thus, we
can rewrite Eq. (2) in the form

1

ξ 2(T )
=

∫ {
4m2v2

s (r)f 2(r) + h̄2[∇f (r)]2
}
d2r

h̄2
∫

f 2(r)d2r
, (4)

where vs(r) = [h̄∇�(r) − 2eA(r)/c]/2m is a superfluid
velocity.

B. Localized superconducting modes forming in the
presence of parallel boundaries

We begin with the consideration of the superconductivity
nucleation for parallel sample edges and/or domain walls
in a thin-film F/S bilayer. Let us choose the x (y) axis to
be perpendicular (parallel) to these boundaries and take the
gauge A = Ay(x) y0. The Schrödinger-type equation (1) does
not depend on the y coordinate and one can generally find
the solution in the form �(x,y) = fk(x) exp(−iky), where
the function fk(x) should be determined from the following
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FIG. 1. (Color online) The shift of the energy E = (1 −
Tc/Tc0)(L/ξ0)2 vs the distance D, obtained numerically (solid lines)
and using the trial function approach (dashed lines). The curves (1),
(2), (3) correspond to three model problems: (i) two superconduc-
tor/vacuum interfaces, (ii) two domain walls, (iii) domain wall and
superconductor/vacuum interface, respectively. Here, L = LH for the
first problem and L = LB for the last two problems.

eigenvalue problem:

−d2fk(x)

dx2
+ U (x)fk(x) = 1

ξ 2(T )
fk(x),

(5)

U (x) =
[

2π

	0
Ay(x) − k

]2

.

We calculate the dependence of the shift of the critical
temperature (1 − Tc/Tc0) on the distance D using both nu-
merical solution of the eigenvalue problem (5) and variational
approach.

Two superconductor/vacuum interfaces. For two parallel
superconductor/vacuum interfaces positioned at x = ±D/2
and forming a superconducting slab of the finite thickness D

placed in a homogeneous parallel magnetic field Bz = H , we
should apply the boundary condition dfk(x)/dx|x=±D/2 = 0.
The dependence of E = (1 − Tc/Tc0) (LH/ξ0)2 on D (where
LH = √

h̄c/|eH | is a characteristic length scale in a magnetic
field), originally calculated by Saint-James and de Gennes,10,11

is shown in Fig. 1 by the solid line (1). The critical temperature
Tc tends to Tc0 at D � LH and, thus, the magnetic field
has a negligible effect on the OP nucleation for rather
small D values. In this limit, a simple approximation for
the dependence E(D) can be found provided we choose
Ay(x) = Hx and assume the OP wave function to be uniform
across the slab. The minimum in the dependence E(k) in this
case corresponds to k = 0. Such approximation while being
rigorously justified only for D � LH appears to describe the
monotonous decrease in Tc with the increasing D distance even
for D ∼ LH [see the dashed line (1) in Fig. 1]. In the limit D �
LH , there are two symmetrical minima in the dependence
E(k) positioned at nonzero k values. These two solutions
correspond to the same critical temperature Tc3 of surface
superconductivity: Tc � Tc3 = Tc0 (1 − 0.59|H |/H (0)

c2 ), where

H
(0)
c2 = 	0/2πξ 2

0 is the upper critical field at T = 0, and 	0 =
πh̄c/|e| is the magnetic flux quantum. The corresponding OP
wave functions describe the localized superconducting modes
running along the boundaries x = −D/2 and D/2.

Two domain walls. We proceed with our consideration
with the case of two parallel domain walls separated by the
distance D: Bz = −B0 for −D/2 � x � D/2 and Bz = B0

elsewhere (here we assume H = 0). In the limit D = 0, the
critical temperature Tc equals to the bulk critical temperature
Tc2 = Tc0 (1 − B0/H

(0)
c2 ) in the uniform magnetic field B0.

In the opposite limiting case D � LB = √
h̄c/|e|B0, the OP

wave function localized at the discontinuities of the magnetic
field component Bz saturates the critical temperature Tc3. What
is less intuitively clear is that the transition from Tc2 to Tc3

with the increasing distance D occurs via the Tc enhancement.
Such nonmonotonous Tc behavior can be captured with a
good accuracy by minimizing the energy functional (4) for
the Gaussian-type trial function: fk(x) = exp(−x2/a2), where
a is a variational parameter. The choice Ay(−x) = −Ay(x)
automatically yields k = 0. Then, it is clear that the rise in Tc

is caused by the increase in the width of the effective potential
well U (x) = A2

y(x) for increasing D and by the lowering of the
ground energy level in a wider potential well. The comparison
of the results of the numerical solution of Eq. (5) [solid line (2)]
with the trial function approach [dashed line (2)] is presented
in Fig. 1.

Domain wall and superconductor/vacuum interface. Fi-
nally, we analyze the case of a single domain wall parallel to the
superconducting film edge and positioned at a distance D from
this edge. We also assume H = 0 so that the only characteristic
length scale is LB . Similarly to the previous case, the Tc value
changes nonmonotonously as a function of D, and in both
limits (D � LB and D � LB) the critical temperature tends
to the critical temperature of surface superconductivity: Tc →
Tc3. At D → ∞, there are two independent superconducting
OP nuclei located near the surface (x = −D/2) and at the
domain wall (x = D/2), both characterized by the same
critical temperature Tc3. Analogously to the previous case of
two parallel domain walls, the nonmonotonous behavior of
Tc is caused by the increasing width of the potential well
U (x) = [2πAy(x)/	0 − k]2 in Eq. (5). The problem can be
apparently mapped on the one in the infinite superconducting
slab in the magnetic field of three parallel domain walls
placed at x = ±D/2 and −3D/2. The resulting magnetic
field distribution is an odd function for reflection respective to
the plane x = −D/2. For such magnetic field configuration,
the ground-state solution should possess the reflection sym-
metry: fk(x − D/2) = fk(−x − D/2). Therefore, for D �
LB , we can choose the trial function in the form fk(x) =
exp[−(x − D/2)2/a2], where a is a variational parameter.
Unlike the previous case, the vector potential now is an even
function Ay(x + D/2) = Ay(−x − D/2), which means that
the ground-state solution corresponds to k 
= 0. Minimizing
the energy functional over the parameters a and k, we
obtain the shift of the critical temperature shown by dashed
line (3) in Fig. 1. This plot again demonstrates an excellent
agreement with the numerical result [solid line (3)] for
rather small D values. Thus, the solution of these model
problems allows us to make an important observation about
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FIG. 2. (Color online) Schematic view of a F/S bilayer: a semi-
infinite thin superconducting film and a straight domain wall (dashed
line) oriented at a certain angle ϕ0 � π/2 with respect to the film
edge �. B0 is a stray field amplitude inside the domain.

the possibility to get the critical temperature enhancement for
a pair of approaching boundaries or domain walls.

C. Hybridization of localized superconducting modes
propagating along the channels crossing at small angles

Considering the problem of superconductivity nucleation
for crossing boundaries or domain walls, it is natural to
start from the simplest case of small crossing angles when
the distance D between the crossing boundaries changes
adiabatically.

Two superconductor/vacuum interfaces. The solution for
two crossing superconductor/vacuum interfaces which form
a superconducting wedge with small corner angle χ � π/2
can be found in Refs. 12–21. Let us introduce a cylindrical
coordinate system (r,ϕ,z). The monotonous increase in Tc with
the decreasing distance D discussed above allows us to assume
that the maximum of the OP wave function should be posi-
tioned at the wedge vertex (r = 0). Substituting the simplest
isotropic wave function �(r) = exp(−r2|eH |χ/2

√
3h̄c) in the

functional (2) and carrying out the variational procedure, one
can find the following asymptotical expression for the critical
magnetic field H w

c3 � √
3Hc2/χ suppressing the localized

superconductivity.
Domain wall crossing the superconductor/vacuum inter-

face. We proceed now with the case of a single domain
wall oriented at a rather small angle ϕ0 with respect to the
superconducting film edge � (see Fig. 2). We restrict ourselves
by a particular case of zero external field H = 0. Thus, we
consider the variational problems, Eqs. (2) and (3), for a
semi-infinite superconducting thin film in a magnetic stray
field bz(r) = B0sign(̃x). We choose the trial function f (r) in
the form

f (r) = e−δy2
e−β(x−x0)2

, (6)

where δ, β, and x0 are the variational parameters. Here, we
allow the center of a superconducting nucleus to be shifted
from the crossing point of the domain wall and the sample
edge � only along the x axis (x0 
= 0). The shift of the nucleus
center is a direct consequence of the existence of the maximum
in the dependence of the critical temperature Tc versus the
separation D between the boundaries. According to the above
treatment, this maximum corresponds to the D value of the
order of the magnetic length LB . Thus, for a small angle ϕ0,

FIG. 3. (Color online) The critical amplitude B∗
0 of the domain

stray field of localized superconductivity nucleation in a thin-film
semi-infinite F/S bilayer as a function of the titling angle ϕ0. Dashed-
dotted lines (1) and (3) are obtained from the variational analysis
carried out both for small and large corner angles, respectively. The
dependence B∗

0 (ϕ0) found from numerical simulations is shown by
the solid line (2).

the peak in the OP wave function should appear at the distance
∼LB/ϕ0 from the crossing point.

Accounting for the magnetic stray field bz(r) of the domain
wall, we take the superfluid velocity vs(r) in each magnetic
domain to be equal to the vector potential A(r) chosen in the
radial gauge:

vs(r) = B0r(ϕ − ϑ) × |e|/(mc) r0, 0 � ϕ < ϕ0

vs(r) = B0r(−ϕ + 2ϕ0 − ϑ) × |e|/(mc) r0, ϕ0 < ϕ � π

(7)

where ϑ is the variational parameter (0 � ϑ � ϕ0).
Substituting the expressions (6) and (7) into Eq. (4) and

carrying out the minimization over the parameters δ, β, x0,
and ϑ , we derive the dependence of the critical field amplitude
B∗

0 versus the ϕ0 angle for the limit of small angles ϕ0 � 1.
The typical plot of this dependence is shown in Fig. 3 by
a dashed-dotted line (1). For ϕ0 � 1, this plot demonstrates
a good agreement with our numerical simulations [see the
solid line (2) in Fig. 3] carried out in the following. It is
interesting to note that the position x0 of the OP maximum
diverges inversely proportional to ϕ0 as ϕ0 → 0 in accordance
with our expectation [see Fig. 4(a)]. The parameter δ is found
to be independent of ϕ0: δ = 0.16ξ0. The dependencies of
the variational parameters β and ϑ versus the ϕ0 angle are
presented in Fig. 4(b).

One can see that even for ϕ0 � 1, the critical field B∗
0 differs

from the Hc3 value corresponding to conventional surface
superconductivity in a homogeneous field: B∗

0 → 2.8Hc2 at
ϕ0 → 0. At ϕ0 = 0, the dependence B∗

0 (ϕ0) exhibits a steplike
jump to the Hc3 field. This jump should be, of course, smeared
for a finite-size sample when x0 becomes comparable to the
sample size. It is important to note that the threshold value
B∗

0 allows us to determine the critical temperature at H = 0:
Tc = Tc0 (1 − B0/B

∗
0 ).

Two domain walls. The consideration in previous sections
can be easily generalized for the case of two domain walls
which cross at rather small angle ϕ0 � π/2 (see Fig. 5).
Due to the symmetry of the magnetic field distribution, we
can consider only the half-space: 0 � ϕ � π . We take the
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(1)

(2)

FIG. 4. (a) Variational parameter x0 vs ϕ0 obtained using the
trial function approach (squares). The solid line corresponds to the
analytical dependence x0 = 72◦/ϕ0. (b) The dependencies of β ×
180◦ (squares) and ϑ (circles) vs ϕ0 obtained using the trial function
approach. The solid lines (1) and (2) correspond to the analytical
dependencies β × 180◦ = ϕ0 and ϑ = ϕ0/2.2, respectively.

superfluid velocity vs(r) in the form (7) and choose the trial
function f (r) as in the following:

f (r) = e−δ(y−y0)2
e−β(x−x0)2

. (8)

Here, δ, β, x0, and y0 are the variational parameters. It is
important to note that the center of a superconducting nucleus
is shifted from the crossing point of two domain walls along
both the x and y axes. Substituting the expressions (7) and
(8) into Eq. (4) and carrying out the minimization over the
parameters δ, β, x0, y0, and ϑ , we derive the dependence
B∗

0 (ϕ0) for the limit of small angles ϕ0 � 1. This critical field
dependence appears to be very close to the one shown in Fig. 3
by the dashed-dotted line (1): the relative deviation is of the
order of several percent. We emphasize that the nucleus center
(x0,y0) shifts along the bisectrix of the ϕ0 angle.

FIG. 5. (Color online) Schematic view of a F/S bilayer: a thin
superconducting film and two domain walls (dashed lines) crossing
at a certain angle ϕ0 � π/2. B0 is a stray field amplitude inside the
domain.

D. Interference of localized superconducting modes
propagating along the channels crossing at large angles

We proceed now with the consideration of the localized
superconductivity nucleation for the superconducting channels
crossing at rather large angles.

Two superconductor/vacuum interfaces. We start with an
exemplary problem of superconductivity nucleation in a wedge
with the corner angle χ � π placed in a uniform magnetic
field H . The superconducting wave function localized near
the wedge vertex can be considered as an overlapping of the
superconducting modes propagating along the wedge sides.
These modes are characterized by the wave vectors parallel to
the different sides and, thus, the interference of these localized
waves should result in a formation of vortices at the bisectrix
of the wedge angle. The superconductivity in a wedge appears
for H > Hc3 and, thus, the OP decays with the increasing
distance from the wedge vertex. We would like to note that the
interference effect and the resulting formation of a vortex chain
have been disregarded in previous works12–16,22 considering
different types of trial functions for the OP in a wedge. As a
consequence, all these variational calculations provided poor
agreement with the numerical results (see, e.g., Ref. 18) for
rather large wedge angles up to π . We will demonstrate that
only by accounting for the vortex chain outgoing from the
wedge vertex one can obtain a proper crossover to the Hc3

field at χ → π .
Considering a superconducting wedge (see Fig. 6) and

introducing the dimensionless variables in the functional (4),
we come to the following expression:

1

h
=

∫ {
v′2

s (r′)f 2(r′) + [∇f (r′)]2
}
d2r′∫

f 2(r′)d2r′ , (9)

where h−1 = L2
H/ξ 2

0 (1 − T/Tc0), d2r′ = L−2
H d2r, v′

s(r
′) =

∇�(r′) + a(r′) is a dimensionless superfluid velocity, and
a(r′) = |H |−1A(r′) is a dimensionless vector potential.

Similarly to Ref. 14, we choose the absolute value f (r′) of
Cooper-pair wave function �(r′) in the form

f (r′) = exp{−αr ′2[1 + γ sin2(πφ/χ )]}, (10)

where α and γ are the variational parameters, r ′ = L−1
H r , and

φ = ϕ − χ/2. To describe the vortex chain positioned along

FIG. 6. (Color online) Cross section of a superconducting wedge
with an arbitrary corner angle χ in a uniform magnetic field H .
The solid circles show the vortex chain outgoing from the wedge
vertex along its bisectrix. The lines of a superfluid velocity vs and the
contour lines of f (r) are presented. Dashed lines (̃x = t and y = t)
correspond to vs = 0.
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the bisectrix, we introduce a cut along the line φ = 0 where the
superfluid velocity experiences a discontinuity. The tangential
jump in the vs value corresponds to a continuously distributed
vorticity along this cut. For this purpose, we divide the wedge
into the angular domains −χ/2 � φ < 0 and 0 � φ � χ/2
and take the dimensionless superfluid velocity v′

s(r
′) in each

domain equal to the vector potential a(r′) chosen parallel to
the wedge sides at φ = ∓χ/2, correspondingly. Both gauges
of the vector potential a(r′) correspond to a uniform field H:

v′
s(r

′) = (t − y ′) x0 , −χ/2 � φ < 0
(11)

v′
s(r

′) = (̃x − t) ỹ0 , 0 � φ � χ/2

where t is a variational parameter, and (̃x,̃y) is a new reference
system rotated at the angle χ − π/2 with respect to the original
system (x,y) in the counterclockwise direction (see Fig. 6).
Such choice of the superfluid velocity provides a correct
asymptotical behavior of the OP modes propagating along
different wedge sides at large distances from the vertex. Of
course, a single-valued wave function should vanish at the
cut and, thus, the choice of superfluid velocity in the form
Eq. (11) is not adequate for description of the wave-function
behavior close to the wedge vertex (r � ξ ) where the absolute
value of the OP is essentially nonzero for all angles φ. As a
consequence, we can use this method only for wave functions
strongly elongated along the wedge sides when the region close
to the vertex provides a small contribution to the functional (9).
We will see in the following that this condition appears to break
down for small angles χ when the wave function is almost
isotropic for all distances r .

By rewriting the expressions (11) in terms of r ′ and φ

and substituting them into Eq. (9), one obtains the function
h−1 = h−1(α,γ,t,χ ). By carrying out the minimization over
the variational parameters α, γ , and t , we find the critical field
H w

c3(T ) = Hc2(T ) × [minα,γ,t (1/h)]−1 of superconductivity
nucleation for different wedge angles χ . A typical plot of
the dependence H w

c3(χ ) is presented in Fig. 7 by the solid line.
One can see that for χ = π , we obtain the result found pre-

viously by Saint-James and de Gennes:10 H w
c3(π ) � 1.695Hc2.

For a particular case χ = π/2, we find H w
c3(π/2) � 2Hc2. This

value appears to be in a good agreement with the numerical
calculations carried out in Ref. 18 (see also the comparison
with numerical simulations below). The variational parameters
corresponding to this case should be taken as follows:
α(π/2) = 0.14, γ (π/2) = −0.5, t(π/2) = 0.6.

By analyzing the typical contour plots of the f (r′) function
in the insets of Fig. 7 for different χ , one can see that the angu-
lar anisotropy of the OP vanishes (γ → 0) in the limit χ → 0.
For such small angles χ , we find H w

c3/Hc2 � 1.56
√

3 χ−1. This
asymptotical behavior deviates from the correct dependence
H w

c3/Hc2 = √
3 χ−1 found previously in Refs. 12–21. This

deviation for small angles is a natural consequence of the
wave-function isotropy as it is discussed above. With the
increase in the wedge angle χ , the anisotropy parameter |γ |
grows and the wave function becomes elongated along the
wedge sides, which restores the validity of our approach. The
vortex-free trial functions considered in Refs. 12–16 and 22
can no more provide a correct behavior of the upper critical
field H w

c3.

c
c2

w

A

B C

FIG. 7. (Color online) (a) Typical plots of the nucleation field H w
c3

in a wedge vs the corner angle χ . The solid line shows the results
of our variational calculations, while the dashed line corresponds
to asymptotic behavior of the nucleation field H w

c3 at small corner
angles χ � 1 according to Refs. 12–21. (b) The contour plots of
f (r′) function inside the areas r ′ � 5 for different χ angles: 0.01π

(A), 0.5π (B), and 0.9π (C).

Domain wall crossing the superconductor/vacuum inter-
face. The variational procedure described in the latter section
can be easily generalized for other model systems containing
crossing superconducting channels. We proceed now with the
consideration of the localized superconductivity nucleation
in a thin-film semi-infinite F/S bilayer with a domain wall
crossing the sample edge � at rather large angle ϕ0 � π/2
(see Fig. 8). To generalize the considered approach, one needs
to introduce two vortex chains outgoing from the crossing
point of a domain wall and the sample edge �. It is natural to
expect these vortex chains to be oriented along the bisectrices
of two wedge-shaped regions located to the left and to the right
of the domain wall. We follow the procedure described in the
previous section and replace the vortex chains by the cuts for
superfluid velocity, i.e., by the lines with a continuously dis-
tributed vorticity. The absolute value of the OP wave function
and the dimensionless superfluid velocity are taken in the forms

f1(r) = exp{−α1r
2[1 + γ1 cos2(πϕ/ϕ0)]}, 0 � ϕ < ϕ0

f2(r) = exp{−α2r
2[1 + γ2 cos2 (π (ϕ − ϕ0)/(π − ϕ0))]},

ϕ0 � ϕ � π (12)

vs(r) = (H + B0)(η − y) × |e|/(mc) x0, 0 � ϕ < ϕ0/2

vs(r) = (H + B0)(̃x − η) × |e|/(mc) ỹ0, ϕ0/2 � ϕ < ϕ0
(13)

vs(r) = (H − B0)(̃x + η) × |e|/(mc) ỹ0,

ϕ0 � ϕ < π/2 + ϕ0/2

vs(r) = (H − B0)(η − y) × |e|/(mc) x0,

π/2 + ϕ0/2 � ϕ � π
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FIG. 8. (Color online) Schematic view of a F/S bilayer: a semi-
infinite thin superconducting film and a straight domain wall (dashed
line) oriented at a certain angle ϕ0 with respect to the film edge �.
B0 is a stray field amplitude inside the domain, H is an external
magnetic field, and the x̃ axis is chosen to be perpendicular to the
domain wall. The vortex chain is shown by the solid circles, while
the opened circles indicate the antivortices.

where α1, γ1, α2, γ2, and η are the variational parameters. The
continuity condition for the wave function �(r) at ϕ = ϕ0

gives the relation

α1(1 + γ1) = α2(1 + γ2). (14)

For simplicity, we start with a particular case of the
domain wall perpendicular to the film edge � (ϕ0 = π/2). By
substituting the expressions (12) and (13) into the functional
(4) and carrying out the minimization over the variational
parameters α1, γ1, α2, γ2, and η at a fixed amplitude B0 of the
magnetic stray field, we find the critical temperature T ∗

c3 versus
the applied field H . The typical plot of the phase-transition line
T ∗

c3(H ) is presented in Fig. 9 by a solid line for B0 = 1.5H
(0)
c2 .

One can see that by applying an external magnetic field
H , we obtain an increase in the critical temperature T ∗

c3 of
localized superconductivity due to the partial magnetic field
compensation inside the domains.

As a next step, we restrict ourselves to the case H = 0
and analyze the dependence of the critical amplitude B∗

0 of
the domain stray field corresponding to the superconductivity
nucleation versus the ϕ0 angle. By substituting the expressions
(12) and (13) into Eq. (4), we carry out the minimization
procedure over the variational parameters α1, γ1, α2, γ2, and η.
The typical plot of the dependence B∗

0 (ϕ0) shown in Fig. 3 by
a dashed-dotted line (3) is in a good agreement with the solid
line (2) derived within our numerical simulations discussed in
the following.

1.0

0.8

0.6

0.4

0.2

0.0

(a)

FIG. 9. (Color online) (a) Typical plots of the critical temperature T ∗
c3(H ) for localized superconductivity in a thin-film semi-infinite F/S

bilayer with a domain wall oriented perpendicular to the sample edge � (ϕ0 = π/2, see Fig. 8). The solid line shows the results of our
variational calculations, while the dashed line corresponds to our numerical simulations carried out for a rectangular superconducting film
with lateral dimensions 20ξ0 × 20ξ0. The dotted lines correspond to the dependence of the shifted upper critical field of a bulk superconductor
vs temperature: T = Tc0{1 − ||H | − B0|/H (0)

c2 }, the dashed-dotted line shows the phase-transition line for a domain-wall superconductivity
derived, e.g., in Refs. 5 and 6. Here, we take B0 = 1.5H

(0)
c2 . (b) Typical plots of superconducting OP distributions presented for different points

on the H -T plane: A, B, C, and D, where the dashed line indicates the domain wall. The vortex chains are shown by the solid circles, while the
antivortices are presented by open circles.
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It is important to note that with the decrease in the angle ϕ0,
we clearly observe an increase in the field B∗

0 . This increase
obviously occurs due to a partial shrinking of the Cooper-pair
wave function in analogy to the case of a superconducting
wedge considered above. For small angles ϕ0 → 0, we find
B∗

0 /Hc2 → 2.2. In the case ϕ0 = π/2 for an appropriate gauge
choice, the problem of a half-infinite domain wall can be
exactly mapped to the wedge problem for χ = π/2. Indeed, for
a domain wall perpendicular to the edge �, the GL functional is
symmetric with respect to the parity transformation x → −x

and, thus, the OP wave functions are either odd or even in
the x variable. The even solutions corresponding to the energy
minimum clearly satisfy the condition

∂�(r)/∂x|x=0 = 0, (15)

which coincides with that imposed for the supercon-
ducting wedge at the side with χ = π/2. As a conse-
quence, we find B∗

0 (π/2) = H w
c3(π/2) � 2Hc2. The varia-

tional parameters corresponding to this particular case should
be taken as follows: α1(π/2) = α2(π/2) = 0.14, γ1(π/2) =
γ2(π/2) = −0.5, η(π/2) = 0.6. However this mapping be-
tween the domain wall and the wedge, of course, does not
hold exactly for ϕ0 
= π/2. Still, similarly to the wedge, the
shrinking of the wave function at small angles ϕ0 can result in
the appearance of a vortex-free solution (see Sec. II C).

Two domain walls. The above variational results for the
crossing domain wall and the sample edge remain valid also
for two domain walls crossing at rather large angle ϕ0 � π/2.
Due to the symmetry of the magnetic field profile, this
generalization is straightforward.

III. NUMERICAL SIMULATIONS

To confirm the findings obtained within the trial func-
tion approach, we proceed with the numerical analysis of
the superconductivity nucleation in a thin-film F/S bilayer
within the time-dependent GL formalism. Let us consider a
superconducting thin-film rectangle in the plane (xy) of the
Cartesian coordinate system (having the lateral dimensions
L × W ) in the presence of a homogeneous external magnetic
field H normal to the film plane and the steplike magnetic field
b( x̃ ) = z0B0 sign( x̃ ) of a straight domain wall oriented at a
certain angle ϕ0 with respect to the film edges y = ±W/2 (see
Fig. 10).

In order to obtain stationary OP distributions, we simulate
the relaxation to an equilibrium state on the basis of the time-
dependent GL model

−η

[̄
h

∂

∂t
+ 2ie 	(r)

]
�(r) = α �(r) + β

2
|�(r)|2�(r)

+ 1

4m

[
−ih̄∇ − 2e

c
A(r)

]2

�(r),

div jn(r) = −div js(r), (16)

where the parameter η controls the rate of the OP relaxation,
	(r) is the electrochemical potential, α and β are the

FIG. 10. (Color online) Schematic view of a F/S bilayer: a
superconducting rectangle (L × W ) and a straight domain wall
(dashed line) oriented at a certain angle ϕ0 with respect to the edges
y = ±W/2. B0 is a stray field amplitude inside the domain, H is an
external magnetic field, the x̃ axis is chosen to be perpendicular to
the domain wall, and � is the film boundary.

parameters of the GL expansion, jn(r) = −σ∇	(r), and

js(r) = e

2m

{
�(r)∗

[
−ih̄∇ − 2e

c
A(r)

]
�(r) + c.c.

}
(17)

are the densities of normal and superconducting currents, σ is a
normal conductivity, and c.c. stands for complex conjugation.
By focusing on the study of superconductivity nucleation,
one can neglect the effect of vanishing supercurrents on
the magnetic field distribution and consider a fixed vector
potential profile corresponding to the magnetic field Bz(r) =
H + bz( x̃ ).

The absence of normal current through the sample boundary
imposes a boundary condition on the potential 	(r):

∂	(r)

∂n

∣∣∣∣
�

= 0,

where n is a unit vector normal to the edge � of the sample.
The calculations have been made for two types of bound-
ary conditions on the superconducting OP wave function:
(i) superconductor-insulator boundary condition[

−ih̄
∂

∂n
− 2e

c
An

]
�(r)

∣∣∣∣
�

= 0, (18)

and (ii) superconductor-normal metal boundary condition

�(r) |� = 0. (19)

To study the equilibrium phase diagram, we need all
transient processes to be finished, which corresponds to zero
electrochemical potential 	(r) = 0 and zero time derivatives
∂�(r,t)/∂t = 0. In our calculations, we stopped the simu-
lation procedure when the maximum of the electrochemical
potential reaches the accuracy of the numerical computations
(10−15 × h̄|e|α0/2mσβ in the dimension units), where α0 =
|α(T = 0)|. The calculations have been carried out for a grid
size 0.2ξ0 × 0.2ξ0 and η = 10 × mσβ/h̄e2. The time interval
between two subsequent iterations was chosen as follows:
0.01 × mσβ/e2α0.

Let us start with the simplest case of a superconduct-
ing square (L = W = 20ξ0) placed only in a homogeneous

184528-8
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FIG. 11. (Color online) The OP distribution in a superconducting square (20ξ0 × 20ξ0) in an increasing external magnetic field H . The
boundary condition (18) was imposed on the � function. Solid circles show the vortex chains.

magnetic field H . We consider here the boundary conditions
for the � function in the form (18). By varying the external
field H , we study the evolution of the OP distribution �(x,y)
in the superconducting square (see Fig. 11). One can see that
the Cooper-pair wave function remains nonzero in the vicinity
of the sample corners at the field above Hc3. Obviously,
the corresponding nuclei at the corners can be considered
separately only for rather large L values, well exceeding
the nucleus size. In this case, each nucleus describes the OP
distribution in a superconducting wedge with a corner angle
π/2. The corresponding nucleation field H w

c3 � 2Hc2 appears
to be in a good agreement with the results of our variational
analysis in Sec. II D. Our numerical simulations also give
evidence for the appearance of the vortex chains introduced
in the above consideration. These chains outgo from all
four wedge vertices along the corresponding bisectrices (see
Fig. 11).

We continue with the numerical analysis of the supercon-
ductivity nucleation in a superconducting rectangle L × W

affected in the field of a straight domain wall. In order to
suppress the superconductivity nucleation near the sample
corners, we use mixed boundary conditions for the � function:
the conditions (18) and (19) are taken at the edges y =
±W/2 and x = ±L/2, respectively. Shown in Fig. 12 is the
transformation of the OP distribution for a square with L =
W = 20ξ0 ϕ0 = π/2 caused by the increase in the amplitude
B0 inside the domain. The numerical results are in a full
agreement with our analytical findings in Sec. II D: (i) the
superconductivity is localized near the crossing of the domain
wall and the sample edges y = ±W/2 and survives up to the
critical value B∗

0 = H w
c � 2Hc2; (ii) we observe the vortex

(antivortex) chains outgoing from the crossing points of the
superconducting channels.

By applying an external magnetic field H , we find out
the phase diagram for localized superconducting states. For
a particular case B0 = 1.5H

(0)
c2 , the corresponding phase-

transition line is shown in Fig. 9 by the dashed line.
We also observe the transition lines corresponding to the
bulk superconductivity (dotted line in Fig. 9) and to the
domain-wall superconductivity (dotted-dashed line in Fig. 9).
Typical contour plots of the OP distributions for differ-
ent parts of the phase diagram (see Fig. 9) illustrate the
switching between the bulk and localized superconductivity
nucleation.

In the limit of zero external field H , we have also analyzed
the dependence of the critical field amplitude B∗

0 on the ϕ0

angle for the sample sizes L = 30ξ0 and W = 15ξ0. The
typical plot of the dependence B∗

0 (ϕ0) is shown in Fig. 3 by
a solid line (2). Both for small and large corner angles, the
numerical dependence is in a good agreement with the results
of the variational analysis carried out in Sec. II D. Typical
contour plots of the Cooper-pair wave function presented in
Fig. 13 show the transformation of the vortex patterns with the
changing ϕ0 angle.

Let us focus on the vortex (antivortex) arrangements
presented in Figs. 9, 11, 12, and 13. Near the crossing
points of the superconducting channels, the vortex patterns
obtained from our numerical simulations appear to be in
a good agreement with the variational predictions for the
infinite superconducting channels (see Sec. II) where the
vortices (antivortices) form the vortex (antivortex) chains. Far
from these crossing points, the vortex distributions are more

FIG. 12. (Color online) The OP distribution in a superconducting square (20ξ0 × 20ξ0) for an increasing amplitude B0 of the magnetic
stray field in the domains and ϕ0 = π/2. The boundary condition (19) was used for the � function in order to suppress the superconductivity
nucleation near the corners of the sample. The vortex and antivortex chains are shown by solid and open circles, respectively.
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FIG. 13. (Color online) Typical contour plots of the superconducting OP distributions for different ϕ0 angles: 90◦, 40◦, 20◦, and 10◦. The
vortex and antivortex chains are shown by the solid and open circles, respectively.

complicated and strongly depend on the sample geometry and
corresponding boundary conditions for the Cooper-pair wave
function.

IV. CONCLUSION

To sum up, we have investigated the distinctive features of
superconducting OP nucleation for the interacting supercon-
ducting channels in strong magnetic field H > Hc2. We have
studied three generic problems: (i) the OP nucleation between
two superconductor/vacuum boundaries forming a supercon-
ducting wedge; (ii) the OP nucleation between domain wall
and the sample edge; and (iii) the OP nucleation between
two domain walls. We have shown that in all these cases,
the crossing of localized modes results in the increase in the

superconducting critical temperature. Using both numerical
and variational analysis of these problems, we have developed
a description of the interference phenomena which govern the
structure of the OP patterns. The resulting critical temperature
enhancement and its magnetic field dependence should be
observable in resistive measurements of hybrid F/S structures.
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