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Flux-lines lattice order and critical current studied by time-of-flight small-angle neutron scattering
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Small-angle neutron scattering is a historical technique to study the flux-lines lattice (FLL) in a superconductor.
Structural characteristics of the FLL can be revealed, providing fundamental information for the physics of a
vortex lattice. However, the spatial resolution is limited and all of the correlation lengths of order are difficult to
extract with precision. We show here that a time-of-flight technique reveals the Bragg peak of the FLL, and also
its translational order with a better resolution. We discuss the implication of these results for pinning mechanisms
in a niobium sample.
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The existence of a flux-lines lattice (FLL) in a superconduc-
tor of the second kind was initially confirmed by Cribier et al.
using small-angle neutron scattering (SANS).1 Afterwards,
SANS was an essential technique to study the physics of the
FLL, including FLL transitions,2–5 pinning mechanisms,6,7

moving FLL,8,9 and out-of-equilibrium features.10 A central
question for the physics of a FLL is the nature of the FLL
in the presence of unavoidable structural disorder. It is clear
that the flux lines are forming planes, which are ordered at a
sufficient long range to display Bragg peaks in the diffraction
pattern. By contrast, a genuine glassy or liquid state presents
a large spread of Bragg angles and a degenerated orientational
order that lead to diffuse rings of scattering in the reciprocal
space. However, it is not clear whether the FLL is ordered at
a very long range11 or is fracturing at the intermediate scale.12

The result is important in the field of disordered elastic media
where novel phases, not existing for the crystalline matter (i.e.,
the Bragg glass),13 have been proposed. It is also important
for discriminating between pinning effects, since FLL order
and bulk critical current can be linked in the framework of
the elastic theory of collective pinning.14 On the other hand,
pinning at the surface is also very efficient but the associated
critical current is not related, at least not directly, to the disorder
in the bulk FLL structure.15 SANS is the sole technique from
which the bulk FLL correlation lengths can be, in principle,
extracted.6

Experiments are usually performed with the neutron beam
applied along the magnetic field, which is the so-called
longitudinal geometry. The resolution is good enough in the
longitudinal direction to extract the longitudinal correlation
length (the straightness of the flux lines) with accuracy. Note,
however, that this length is directly affected by field lines
bending due to the demagnetization field16 or by the self-field
if a transport current is applied.7 Its interpretation is then
tricky.10 The scattering intensity I (Q) contains the square of
the modulus of the structure factor S(Q), which is the Fourier
transform of the positional correlation function C(r). I (Q) is
analyzed after a radial averaging of the intensity in the detector
plane. In this direction, however, the resolution function of
the small-angle diffractometer is strongly dominating17,18 and
direct information cannot be obtained from the Bragg-peak

shape. As a consequence, indications that the FLL is in a
Bragg glass state arises from the analysis of the decrease
of the scattered intensity with the magnetic field,11 and
not from the expected power-law decay.19 For the same
reasons, the broadening of the peak in the radial direction,
which gives information on the crystallite size, cannot be
extracted without removing the dominating contribution of
the resolution function. This leads to a large uncertainty in the
size of crystallites.

The other geometry is the transverse geometry where the
beam is perpendicular to the magnetic field, i.e., the high-
resolution direction corresponds to the orientational order.
A major drawback is that the conditions for diffraction are
difficult to find for any misalignment between the FLL and
the applied field.18 In this geometry, some evidence of a
power-law decay of Bragg peaks is observed in a niobium of
good quality, which is consistent with a Bragg glass phase.19

However, the intrinsic widths of these Bragg peaks were much
larger than the experimental resolution. This implies that the
FLL fractures at an intermediate length scale, typically in the
micrometer range. These results are not expected in the Bragg
glass scenario of quasi-long-range order, where Bragg peaks
have no intrinsic width in the regime of power-law decay.
Complementary experimental data should be helpful to clarify
the situation.

We have used another technique to extract the FLL crys-
tallite size, using the spectrometer with the usual longitudinal
geometry but in the time-of-flight (TOF) mode. The time of
flight of neutrons between the chopper source and the detector
is used to separate in the scattering intensity the neutrons of
different wavelengths. In the conventional steady-state mode,
a monochromatic beam can be selected only with a large
wavelength spread, �λ/λ ∼ 10–20%, which has an important
contribution in the resolution function. In the TOF mode, this
wavelength spread arising from the pulse and the channel
widths can be negligible. Another advantage of the TOF
is that scattering to higher angles θ , which gives a better
resolution,20 is direct, thanks to the large range of wavelengths
available in the single experiment. The drawback is that the
neutron flux is low at large wavelengths due to the Maxwellian
spectrum (the wavelength at maximum flux is here λ ≈ 2 Å).
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FIG. 1. (Color online) Normalized intensity as a function of the
scattering vector Q (λ = 10 Å, T = 2 K). The first Bragg peak is fitted
by a Gaussian of center Q = 0.0066 Å−1 and FWHM 0.00165 ±
0.00004 Å−1 (solid line), very close to the calculated FWHM due to
the resolution (0.00160 Å−1).

More practical but also interesting, it is not necessary to
rock the sample through the Bragg conditions, which are
satisfied at a fixed position when λ is continuously tuned
(θBragg = QBraggλ/2π , with θBragg as the scattering angle). The
definition of a Bragg peak is finally largely improved, i.e.,
more data points are available to describe it which improves
significantly the accuracy on the peak width.

SANS data were measured with the PAXY small-angle
diffractometer (Laboratoire Leon Brillouin, Saclay, France),
which can be used in both steady-state and TOF modes. The
sample under study is a slab of pure niobium with critical
temperature Tc = 9.2 K, Ginzburg-Landau parameter κ ≈ 1,
and second critical field Bc2 = 0.385 T at T = 2 K. No peak
effect in the critical current was observed, which is consistent
with a sample of the best homogeneity.16

Before the TOF measurements, the FLL was measured with
the conventional steady-state setup using a mechanical velocity
selector, which chooses the neutrons wavelength λ with a
Gaussian distribution of full width at half maximum (FWHM),
�λ = 0.11λ (or a variance σ 2

λ given by �λ/2
√

2ln2 = σλ).
The wavelength was fixed at λ = 10 Å. I (Q) is obtained
after regrouping the different rocking curves and after a radial
averaging of the intensity. We observe in Fig. 1 the Bragg peak
associated with the FLL and centered at QFLL = 2π/dFLL

(dFLL = 1.155a0, a0 = 1.074
√

φ0/B is the unit cell of the
hexagonal lattice). The Bragg peak is well fitted by a Gaussian
because it is dominated by the spectrometer resolution.21 The
latter is related to the angular distribution of the incident
neutron beam at the detector position to the wavelength
distribution �λ, and the detector resolution �R. Adding the
different Gaussian contributions to the resolution gives

σ 2
Qres

= (2π/λ)2σ 2
θ + (Q/λ)2�λ2/(2

√
2ln2)2. (1)

Since the detector resolution contribution is negligible
compared to the one arising from the incident neutron beam,
a good approximation of the angular variance σθ is22

σ 2
θ ≈ σ 2

θbeam
≈ 1/4(D1/2L1)2 + 1/4[D2(L1 + L2)/2L1L2]2,

(2)

where D1 and D2 are the aperture diameters, L1 is the distance
between the two apertures, and L2 is the distance between
D2 and the detector (here D1 = 12, D2 = 7, L1 = 4750, and
L2 = 6870 mm).

With our setup, σQres ≈ 6.8 × 10−4 Å−1 at Q = 6.64 ×
10−3 Å−1. To measure the intrinsic width of the Bragg peak,
it is necessary to deconvolve the experimental data σQexp from
σQres .

17,22 As shown in Fig. 1, σQexp ≈ σQres , and we can only
conclude that the FLL crystallite size has a minimum value of
some μm. We have also performed full rocking curves of Bragg
peaks whose FWHM are related to the perfection of flux lines
along the field direction. We measure the resolution limited
widths for B = 2000, 2500, 3000, and 3500 G, indicating
a longitudinal correlation length of more than 100 μm, i.e.,
straight flux lines. Orientational order was not changing in the
field range investigated.

SANS experiments in the TOF mode were then performed.
The velocity selector was removed and a chopper with
one slit (12 × 1 mm2) was placed before the cryomagnet
containing the sample. The chopper to detector distance
was Dchopper = 7110 mm. The collimation and the sample
to multidetector distance were kept. The total pulse width,
τchopper = 450 μs, is given by the rotation of the 1-mm-width
slit of the chopper in front of the 7-mm-diameter sample
diaphragm. The flying times of neutrons were analyzed in
time frames of 256 TOF channels of τ = 150 μs each. The
scattering intensity of the sample was recorded at T = 2 K
for different magnetic fields in the superconducting state (field
cooling procedure) and a background was measured in the
normal state (B = 4000 G > Bc2). In the TOF mode, the
neutrons are recorded as a function of the time of flight t for
different angles θ , then t is converted to effective wavelengths,
giving I (θ , λ). Each set of raw scattering data was corrected
for the detector efficiency, the sample transmission, and the
wavelength distribution of the incident beam flux by dividing
each scattering data by I (θ = 0,λ). Data obtained in the
normal state was used as the background scattering for data
obtained in the superconducting state. Typical data showing
the FLL Bragg peak as a function of (θ ,λ) are shown in
Fig. 2. In the TOF mode, the contribution of �λ in Eq. (2) is
no longer coming from the wavelength distribution delivered
by a velocity selector, but arises from the short pulse and
the TOF channel width. Using λ = h/(mnv) (where h is
the Planck constant, mn is the neutron mass, and v is the
neutron velocity) gives �λchopper = τchopper/(0.253Dchopper)
and �λτ = τ/(0.253Dchopper). Here, �λchopper and �λτ are
in Å; τchopper and τ are in μs; and Dchopper is in mm. Assuming
Gaussian distributions for these two contributions, the term
(�λ/λ)2 in Eq. (1) becomes (�λchopper/λ)2 + (�λτ/λ)2. It
is much smaller and negligible compared to the contribution
arising from the angular divergence of the beam. The position
of the peak changes with (θ , λ) according to the Bragg law, as
shown in the inset of Fig. 2. The width of the peak decreases
at large θ , as expected from Eq. (1). In the TOF mode,
interestingly, this θ dependence can be analyzed in a single
measurement when measuring I (θ,λ).

A typical size of crystallites can be estimated using the
Scherrer formula,23

�θcrystal ≈ Kλ/S cosθ, (3)
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FIG. 2. (Color online) Intensity of the FLL Bragg
peak I as a function of λneutrons (time-of-flight mode).
Each Bragg peak corresponds to a different θ (θ =
0.201◦,0.229◦,0.249◦,0.271◦,0.291◦,0.312◦,0.333◦,0.354◦, 0.375◦,
0.396◦,0.412◦, and 0.437◦). In the inset is shown λpeak, the center
of the Bragg peak, as a function of the angle θ . The solid line is the
Bragg law, with QBragg = 7.47 × 10−3 ± 0.02 Å−1 (this is the value
expected for the hexagonal lattice at 2500 G within the resolution of
the magnet).

with K as the Scherrer constant of the order of unity24 and S

as the mean size of the crystallite. Note that S is an effective
length, measured in the direction of the diffraction vector.

Finally, the FLL Bragg-peak broadening varies as

σ 2
QFLL

≈ (πσθbeam )2/(dFLLθ )2 + (2πK)2/(cosθS)2. (4)

Since cosθ ≈ 1 at a small angle, it can be rewritten in the
compact form

σ 2
QFLL

≈ A/θ2 + B/S2, (5)

where B is a constant of the order of (2π )2, and A is a function
of the Bragg planes spacing.

Despite the gain in resolution offered by the TOF, the in-
trinsic width of the peak still corresponds to a low contribution
compared to the instrumental resolution. Equation (5) has, in
principle, two adjustable parameters, A and B/S2 (i.e., the
instrumental resolution due to the intercept of the incident
beam in the detector plane and the crystallite size S). Since the
prefactor A in the beam resolution contains only geometrical
parameters, it can be calculated and then fixed at the expected
value. In such a case, the fit has only one free parameter.
In Fig. 3, we show the comparison between the two fitting
procedures, with one or two adjustable parameters. The fits are
of equivalent quality. From the fitting curves at different fields
(Fig. 4), we can deduce S as a function of the magnetic field
values. As shown in Fig. 5, the order of magnitude of S and its
field dependence are found to be similar for the two procedures,
albeit with larger error bars when using the two-parameter fit.
It certainly reflects the relative uncertainty of the extraction
of S, but shows also that the order of magnitude is correct.
In the following, we will discuss the case of S deduced from
the one-parameter fit, but the results and discussion are similar
with either fitting procedure.

We observe that S increases with the magnetic field,
meaning that the FLL becomes more perfect as its density
increases. S is, however, slightly larger at 500 G than at 1000 G.
In a low-κ superconductor such as niobium, the first critical
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FIG. 3. (Color online) σ 2
QFLL

as a function of the angle of
scattering θ (T = 2 K, B = 2000 G). In both graphs, the solid line is a
fit with the equation σ 2

QFLL
≈ A/θ2 + B/S2, with one free parameter

B/S2 (left) or with two free parameters A and B/S2 (right) (see text).
R2 is the coefficient of determination.

field is large, i.e, Bc1 ∼ 1500 G at 2 K. The intermediate mixed
state where FLL and Meissner regions coexist is extended at
low fields, especially with the slab geometry of the sample with
a large demagnetizing factor.25 The measurements at the lowest
field are then likely influenced by the increasing presence of
Meissner domains in the sample.

In the mixed state, the critical current density Jc(bulk) is
related to the positional correlation length Rc in the Larkin
Ovchinikov (LO) model,14 which is valid for short length-
scale displacements, typically rp, which is the one of the
pinning potential.26 It has been pointed out that a diffraction
experiment probes scale of the order of the lattice spacing.27
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2 F
LL

3000 G
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1000 G

(deg)

FIG. 4. (Color online) σ 2
QFLL

as a function of the angle of
scattering θ (T = 2 K, different field values). The solid line is a
fit with the equation σ 2

QFLL
≈ A/θ2 + B/S2, with B/S2 as a free

parameter (see text). For clarity, the fit with two parameters is not
shown.
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FIG. 5. (Color online) Size of the vortex crystallite as a function of
the reduced magnetic field B/Bc2 (T = 2 K, Bc2 = 3850 G) obtained
with the single-parameter fit or with the two-parameter fit.

The correlation length S cannot be directly compared with Rc,
but should be rescaled as S ≈ Rc(dFLL/rp)2.27 rp is expected
to vary between the flux-line core size ξ for isolated flux
lines up to some fraction of the lattice spacing dFLL when
flux lines largely overlap.28 We have calculated Jc(bulk) ≈
C66rp/(4BR2

c ) (Ref. 14) with the two limiting values of
rp. The shear modulus C66 formula was given in Ref. 29,
and ξ (2K) ≈ (φ0/2πBc2)1/2 ≈ 29 nm. Finally, Jc(bulk) is
reported in Fig. 6 for rp = ξ and for rp = dFLL.

The next step is to compare with the real critical current
Jc(exp) of the sample. It was measured on a small piece of the
same Nb sample (width × length × thickness = 0.1 × 0.3 ×
0.02 cm3), using the irreversible part of the magnetization and
applying the Bean model for a slab geometry. The resulting
Jc(exp) is shown in Fig. 6. Clearly, Jc(bulk) is very different
than Jc(exp) for B/Bc2 > 0.4, in the regime where our niobium
sample is clearly in the pure mixed state, whatever the rp value.

We conclude that a large amount of critical current is not
coming from a bulk pinning contribution of the LO type.
Another possibility is that we are measuring a crystallite size
unrelated to any bulk pinning mechanism, for reasons which
are not clear. In soft superconductors of the second kind, the
bulk contribution to the pinning can be very low and most of
the critical current can arise from a surface origin. In particular,
surface pinning is known to be a realistic source of pinning in

B/B
c2

J c 
(A

/m
2 )

FIG. 6. (Color online) Experimental critical current measured at
T = 2 K (stars), compared with the critical current calculated with
the LO model and S values as explained in the text (circles correspond
to rp = ξ and triangles correspond to rp = dFLL).

B/B
c2

ε 
(A

/m
)

FIG. 7. Potential ε (or reversible magnetization) computed using
the Brandt approach32 as a function of reduced magnetic field in a
semilog scale (κ = 1 and Bc2 = 0.385 T). Inset: the same graph in a
linear scale. The dotted line is the Abrikosov line.

niobium.15,30 This pinning mechanism is based on equilibrium
equations and boundary conditions for flux lines over a realistic
(rough) surface.31 The surface contribution to the pinning
gives a critical current ic(A/m) = εsinθ , where ε is the vortex
potential (i.e., the reversible magnetization) and θ is a critical
angle characterizing the surface roughness. ic is a superficial
current but can be rewritten as a critical current density
Jc(surf )(A/m2) = 2ic/t , where t is the sample thickness and
the factor 2 stands for the two surfaces perpendicular to the
magnetic field. The standard values of θ are around a few
degrees. To estimate ic, ε was computed as a function of B

using the numerical calculation following Ref. 32. For this
calculation, we have used a Ginzburg-Landau parameter κ =
1, and Bc2 = 0.385 T as observed experimentally. The result
is reported in Fig. 7. A direct observation is that the magnetic
field dependence of ε and Jc(exp) are quite similar, as expected
if the critical angle is not very dependent upon the value of the
field. Fitting the experimental Jc(exp) of our niobium sample
with the surface pinning expression Jc(surf ) = (2/t)εsinθ

gives a very good agreement with a critical angle θ = 4◦
(Fig. 8). This is a large, but still reasonable, value for a bulk
sample with unpolished surfaces.33 We do not exclude that
edge currents also play a role for the critical current. Finally,
the good agreement between the surface pinning model and

B/B
c2

J c 
(A

/m
2 )

FIG. 8. (Color online) Experimental critical current measured at
T = 2 K (stars), compared with the critical current calculated with
the surface pinning model with a critical angle θ = 4◦ (red circles).
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the experimental data, in addition to the neutron-scattering
experiment, allow one to conclude that surface critical currents
are likely dominant in this sample.

Another important result of the TOF experiment is that
the FLL is fracturing in the micrometer scale, as found using
reverse Monte Carlo analysis in a different geometry.19 This
result is a priori not expected in the framework of purely
elastic models, where quasi-long-range ordering is expected
in clean samples such as niobium. Note that we have used field
cooled, zero field cooled, and the so-called shaking procedures
to induce a better positional order of the FLL.34 The widths
of the peak are not changed (within resolution), meaning that

unpaired dislocations are likely not responsible for the Bragg-
peak width and that the FLL is close to equilibrium.

To conclude, we have measured the crystallite size of
the FLL in niobium using neutron scattering with a time-
of-flight mode. Crystallite sizes are in the micrometer range
and increase with the field. These results show that the
FLL positional order gets better when the flux-line density
increases. The crystallite sizes are found unrelated to the
critical current using a bulk collective pinning approach. This
implies another source of pinning unrelated to the bulk FLL
structure, likely surface pinning which is found to describe
quantitatively the critical current values.
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