
PHYSICAL REVIEW B 85, 184509 (2012)

Attraction between pancake vortices and vortex molecule formation in the crossing lattices in thin
films of layered superconductors
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3Institut Universitaire de France, Paris, France
(Received 15 December 2011; revised manuscript received 9 February 2012; published 7 May 2012)

We study the intervortex interaction in thin films of layered superconductors for the magnetic field tilted with
respect to the c axis. In such a case, the crossing lattice of Abrikosov vortices (AVs) and Josephson vortices
appears. The interaction between pancake vortices, forming the AVs, with Josephson ones, produces the zigzag
deformation of the AV line. This deformation induces a long-range attraction between Abrikosov vortices and,
in thin films, it competes with another long-range interaction, i.e., with Pearl’s repulsion. This interplay results
in the formation of clusters of Abrikosov vortices, which can be considered as vortex molecules. The number of
vortices in such clusters depends on field tilting angle and film thickness.
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I. INTRODUCTION

The physics of vortices in layered superconductors is very
rich and their study revealed many interesting phenomena.1

Usually, the intervortex interaction is repulsive,2 but in layered
superconductors it occurs to be attractive at long distance in the
plane defined by the vortex line direction and c axis (normal
to the superconducting planes).3–5 In the bulk sample, this
attraction leads to the formation of the vortex pair. Then, a third
vortex will be attracted by this pair, etc., and finally it results
in the formation of a vortex chain. These vortex chains have
been observed experimentally by the decoration technique in
YBa2Cu3O7,6 scanning tunneling microscopy in NbSe2,7 and
Lorentz microscopy measurements in YBa2Cu3O7 (Ref. 8)
(see Ref. 9 for a review).

However, the Lorentz microscopy experiments on a thin
film of YBa2Cu3O7 [with thickness D smaller than (0.5 ÷
1) μm] showed that the vortex chains disappear for slightly
tilted magnetic field.10 This is caused by the surface effect,
which modifies the intervortex interaction, resulting in long-
range intervortex repulsion as it has been demonstrated in
the pioneering work11 by Pearl in 1964. Indeed, in a thin
film, we have an interplay between two different long-range
potentials: (i) attraction of the tilted vortices (Uatt ∼ −1/R2)
and (ii) the Pearl’s repulsion (Urep ∼ 1/R). By varying either
the film thickness or the tilting angle, we can modify the
balance between these interactions, which should determine
energetically favorable vortex configurations in samples with
thickness d comparable to the London penetration depth λ.10

The Pearl’s repulsion always dominates at large distances and,
thus, the formation of an infinite vortex chain can become
unfavorable. Adding vortices one by one, we can find an
optimal number of vortices which can be arranged in a chain
of a finite length. As a result, there appears an intriguing
possibility to form a vortex structure consisting of finite-size
chains, i.e., of vortex molecules.10,12

The scenario discussed above is applicable to the mod-
erately anisotropic layered superconductors (such as NbSe2,
YBaCuO), when the magnetic field penetrates in the form
of the tilted vortices. For strongly anisotropic superconduc-
tors such as Bi2Sr2CaCu208+δ (BSCCO), the situation is

qualitatively different and the tilted magnetic field penetrates
in the form of the crossing lattice comprising the in-plane
Josephson vortices (JVs) and perpendicular to the planes
Abrikosov vortices (AVs). The AV in this case is a stack of the
pancake vortices (PVs).13 The interaction between PVs and
JVs (Ref. 14) leads to the deformation of the perpendicular
vortex line and results in the attraction between AVs and
JVs. The most striking manifestation of these phenomena
is the decoration of the JVs by the PVs visualized in
BSCCO single crystals by the modern vortex imaging methods
such as Lorentz microscopy,8 high-resolution scanning Hall
probe,15 Bitter decoration techniques,16 and magneto-optical
measurements17 (see also Ref. 9 as a review). Interestingly,
the deformation of the AVs due to the intersection with
JVs is responsible for a long-range attraction between vortex
stacks,18,19 which is quite similar to the AVs attraction in the
case of moderately anisotropic superconductors.3–5

In this paper, we study how the Pearl’s effect modifies the
interaction between the deformed AVs in the film of a finite
thickness. Special attention is paid to the conditions under
which attraction between PVs in the crossing lattices exists and
the dense vortex chains appear in tilted field. Keeping in mind
BSCCO, we consider layered superconductors with a high
anisotropy ratio γ = λc/λab � 1, where λc is the penetration
depth for currents along the c axis and λab is the penetration
depth for currents in the ab plane (parallel to the layers).
To describe the interaction between pancakes, we choose to
apply the approach of Josephson-decoupled superconducting
layers,13 which is known to be adequate in studies of the vortex
lattice structure for very weak coupling of the layers λJ =
γ s � λab, where the Josephson length λJ = γ s is the in-plane
size of the Josephson core radius.20 Namely, this case we will
treat in this paper.

The paper is organized as follows. In Sec. II, we introduce a
general formalism to describe vortices in strongly anisotropic
layered superconductor and determine the shape of the zigzag
vortex line. In Sec. III, we calculate the interaction between
the zigzag lines in a thin superconducting film. In Sec. IV, we
discuss the situation of low in-plane magnetic field and the
conditions of vortex cluster formation.
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FIG. 1. (Color online) Zigzag deformation of the stack of pan-
cakes due to interaction with the Josephson vortices (JV) in high
parallel magnetic field (Bx � H0), directed along the x axis. Here, d

is a thickness of superconducting layer, s is a distance between the
layers, n is the layer number, and u is the amplitude of deformation.
Josephson vortices are shown by red dashed arrows.

II. ZIGZAG VORTEX LINE IN A FINITE STACK
OF SC LAYERS

We start our study with the consideration of the equilibrium
shape of PVs stack in the layered systems. The in-plane
magnetic field B‖ = B‖x0 is assumed to penetrate inside
the superconductor in the form of JVs, which interact with
the PVs via the Josephson coupling.14,21 Because of a very
high anisotropy, the JV lattice is a triangular lattice strongly
compressed along the c axis. In the high parallel magnetic
field B‖ > H0 = φ0/γ s2, the dense triangular lattice of JVs
produces zigzag displacement of PVs (Ref. 21) along the
x axis, so that the pancake centers for each vortex line are
positioned along the broken line (see Fig. 1).

A. Basic equations

Let us consider a finite stack of N superconducting (SC)
layers. We denote the interlayer spacing as s and consider each
of the N layers as a thin film with the thickness d much smaller
than the London penetration depth λ. The field component
perpendicular to the layers penetrates the SC film as a string
of two-dimensional (2D) pancake vortices: each of these
pancakes is centered at the point rn = xnx0 + yny0 in the nth
layer. Within the model of the stack of Josephson-decoupled
SC layers, pancakes can interact with each other only via
magnetic fields. The general equation for the vector potential
A distribution in such a system reads as

rot rot A = 4π

c

N∑
n, m=1

Jm
n (r) δ(z − zn), (1)

where � = λ2/d = λ2
ab/s is the effective penetration depth in

a superconducting film, each nth SC layer coincides with the
plane z = zn = ns (1 � n � N ). The sheet current at the nth
layer created by the pancake at the mth layer takes the form

Jm
n (r) = c

4π�
[�(r − rm) δnm − Am(r,zn) ], (2)

Am(r,z) is the vector potential induced by the only pancake
vortex located in the mth layer. The vector �(r) in Eq. (2) is

given by the expression

�(r) = φ0

2π

[z0 × r]

r2
, (3)

and φ0 = πh̄c/e is the flux quantum. For the layered system
without Josephson coupling, a general expression for the free
energy can be written in the form

F = 1

8π

∫
dV

[
(rot A)2 +

(
4π

c

)2

�

N∑
n=1

J2
n(r) δ(z − zn)

]
.

(4)
The total vector potential A(r,z) and the sheet current in the
nth layer Jn(r) produced by an arbitrary vortex line are the
sum of the contributions induced by N pancakes

A(r,z) =
N∑

m=1

Am(r,z) , Jn(r) =
N∑

m=1

Jm
n (r),

and can by found from Eqs. (1)–(3) using an approach similar
to that proposed in Refs. 22 and 23 (see Ref. 12 for details).

B. Equilibrium shape of the zigzag vortex line

In order to find the equilibrium form of the vortex line in a
finite stack of N superconducting layers under the influence of
the crossing JVs lattice, we consider the relaxation of the set of
the pancakes (one per layer) toward the equilibrium positions
within the simplest version of the dynamic theory:

η
drn

dt
=

∑
m�=n

Fm
n + FJ

n . (5)

Here, η is the viscous drag coefficient, Fm
n is the interaction

force acting on the pancake located in the nth layer by the
sheet current Jm

n generated by the pancake positioned in the
mth layer, and FJ

n is the resulting Lorentz forces acting on the
nth pancake from the Josephson vortices.

The interaction forces Fm
n between two pancakes in layered

superconductors was shown to be written as12

Fm
n = φ0

c

[
Jm

n × z0
] = φ2

0 Rnm

8π2�λabRnm

×
{

1

Rnm

δnm −
∫ ∞

0
dq J1(qRnm)

αm
n (q) g(q)

Z(q)

}
, (6)

where J1(ζ ) is the first-order Bessel function of the first kind,
λ2

ab = �s = λ2s/ d is the penetration depth for the in-plane
currents, Rnm = rn − rm, and

Z(q) = 1 + 2q�/ tanh(qs).

The coefficients αm
n obey the system of N linear equations

h(q) αm
1 − αm

2 = δ1m,

−αm
n−1 + g(q) αm

n − αm
n+1 = δnm, n �= 1,N (7)

−αm
N−1 + h(q) αm

N = δNm,

where we introduce two functions which depend on the wave
number q:

g(q) = 2 cosh(qs) + sinh(qs)/�q,

h(q) = cosh(qs) + (1 + 1/�q) sinh(qs).
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Without the JVs lattice, the magnetic coupling results in
the absence of the in-plane displacement of pancakes Rmk =
rm − rk = 0 (i.e., the pancakes form a vertical stack). In the
high-field limit B‖ > H0 = φ0/sλJ , all interlayer junctions
are homogeneously filled with Josephson vortices, which form
the dense triangular lattice. The period of the lattice in the z

direction is equal to 2s, which is much less than the period
along the y axis a = φ0/B‖s � λJ . The sheet currents Jn =
Jn(y)y0 in the nth layer are given by the following continuity
equations20:

dJ1/dy = j0 sin θ1, dJN/dy = −j0 sin θN−1,
(8)

dJn/dy = j0 (sin θn − sin θn−1) , n �= 1,N

where j0 = cφ0/8π2γ λ2
abλJ is the Josephson interlayer crit-

ical current density, θn = φn+1 − φn − (2πs/φ0)Az is the
gauge-invariant phase difference between the nth and (n + 1)th
layers, and φn(y) is the superconducting phase distribution
at the nth layer. Considering the configuration of Josephson
vortices shown in Fig. 1 in the high-field limit (B‖ > H0)
corresponding to strongly overlaping Josephson cores, we can
put

θn = 2πy/a + π (n − 1). (9)

These Josephson vortices result in the appearance of Lorentz
forces FJ

n = FJ
n x0 acting on the nth pancake:

FJ
1 = F0/2, F J

N = −(−1)NF0/2,
(10)

FJ
n = −(−1)nF0, n �= 1,N.

The amplitude of the force

F0 =
(

φ0

4πλab

)2 2H0

πγB‖
(11)

decreases with an increase of the in-plane magnetic field B‖.
Considering the vortex line consisting of N pancakes, we

start from the initial configuration of PVs arranged in the
zigzag line un = (−1)n+1u. The amplitude of the initial zigzag
deformation

u � λab

β ln β
, β = B‖λJ

H0λab

� 1 (12)

is assumed to be small (u � λab) and corresponds to the
equilibrium form of the zigzag vortex in a bulk (N → ∞)
layered superconductor.18,21 We measure all lengths in units
of the penetration depth λab, all forces in units of φ2

0/8π2λ2
ab,

and normalize the time t by a relaxation time τ0 proportional
to the pancake viscosity η: τ0 = 8π2λ3

abη/φ2
0 . Typical values

of the viscosity coefficient η for BSCCO can be found, e.g.,
in Ref. 24: η/s ∼ 10−8 ÷ 10−6 N s/m2. These data suggest
τ0 ∼ 10−13 ÷ 10−11 s for s = 15 Å and λab = 0.2 μm. As
the system approaches its final force-balanced (equilibrium)
configuration, the velocities of all pancake motions should
vanish:

lim
t→∞

drn

dt
= 0, 1 � n � N.

Typically, the equilibrium configuration of pancakes is well
established after a relaxation time of tr ∼ 100 ÷ 200 τ0, which
corresponds to the average velocity of a pancake u/tr ∼ 102 ÷
104 sm/s for B‖ ∼ H0.

FIG. 2. (Color online) Equilibrium configurations of N = 51
pancakes in a finite stack in the presence of the Josephson vortices for
two values of in-plane magnetic field B‖ = H0 (−) and B‖ = 2H0 (+).
Small vertical stacks of symbols (±) show initial zigzag configuration
of pancakes un = (−1)n+1u with the amplitude u defined by the
relation (12). The inset shows schematically crossing PVs and
JVs configuration. Patterned areas mark locations of the Josephson
vortices. Here, H0 = φ0/γ s2, γ = 300, s = 0.1λab, � = 10λab.

In Fig. 2, we illustrate the equilibrium PVs configurations
for two different values of the applied in-plane magnetic
field B‖. For small in-plane separation un � λab � λJ , the
contribution of the stray-field potential to the overall pancake-
pancake interaction can be neglected.25 Since out-of-plane
intervortex interaction extends over λab/s layers, the attractive
interaction

∑
Fm�=n

n between a single pancake vortex and
a finite stack of pancakes is reduced near to the surface
(n � λab/s and N − n � λab/s) due to the missing planes for
z < 0 and z > D, and the vortex line appears to have smaller
line tension. The balance of forces FJ

n caused by the Josephson
vortices and magnetic coupling between pancakes in different
layers Fm

n results in a negligible deformation of homogeneous
zigzag configuration of vortices in the layers at a distance
∼ λab away from the top and bottom surfaces.

III. INTERACTION ENERGY OF TWO ZIGZAG
VORTEX LINES

In this section, we derive general expressions for the
interaction energy between two zigzag vortices in a thin film
of layered superconductor taking into account both the long-
range attraction and repulsion phenomena. The shape of the
interacting vortex lines is assumed to be fixed and not affected
by the vortex-vortex interaction potential. Certainly, such
assumption is valid only in the limit of rather larger distances
between the vortex lines when the effect of interaction on the
vortex shape can be viewed as a small perturbation.

Using the gauge divA = 0 and the Fourier transform

A(q,k) =
∫

d2r dz eiqr+ikzA(r,z), (13)

An(q) =
∫

d2r eiqrA(r,zn) , Jn(q) =
∫

d2r eiqrJn(r) ,

(14)
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one can rewrite the basic Eq. (1) for each vortex line in the
momentum representation as follows:

(q2 + k2) A(q,k) = 1

�

∑
n

[�n(q) − An(q) ] eikns,

(15)
where �n(q) = �(q) eiqrn . These equations can be reduced to
the scalar form (see Ref. 12 for details)

fn + 1

2q�

∑
m

e−|n−m|qs fm = eiqrn , (16)

where we introduce the new functions fn(q):

Jn(q) = c

4π�
[ �n(q) − An(q) ] = c

4π�
�(q) fn(q). (17)

The solution of the linear system (16) for a fixed configuration
of pancakes rn determines the distribution of the vector
potential A(r,z), which is created by an arbitrary vortex line
in a finite stack of superconducting layers.

For two vortex lines, we can write the total vector potential
and the total sheet current as superpositions of contributions
coming from the first (A(1)

n , J(1)
n ) and second (A(2)

n , J(2)
n ) vortices.

Calculating the interaction energy εint of vortex lines, we
should keep in the free energy only the terms which contain the
products of fields corresponding to different vortex lines. As a
result, in the momentum representation, the general expression
(4) for the free energy of the layered system without Josephson
coupling reads as

εint = 1

32π3�

∑
n

∫
d2q

[(
�(1)

n (q) − A(1)
n (q)

)
×�(2)

n (−q) + (
�(2)

n (q) − A(2)
n (q)

)
�(1)

n (−q)
]
. (18)

For the particular case of two identical (parallel) vortex lines,
which are shifted at the vector R = r(2)

n − r(1)
n (n = 1 ÷ N ) in

the (xy) plane, we get following general expression for the
interaction energy via the scalar functions fn(q) (Ref. 12):

εint(R) = φ2
0

16π3�

∫
d2q
q2

cos(qR)
∑

n

fn(q) e−iqrn . (19)

The expression (19) and equations (16) determine the interac-
tion energy of two identically bent vortex lines.

Further, we assume the centers of pancakes for each vortex
line to be positioned at a zigzag line (see Fig. 1). For simplicity,
we neglect a reduction of vortex line tension near the surface
and assume that the amplitude of the zigzag deformation is the
same for all layers |un| = u � λab and put

r(1)
n = (−1)n−1ux0, r(2)

n = r(1)
n + R, (20)

where the value u is determined by the expression (12). In the
case of zigzag vortex line (20), Eq. (16) looks differently for
odd and even layers:

fn + 1

2q�

N∑
m

e−|n−m|qs fm = ei(−1)n+1qxu. (21)

It is convenient to introduce two new functions f1k(q) and
f2k(q) for odd and even layers separately:

fn =
{

f1k if n − odd, k = (n + 1)/2

f2k if n − even, k = n/2

and rewrite Eq. (21) via the functions f1k and f2k:

f1,2k + 1

2q�

∑
m

e−2|k−m| qs f1,2m

+ 1

2q�

∑
m

e−(2|k−m|+1) qs f2,1m = e±iqxu . (22)

The interaction energy (19) expressed in terms of the scalar
functions f1k(q) and f2k(q) reads as

εint(R) = φ2
0

16π3�

∫
d2q
q2

cos(qR)

×
N∑
k

[f1k(q) e−iqxu + f2k(q) eiqxu]. (23)

The expression (23) and the system of algebraic equations (22)
determine the interaction energy of two identical zigzag vortex
lines which are shifted at the vector R in the (xy) plane.

A. Continuous limit

For the case of a large intervortex distance R � s, u,
we may use the continuous limit for the solution of the
problem (22) because for the relevant wave vectors qs � 1
and qxu � 1. We introduce a continuous coordinate z = 2ks

and continuous functions f1,2(q,z) defined at the interval
|z| � D/2, where D is the total thickness of superconducting
film. Thus, the linear system of equations (22) reduces to the
following integral equations:

f1,2(q,z) + 1

4q�s

∫ D/2

−D/2
dz′ e−q|z−z′ | f1,2(q,z′)

+ e−qs

4q�s

∫ D/2

−D/2
dz′ e−q|z−z′ | f2,1(q,z′) = e±iqxu. (24)

In the continuous limit, the expression for interaction energy
(23) takes form

εint(R) = φ2
0

32π3�s

∫
d2q
q2

cos(qR)

×
D/2∫

−D/2

dz [f1(q,z) e−iqxu + f2(q,z) eiqxu]. (25)

Equations (24) can be rewritten as differential ones

∂2f1,2

∂z2
−

(
q2 + 1

2�s

)
f1,2 − e−qs

2�s
f2,1 = −q2 e±iqxu

(26)
at the interval |z| � D/2 with the boundary conditions(

∂f1,2

∂z
+ qf1,2

)
D/2

= q e±iqxu , (27)(
∂f1,2

∂z
− qf1,2

)
−D/2

= −q e±iqxu. (28)
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Introducing the new functions

f+(q,z) = f1(q,z) + f2(q,z)

2q2 cos(qxu)
, f−(q,z) = f1(q,z) − f2(q,z)

2iq2 sin(qxu)
,

we will get two identical decoupled equations for f ± in the
following form:

∂2f±
∂z2

− p2
±f± = −1, (29)

where the wave numbers p± in the continuous limit (qs � 1)
are

p2
+ � q2 + 1/λ2

ab , p2
− � q2. (30)

The boundary conditions (27) and (28) for the functions
f±(q,z) at z = ±D/2 read as(

∂f±
∂z

+ qf±

)
D/2

= 1/q, (31)(
∂f±
∂z

− qf±

)
−D/2

= −1/q. (32)

The solutions of Eqs. (29) satisfying the boundary conditions
(31) and (32),

f±(q,z) = 1

p2±

[
1 + (p2

± − q2) cosh(p±z)

q (p± sinh L± + q cosh L±)

]
, (33)

result in the following expressions for the functions
f1,2(q,z):

f1,2(q,z) � a(q,z) cos(qxu) ± i sin(qxu), (34)

where L± = p±D/2 and

a(q,z) = q2

p2+

[
1 + cosh(p+z)

qλ2
ab (p+ sinh L+ + q cosh L+)

]
.

B. Interaction potential of two zigzag stacks

Using solutions (34), we may rewrite the expression for
interaction energy (25) as follows:

εint(R) = φ2
0

16π3�s

∫
d2q cos(qR)

{
D

[
cos2(qxu)

p2+

+ sin2(qxu)

q2

]
+ 2q cos2(qxu)

λ2
abp

4+(1 + q/p+ tanh L+)

}
.

(35)

Performing in (35) the necessary integration, we finally obtain
the following expression for the interaction energy of two
identical zigzag pancake stacks, which are shifted at the vector
R in the (xy) plane:

εint(R) = φ2
0

32π2�s

{
D

[
2K0

(
R

λab

)
+ K0

(
R − 2u

λab

)
+ K0

(
R + 2u

λab

)
+ ln

(
R2 − 4u2

R2

)]

+ 2

λ2
ab

∫ ∞

0

dq(
q2 + λ−2

ab

)2

2J0(qR) + J0[q(R − 2u)] + J0[q(R + 2u)]

1 + q/

√
q2 + λ−2

ab tanh−1
(
D

√
q2 + λ−2

ab /2
)
}

, (36)

where J0 and K0 are the Bessel and modified Bessel functions
of zero order, respectively. The first term proportional to D in
Eq. (36) describes the interaction between the zigzag stacks in
the bulk layered system,18 while the last term is responsible for
the influence of film boundaries. In Fig. 3, we present some
typical plots of the interaction energy per one layer εint/N

versus the intervortex distance R for different thickness of the
film D and the in-plane magnetic field Bx .

At long distances R � λab, the modified Bessel functions
decay exponentially, and a bulk short-range repulsion between
two PVs stacks is negligibly small. The leading bulk contribu-
tion comes from the logarithmic term in (36), which describes
an attraction between the zigzag PV lines. The last term in
(36) describes long-range Pearl’s repulsion, which decays as
1/R and results from the surface contribution to the energy.
Assuming that the effect of the zigzag deformation u � λab

is small, the long-range part of interaction energy (36) for
R � λab can be written as

εint(R) � φ2
0

8π2

[
− D u2

λ2
ab R2

+ 2

R
+ 4u2

R3

]
. (37)

One can observe an interplay between the long-range attractive
and the repulsive forces between two zigzag deformed PV
stacks, similar to the one between two tilted vortices in
anisotropic SC films.10,12 The last term in (37) describes a
modification of long-range Pearl’s repulsion due to zigzag
deformation of the PVs stack. Certainly, in a bulk sample
(D → ∞), the Pearl’s term in (37) vanishes, and at long
distances the dominant interaction between the zigzag PV
lines is an attraction.18 As a result, in a bulk sample there
always exists the minimum of the interaction potential, which
realizes with logarithmic accuracy at Rm ≈ 2λab ln(λab/u) .

However, the second term in (37) is very important even for
rather thick films: for large R, the energy εint is always positive
and corresponds to the vortex repulsion. With a decrease of the
distance R, the attraction force comes into play and can result
in the change of the sign of the energy at R0 ≈ Du2/2λ2

ab �
λab, while short-range repulsion is still weak. Such behavior
should be accompanied by the appearance of the minimum
in the interaction potential. The condition R0 > Rm gives us
a rough estimate of the critical film thickness Dcr for which
the minimum in the interaction potential can exist and the
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(a) (b)

FIG. 3. (Color online) Typical plots of the interaction energy per layer εint(R)/2Nε0 [Eq. (36)] vs the distance R between two zigzag
deformed stacks of pancakes for different values of in-plane magnetic field: (a) B‖/H0 = 1; (b) B‖/H0 = 2. The numbers near the curves
denote the values of film thickness D/λab. The dashed line shows the interaction energy between two zigzag vortices in bulk (D → ∞) layered
SC. Dotted lines show the long-range part of interaction energy (37). Here, ε0 = φ2

0/32π 2λab, s = 0.01 λab, γ = 300.

formation of vortex chains can be energetically favorable:

Dcr ≈ 4σλabβ
2(ln β)3 ∼ 4σλ2

J

λab

(
B‖
H0

)2

, (38)

where the constant σ is of the order unity. The more accurate
criterion of attraction of zigzag PVs stacks should be based
on the expression for the interaction energy (36) and may be
found from the conditions

εint(R) = ε′
int(R) = 0.

The typical dependence of the critical film thickness Dcr as a
function of in-plane magnetic field B‖ is shown in Fig. 4. So, in
the presence of a dense lattice of Josephson vortices, the AVs
penetrate in the form of chains only for a large film thickness
D > Dcr . Otherwise, if D < Dcr , the formation of the usual
Abrikosov lattice of zigzag deformed stacks of PVs occurs. It is
interesting to note that following (37), the intervortex attraction
increases near the critical temperature of the superconducting
transition Tc, when λab becomes large (except for the region
very close to Tc where the condition λab � λJ is not satisfied).
This behavior is in contrast with the moderately anisotropic
case12 when the critical thickness for intervortex attraction

FIG. 4. (Color online) Critical film thickness Dcr as a function of
in-plane magnetic field B‖ (β = B‖λJ /H0λab). The dashed line shows
the estimate of the critical film thickness (38). Here s = 0.01λab,
γ = 300, λJ = 3λab, σ = 2.

to be observed decreases near Tc and the repulsion between
vortices prevails.

IV. DISCUSSIONS

In the high in-plane field limit B‖ � H0 considered in
Sec. III, the triangular lattice of JVs is so dense that the
currents of adjacent JVs overlap strongly and the amplitude
of the zigzag deformation decreases.21 As a result, the critical
thickness Dcr grows rapidly with an increase of the in-plane
field B‖ (see Fig. 4). Also, the potential dip in the intervortex
interaction energy (36) strongly decreases with an increase of
B‖.18 The optimal regime for the long-ranged attraction cor-
responds to B‖ ∼ H0. For typical values s = 15 Å, γ = 300,
and λab = 0.2 μm, we obtain H0 � 3 T and Dcr ∼ 40 μm.
Namely, this case of the intervortex interaction is presented in
Fig. 3.

In the experiments,26 the phase diagram of the vortex
state in BSCCO single crystals was studied in strong oblique
magnetic field (B‖ ∼ 0.6 ÷ 4.5 T, B⊥ ∼ 5 ÷ 100 Oe), and
interesting anomalies related with the change of the vortex
lattice structures have been observed. However, the direct
observation of the interacting JVs and PVs by the Hall probe
technique was performed in a weak in-plane magnetic field
B‖ ∼ 20 ÷ 30 Oe.15 If the magnetic field B‖ is small, the
crossings between JVs and PVs are rare and the distance
between Josephson vortices along the z axis becomes much
larger than 2s, as well as the distance between the deformed
parts of the PVs line. Let us estimate the attraction between
AVs in this limit. The Josephson vortices are well separated
and positioned at the distance√√

3γφ0/2B‖ � s
√

H0/B‖ � s

along the z axis. As has been demonstrated in Ref. 18, the
contribution to the attraction from one crossing is

ε̃att(R) = − s φ2
0

R2

[
λab

λJ ln(AλJ /λab)

]2

, (39)

where A ≈ 3.5 (see Ref. 14). Neglecting the effect of a zigzag
deformation on the Pearl’s repulsion, the long-ranged part of
interaction energy ε̃int(R) in the low-field limit B‖ � H0 at
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distances R � λab may be estimated as

ε̃int(R) � φ2
0

8π2

[
− D ũ2

λ2
ab R2

+ 2

R

]
, (40)

where the effective displacement14,18

ũ � 2
√

2 λ2
ab(B‖/H0)1/4

λJ ln(AλJ /λab)
(41)

grows slowly with increasing in-plane magnetic field B‖. The
expressions (40) and (41) result in the following estimate of
the critical film thickness D̃cr :

D̃cr ∼ λ2
J ln2(AλJ /λab)

2λab

(
H0

B‖

)1/2

. (42)

As before, the case B‖ ∼ H0 is optimal for observation
of intervortex attraction, and this case corresponds to the
crossover between the regimes described by formulas (38) and
(42). For typical experimental value of the in-plane magnetic
field15 B‖ = 20 ÷ 30 G, we obtain D̃cr ∼ 70 μm.

Thus, the relations (38) and (42) give us the estimate of the
threshold value of the thickness

D >

{
D̃cr if B‖ < H0,

Dcr if B‖ > H0

for which the minimum in the interaction potential can
exist and the interplay between the long-range attraction and
repulsion between zigzag vortex stacks lines in the films of
layered superconductors takes place. We should note that
the Pearl’s interaction play an important role even for rather
thick film; indeed, for the most favorable case B‖ ∼ H0,
it completely masks the attraction for the film thicknesses
smaller than ∼(50 ÷ 200) λab.

The vortex attraction in bulk layered superconductors is
known to result in the formation of infinite vortex chains. The
long-ranged Pearl’s repulsion of vortices in superconducting
films always prevails at large distances and destroys the infinite
chains.10 The unusual intervortex interaction (36) leads to
the unconventional vortex structures (vortex molecules or
multiquanta flux lattice) discussed recently for moderately
anisotropic superconductors in Ref. 12.

Qualitatively, all conclusions of references10,12 are applica-
ble for the case of crossing lattices we consider here. Similarly,
the zigzags of PVs stacks can be arranged in vortex molecules.
To estimate the size of such a molecule, let us find the
cohesion energy of the equidistant chain of deformed PVs
stacks. The perpendicular component of the magnetic field
B⊥ fixes the number M of AVs in the film, so that in the
square film W × W it should be M = B⊥W 2/φ0 vortices. We
consider the case of small concentration of vortices when
at large distances the intervortex interaction is given by
Pearl’s term. For roughly uniform vortex distribution (usual
vortex lattice), the energy per one vortex can be estimated as
ε0 ∼ φ0B⊥W/4π2. If vortices form clusters with m vortices

each, it may be demonstrated that interaction between clusters
gives the same contribution ε0 per one vortex. The remaining
energy originates from the interaction between vortices inside
the cluster, and for the case of a low in-plane magnetic field
B‖ � H0, it may be expressed via the long-ranged part of
interaction energy ε̃int (40):

εm
int = 1

m

m∑
i>j

ε̃int(Rij ), (43)

where Rij are the distances between ith and j th vortices in the
chain molecule. Taking the characteristic distance between
vortices in a cluster R̃m ≈ 2λab ln(λJ /λab), we find

εm
int ∼ φ2

0

8π2

[
− D ũ2

λ2
abR̃

2
m

+ 2

R̃m

ln m

]
. (44)

Certainly, the cluster formation occurs if εm
int < 0 and

the number of vortices in the cluster is given by the
expression

m ≈ exp

(
D ũ2

2λ2
abR̃m

)
. (45)

The condition m > 1 (D ũ2/2λ2
abR̃m > 1) gives us the low

boundary of the in-plane magnetic field restricting the interval
of vortex molecules existence

B‖
H0

>

[
λ2

J ln3(λJ /λab)

2D λab

]2

. (46)

For D = 100 λab, λJ = 3 λab, and H0 = 3 T, we obtain B‖ >

60 G. Note that the number of vortices m in the molecules
rapidly increases as the in-plane magnetic field B‖ grows.

Naturally, this scenario realizes only for low concentration
of AVs when the average distance between vortices

√
φ0/B⊥

is much larger than the intervortex distance in the chain R̃m. In
the opposite case, we may expect the existence of multiquanta
flux lattice with several vortices per cell similar to the case of
tilted vortices considered in Ref. 12.

We may conclude that the formation of the vortex molecules
and the exotic vortex lattices with different number of vortices
per unit cell should occur in the films with the thicknesses
D � (10–100)λab, therefore, the most suitable technique to
observe these structures seems to be the scanning tunneling
microscopy, scanning Hall probe, or decoration.
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