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Gravitational anomalies and thermal Hall effect in topological insulators
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It has been suggested that after being gapped by a small symmetry-breaking field, the Majorana quasiparticles
localized on the surface of a class DIII topological insulator will exhibit a thermal Hall effect that arises from
a gravitational Chern-Simons term. We critically examine this idea, and argue that the thermogravitational Hall
effect is more complicated than its familiar analog. A conventional Hall current is generated by a uniform electric
field, but computing the flux from the gravitational Chern-Simons functional shows that gravitational field
gradients—i.e., tidal forces—are needed to induce an energy-momentum flow. We relate the resulting surface
energy-momentum flux to a domain-wall gravitational anomaly via the Callan-Harvey inflow mechanism. We
stress that the gauge invariance of the combined bulk-plus-boundary theory ensures that the current in the domain
wall always experiences a “covariant” rather than “consistent” anomaly. We use this observation to confirm
that the tidally induced energy-momentum current exactly accounts for the covariant gravitational anomaly
in (1 + 1)-dimensional domain-wall fermions. The same anomaly arises whether we write the Chern-Simons
functional in terms of the Christoffel symbol or in terms of the spin connection.
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I. INTRODUCTION

One of the key properties of topological insulators is the
intimate connection between the nontrivial bundle structure of
the bulk electronic states and the presence of protected gapless
surface modes. The most intuitive way of understanding
this connection is that the twisted bundle gives rise to bulk
quantum-Hall-like conductivities, and the gapless surface
modes need to be present to soak up the corresponding
conserved currents where they run into the surface of the
sample.1,2 In this way the bulk-surface connection is seen to
be a manifestation of the Callan-Harvey “anomaly inflow”
mechanism.3 Most of the Altland-Zirnbauer classes4,5 of
topological insulators possess conserved U(1) charge or SU(2)
spin currents, and the necessity of their protected surface
modes can be understood via ordinary gauge-field anomalies.
An important exception is the class DIII, which includes
superconductors with spin-orbit interactions, and superfluid
3He-B. Here the only conserved quantities are energy and (in
the translation invariant superfluid) momentum. An anomaly-
inflow understanding of the electrically neutral (Majorana)
surface modes in the DIII systems therefore requires a failure
of some edge-mode energy-momentum conservation law—in
other words, a gravitational anomaly.6

Gravitational anomalies originate in the Â-genus contribu-
tion to the Dirac index theorem that is nonzero only in 4k

space-time dimensions. They descend via a parity-violating
gravitational Chern-Simons term in 4k − 1 dimensions to
an energy-momentum inflow anomaly in 4k − 2 space-time
dimensions. For physically realizable topological insulators,
we are restricted to the k = 1, and therefore to a gravitational
Chern-Simons term in a (2 + 1)-dimensional surface, and a
gravitational anomaly in a (1 + 1)-dimensional edge.

Following Refs. 7–11, we expect that (after the application
of a small symmetry-breaking field that opens a gap) the
(2 + 1)-dimensional Majorana fermion surface modes of the
DIII systems will include a gravitational Chern-Simons term
in their low-energy effective action. It is argued in Refs. 12–14
that this term can, in principle, be observed through a thermal

Hall (or Leduc-Righi) effect. A key step in the reasoning in
Refs. 12–14 requires that in analogy with the conventional
Hall effect, a uniform gravitational field induces a surface
energy-momentum current. The Leduc-Righi coefficient is
then obtained by means of an Einstein argument. The idea
is that thermal equilibrium in the presence of a gravitational
field requires the local temperature to vary so as to compensate
for the gravitational red shift experienced by radiation as it
moves in the potential. The energy flux induced by a thermal
gradient is then balanced by an equal and opposite energy flux
due to the gravitational potential gradient. The thermal Hall
conductance can thus be found from that of the gravitational
Hall conductance.

The purpose of this paper is to argue that although the
arguments in Refs. 12–14 are very appealing, the gravitational
“Hall effect” is a little more complicated than its electromag-
netic analog. While a temperature gradient across a finite
(2 + 1)-dimensional surface does indeed induce a thermal
Hall current whose magnitude is related to the gravitational
anomaly,11,15 the surface-state energy gap exponentially sup-
presses any surface thermal current. The heat must therefore
be carried entirely by the gapless (1 + 1)-dimensional edge
modes. In this respect the thermal current differs from the
charge Hall effect, which can flow either at the (1 + 1)-
dimensional edge, or, in the presence of a uniform electric field,
within the (2 + 1)-dimensional electron gas. Furthermore, the
gravitational Chern-Simons term yields an energy-momentum
flux that is proportional to gradients of the Ricci tensor.
Consequently a uniform bulk gravitational field cannot create
an energy-momentum flux within the (2 + 1)-dimensional
surface. A surface energy flux requires an inhomogeneous
field—i.e., tidal forces. Nonetheless, the tide-induced energy-
momentum flow does retain the bulk-boundary connection
because it demands an anomalous (1 + 1)-dimensional gapless
mode to absorb the flux as it runs into an edge or domain wall.

In Sec. II we will describe the thermal Hall effect and show
how it can maintain an equilibrium balance between a tem-
perature gradient and a gravitational potential gradient even
in the absence of a bulk energy flow. In Sec. III we review the
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Callan-Harvey anomaly-inflow picture, and stress that this
mechanism always leads to the covariant form of the
associated anomaly. In Sec. IV we explain the origin of the
gravitational anomaly in (1 + 1)-dimensional chiral theories.
In Sec. V we compute the energy-momentum flows arising
from a (2 + 1)-dimensional gravitational Chern-Simons
functional and show that it exactly accounts for the anomaly
obtained in Sec. IV. We also show that the same anomaly
is obtained from the Chern-Simons functional whether it is
written in terms of the Christoffel symbols � or the spin
connection ω. Finally, Sec. VI provides a brief summary of
our results.

II. THERMAL HALL CURRENTS

The edge of a (2 + 1)-dimensional quantum Hall system
hosts gapless chiral fermions,16 and both the edge of a px +
ipy superconductor11 and domain walls on the surface of a
suitably engineered topological insulator17 host gapless (1 +
1)-dimensional chiral Majorana fermions. In superfluid He3-
B, the presence of a small magnetic field causes the (2 + 1)-
dimensional Majorana modes on the surface of the fluid to
acquire a mass gap m that can change sign even when the
field is uniform.18 The resulting domains have been detected
by NMR,19 and now the domain walls between regions of ±m

host gapless (1 + 1)-dimensional chiral Majorana fermions.
Consider a collection of such (1 + 1)-dimensional edge

modes, and suppose for a moment that they can be modeled as
a set of n independent conformal fields possessing (positive or
negative) propagation velocities vi , i = 1, . . . ,n, and central
charges ci . Then, at temperature T , each independent edge
mode contains an energy density20

εi = ci

π

12|vi |
k2
B

h̄
T 2, (1)

where kB is the Boltzmann constant. Thermal energy is
therefore being transported along the edge at a rate21

JT =
n∑

i=1

viεi

= π

12

n∑
i=1

sgn (vi)ci

k2
B

h̄
T 2

= π

12
(c − c̄)

k2
B

h̄
T 2. (2)

Here c and c̄ are the total conformal charges of the right-
and left-moving modes, respectively. Although motivated by
the model of independent modes, this formula continues
to hold for more complicated conformal theories.15 If we
construct a parallel-sided Hall bar and maintain a small
temperature gradient �T across it, then the difference between
the contrapropagating energy fluxes (2) on the two edges gives
rise to a net thermal current,

JL−R = CL−R�T, (3)

that flows along the bar and perpendicular to the temperature
gradient. Here

CL−R = (c − c̄)
π

6

k2
B

h̄
T (4)

is the Leduc-Righi coefficient.

It is remarkable that the nonuniversal edge-mode velocities
have canceled, leaving in CL−R/T only fundamental constants
and the numbers c, c̄ that are characteristic of the quantum
Hall phase. It is therefore reasonable to suppose that CL−R/T

may be extracted from topological data, as is the quantum Hall
coefficient. It is, however, difficult to provide a direct derivation
of thermal conductivities from linear response theory. There is
no term that can be added to the Hamiltonian to describe the
temperature. An ingenious trick was introduced by Luttinger,22

who instead coupled the system to gravity and proceeded
indirectly by adopting the method used by Einstein to relate
diffusion coefficients to viscosity.23 Luttinger’s idea is that the
deequilibrating effect of a small temperature gradient will be
precisely compensated for by the red or blue shift induced by
gravitational potential � when

1

T

∂T

∂x
= − 1

c2
light

∂�

∂x
. (5)

Consequently, assuming that all currents vanish in equilibrium,
and that the effects of the two driving forces are additive, a
linear-response derivation of the current induced by gravity
allows one to deduce the current induced by the thermal
gradient.

Can we use the Luttinger technique to compute the thermal
Hall current? And does it imply that a uniform gravitational
field will cause heat to flow not only at the edges, but also
in the bulk where the system has a gap? To address these
questions, consider a rectangular Hall bar (see Fig. 1) whose
upper, right-propagating edge at coordinate y = y1 is held
at temperature T1 and whose left-propagating lower edge at
y = y2 is held at temperature T2 > T1. If the bar lies in a
gravitational field such that the gravitational frequency shift
obeys

ω(y1)

ω(y2)
≡

√
g00(y2)

g00(y1)
= T1

T2
, (6)

then, as the thermal excitations from the hotter lower edge
rise on the left-hand vertical side to the upper edge, they will
red shift to the lower temperature. Similarly, as the excitations
from the cooler upper edge descend via the right-hand vertical
side to the lower edge, they will blue shift to match the hotter
temperature. The system is in equilibrium therefore. Since for

x

y
y

y

1

2

Φ(  )y

Φ(  )y2

=gy1

=gy2

T1

T2

1

g g g

FIG. 1. (Color online) Chiral edge modes carry thermal energy
clockwise around the boundary of a rectangular Hall bar. The system
is in equilibrium when the temperature difference between the cooler
upper and hotter lower edge is balanced by the gravitational red and
blue shifts experienced by the energy quanta as they ascend and
descend the vertical sides.
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weak gravitational fields we have√
g00(y) ≈ 1 + �(y)

c2
light

, (7)

this situation satisfies (5). Observe, however, that in our Hall
bar, the currents are not zero in equilibrium. Therefore a
knowledge of the thermal Hall current at a point does not allow
one to deduce the gravitational Hall current at that point, nor
vice versa. We must distinguish between net transport currents
that relocate energy (and to which the Luttinger argument
applies) and the local energy-momentum current that acts as a
source for gravity (and is the current appearing in Refs. 12–14).
See Ref. 24 for a detailed discussion of the distinction. Further,
the steady-state equilibrium of the Hall bar neither requires nor
permits thermal energy to be flowing within the gapped surface
states. This already suggests that a uniform gravitational field
does not induce a surface energy flow.

This suggestion is perhaps not surprising. A mathematical
analogy between the conventional Hall effect and gravitation
would naturally identify the field strength F with the Riemann
curvature R. A uniform-field gravitational field does not,
however, require space-time curvature. The Rindler metric

dτ 2 =
[

1 + (r − r0)g

c2
light

]2

dt2 − 1

c2
light

dr2, g = c2
light/r0,

(8)

of a uniformly accelerated observer provides a gravitational
potential �(r) = (r − r0)g, but is merely a reparametrization

clightT = r sinh

(
clightt

r0

)
,

X = r cosh

(
clightt

r0

)
,

of a part of Minkowski space with flat metric

dτ 2 = dT 2 − 1

c2
light

dX2. (9)

It might, therefore, be more physical to identify the thermal
Hall analog of the electric field with the Christoffel symbols
�, which describe the frame-dependent inertial forces that
we perceive as gravity. If this new analogy is to work, the
energy-momentum influx into the edge modes would have
to be given by the noncovariant “consistent” gravitational
anomaly, which contains �’s, rather that the “covariant”
anomaly which contains only R.25 In the following sections,
however, we will argue that anomaly inflow always give rise
to the covariant anomaly, and not to the consistent anomaly.
Moreover, we will see that gradients of curvature are needed
to produce an energy flow into edge states.

To simplify the argument, we will follow the authors of
Ref. 12 and argue that since we are interested in topolog-
ical effects, we can choose nonuniversal quantities such as
propagation velocities as we like. We will therefore from now
on make all modes propagate at clight, and work with fully
relativistic systems. (However, clight does not have to be the
actual speed of light.) We will also use natural units, in which
h̄ = clight = 1.

III. THE CALLAN-HARVEY MECHANISM AND
COVARIANT VERSUS CONSISTENT ANOMALIES

Let us recall how the conservation (or nonconservation)
of a gauge current is related to the gauge invariance (or the
lack of it) of an action functional. Suppose, for example, that
S[A] is a functional of an su(N ) Lie-algebra-valued gauge
field Aμ = λaA

a
μ, where the matrices λa are the generators of

su(N ). We define the matrix-valued gauge current Jμ(x) =
λaJ

μ,a by setting

δS[A] =
∫

ddx tr {JμδAμ}. (10)

Under a gauge transformation, the field changes as Aμ →
A

g
μ = g−1Aμg + g−1∂μg, where g ∈ SU(N ). For an in-

finitesimal transformation g = 1 − ε, the transformation be-
comes Aμ → Aμ + δεAμ, where δεAμ = −([Aμ,ε] + ∂με) ≡
−∇με. The corresponding change in S[A] is

δεS =
∫

ddx tr {Jμ([ε,Aμ] − ∂με)}

=
∫

ddx tr {ε(∂μJμ + [Aμ,Jμ])}. (11)

The covariant divergence

∇μJμ ≡ ∂μJμ + [Aμ,Jμ] (12)

is therefore zero if and only if S[A] is gauge invariant.
We are interested in effective actions S[A] that arise as a

result of integrating out a collection of Fermi fields ψ , ψ† in
the presence of a classical background gauge field Aμ:

exp{−S[A]} =
∫

d[ψ]d[ψ†] exp{−S[ψ,ψ†,A]}. (13)

The calculated currents are then the expectation value Jμ =
〈Ĵμ〉 of a quantum operator. The original S[ψ,ψ†,A] action
will be invariant under Aμ → A

g
μ, ψ → g−1ψ , ψ† → ψ†g,

but the invariance may be lost during the functional integration.
In this case, we will have

∇μJμ = G(A), (14)

where the anomaly G(A) is a local polynomial in the Aμ and
their derivatives. A gauge anomaly provides an obstruction
to a subsequent quantization of the Aμ fields, but when the
Aμ are simply classical probes it provides a useful source of
nonperturbative information.

The Callan-Harvey effect links the nonconservation of
gauge and other currents to an inflow of charge from some
higher-dimensional space in which the anomalous theory is
embedded as modes localized on a domain wall or string
defect. In the cases that we are interested in, the inflow
is derived from a Chern-Simons term in one-higher space
dimension.

As usual we will think of A as a Lie-algebra-valued one-
form A = λaA

a
μdxμ, and define the field strength as the Lie-

algebra-valued two-form

F = dA + A2 = 1
2Fμνdxμdxν. (15)

The Chern-Simons form ω2n−1(A) is then defined as

ω2n−1(A) = n

∫ 1

0
tr

{
AFn−1

t

}
, (16)
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where Ft = tF + t(t − 1)A2. It is constructed so that
dω2n−1 = tr {Fn}. For example,

ω3(A) = tr
{
AdA + 2

3A3
}

= tr
{
AF − 1

3A3
}
, (17)

and

ω5(A) = tr
{
A(dA)2 + 3

2A3dA + 3
5A5

}
= tr

{
AF 2 − 1

2FA3 + 1
10A5

}
. (18)

The F -free last term ∝A2n−1 in the second forms of ω2n−1 has
the coefficient

cn = (−1)n−1 n!(n − 1)!

(2n − 1)!
. (19)

It is this last term that governs the change in integrals of ω2n−1

under large gauge transformations. If A undergoes a finite
gauge transformation,

A → Ag = g−1Ag + g−1dg, (20)

then

ω2n−1(Ag) = ω2n−1(A)+cntr {(g−1dg)2n−1}+dα2n−2(A,g),

(21)

where, for example,26

α2 = −tr {dgg−1A} (22)

and

α4(A,g) = − 1
2 tr

{
(dgg−1)(AdA + dAA + A3)

− 1
2 (dgg−1)A(dgg−1)A − (dgg−1)3A

}
. (23)

The Chern-Simons functional C[A] is defined by setting

C[A] = 2π

(
i

2π

)n 1

n!

∫
M

ω2n−1(A), (24)

where M is some (2n − 1)-dimensional manifold. The coeffi-
cient in front of the integral has been chosen so that exp{iC[A]}
is single valued when M is the (2n − 1) sphere. In this case,

C[Ag] − C[A] = 2π

(
i

2π

)n (n− 1)!

(2n− 1)!

∫
S2n−1

tr {(g−1dg)2n−1},
(25)

and it is shown in Ref. 27 that the right-hand side of (25)
is 2π times an integer whenever g ∈ GL(n,C) or any of its
compact subgroups such as SU(N ). This means that when a
Chern-Simons functional appears in a functional integral,

Z =
∫

d[A] exp{ikC[A] + · · ·}, (26)

then gauge invariance demands that k be an integer. This
constraint on k need not hold when C[A] appears in an effective
action. Indeed k is 1/2 when we integrate out a massive Dirac
fermion in odd-dimensional space time.

Given a (2n − 1)-manifold M possessing a (2n − 2)-
dimensional boundary ∂M , we can use C[A] to construct

an action S[A,g]
def= C[Ag] that is obviously invariant under

A → Ah, g → h−1g. In this action, the gauge noninvariance
of the bulk Chern-Simons term C[A] is compensated by

the complementary gauge noninvariance of the Wess-Zumino
action,28

W [A,g]
def= C[Ag] − C[A]

= 2π

(
i

2π

)n 1

n!

{ ∫
∂M

α2n−2(A,g)

+cn

∫
M

tr [(g−1dg)2n−1]

}
. (27)

Although W [A,g] requires g to be defined on the (2n − 1)-
dimensional manifold M , the identity

δtr {(g−1dg)2n−1} = (2n− 1)dtr {(g−1δg)(g−1dg)2n−2} (28)

ensures that variation of W [A,g] depends only on the values
that δA and δg take on the boundary ∂M . It can therefore
serve as an anomaly-capturing nonlocal effective action for
a (2n − 2)-dimensional theory.29 The meaning of the gauge-
group element g depends on the context. In a two-dimensional
boundary, g(x,t) could be the dynamical chiral boson equiva-
lent to a chiral fermion. In this case we still have to integrate
over g in order to obtain the action S[A] appearing in (10). In
two or higher dimensions, it might parametrize a Higgs field
that gives a left-handed chiral fermion a mass by coupling it to
a right-handed chiral fermion that does not itself couple to A.
In this case a vacuum expectation value for g will explicitly
break the gauge symmetry. We will consider only the first of
these possibilities.

The gauge anomaly arising from the Wess-Zumino action
for a four-dimensional theory may be read off from∫

∂M

d4x tr
{
ε∇μJ

μ

WZ

} = δεW [A,g] = −δεC[A]

= − 1

24π2

∫
∂M

tr {dε(AdA+dAA+A3)}

= 1

24π2

∫
∂M

tr {ε∂μ(Aν∂σAτ+∂νAσAτ

+AνAσAτ )}εμνστ d4x. (29)

So

tr
{
ε∇μJ

μ

WZ

} = 1

24π2
tr {ε∂μ(Aν∂σAτ + ∂νAσAτ

+AνAσAτ )}εμνστ . (30)

Because this anomaly is found as the variation of the functional
W [A,g], it satisfies the Wess-Zumino consistency condition

(δεδε′ − δε′δε)W = δ[ε,ε′]W.

It is therefore known as a “consistent” anomaly. The right-hand
side of the (non)conservation equation is not gauge covariant,
however, and so neither is the left. The gauge current itself
is therefore not covariant, and the physical meaning of the
(non)conservation equation is unclear.

In the full bulk-plus-boundary theory, whose gauge-
invariant effective action is C[Ag], the nonzero divergence of
the boundary current is being supplied by the inflow of gauge
current from the higher-dimensional bulk. This bulk current is
covariant,

tr {λaJ
λ} = 1

32π2
tr {λaFμνFστ }ελμνστ . (31)
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It comes from the variation

δ

∫
ω5

= 3
∫

M

tr {δAF 2} +
∫

∂M

tr
{
δA

(
AdA + dAA + 3

2A3
)}

= 3
∫

M

tr {δAF 2} +
∫

∂M

tr
{
δA

(
AF + FA − 1

2A3
)}

.

(32)

We usually ignore the boundary term when computing a bulk
current, but in the total bulk-plus-boundary theory we must
retain it as it provides a contribution to the current in the
boundary of

tr {λaX
μ} def= 1

48π2
tr {λa(AνFστ + FνσAτ − AνAσAτ )}εμνστ .

(33)

This quantity is exactly the extra current [Ref. 25, Eq. (2.16)]
that has to be added to the consistent current to obtain the
covariant anomaly

tr
{
λa∇μ

(
J

μ

WZ + Xμ
)} = 1

32π2
tr {λaFμνFστ }ε5μνστ . (34)

The new current J
μ
tot = J

μ

WZ + Xμ is now gauge covariant,
and its anomalous divergence is entirely accounted for by the
Callan-Havey anomaly inflow.30,31

Similarly, in two dimensions we find that

∇μJ
μ

WZ = 1

4π
εμν∂μAν (35)

is the consistent anomaly, and

Xμ = 1

4π
εμνAν (36)

is the Chern-Simons term’s contribution to the boundary
current. Then

∇μ

(
J

μ

WZ + Xμ
) = 1

4π
εμν∂μAν + 1

4π
εμν(∂μAν + [Aμ,Aν])

= 1

4π
εμν(∂μAν − ∂νAμ + [Aμ,Aν])

= 1

4π
εμνFμν (37)

is the covariant anomaly.
We have seen that the Bardeen-Zumino polynomial Xμ(A)

that converts the consistent gauge current to the covariant
gauge current is precisely the contribution to the boundary
current provided by the boundary variation of the bulk Chern-
Simons functional. The analogous conversion of a consistent to
a covariant gravitational anomaly requires an extra integration
by parts, and so is more intricate. Indeed some puzzlement was
expressed in Ref. 3 about what happened to the inflowing
energy momentum—see the discussion after Eq. (30) in
Ref. 3—but it was later understood that the anomaly inflow
always leads to a covariant current.30,31

In the above examples, the Chern-Simons term was defined
in the bulk and the lower-dimensional degrees of freedom
resided on the boundary. This is, for example, the situation
in the ordinary quantum Hall effect. For (3 + 1)-dimensional

topological insulators, it is the Chern-Simons functional that
is defined on the boundary, and the lower-dimensional theory
is defined on a domain wall within the boundary. In this case
the coefficient of the Chern-Simons functional is multiplied by
sgn(m)/2, where m denotes the mass gap induced by a small
symmetry-breaking field that changes sign at the domain wall.
The resulting domain-wall chiral fermions then experience
half of the the usual inflow from each side, but there are two
sides, and so the resulting edge-theory anomaly is unchanged.

IV. TWO-DIMENSIONAL GRAVITATIONAL ANOMALIES

In this section we will review the origin and possible forms
of gravitational anomalies. We start from an effective action
S[g] that depends on the space-time metric gμν . The associated
Hilbert energy-momentum tensor T μν is then defined by the
variation

δSeff = −1

2

∫
ddx

√
|g| T μν δgμν, (38)

= +1

2

∫
ddx

√
|g| Tμν δgμν. (39)

Under a change of coordinates xμ → x ′μ = xμ + εμ, we have
gμν → g′

μν = gμν + δgμν , where

δgμν = (Lεg)μν

= ∇μεμ + ∇νεμ. (40)

Here Lεg denotes the Lie derivative of the metric with respect
to εμ, and ∇μ is the covariant derivative with respect to the
torsion-free Levi-Civita connection. When the effective action
is invariant under this reparametrization, we find (taking into
account that T μν = T νμ) that

0 = −
∫

ddx
√

|g| T μν ∇μεν

=
∫

ddx
√

|g|εν∇μT μν. (41)

Thus a gravitational anomaly—i.e., a failure of the co-
variant conservation law32 ∇μT μν = 0—reflects a failure of
reparametrization invariance. While it seems reasonable that
any physical system should be independent of how we choose
to describe it, coordinate dependence can creep into S[g] when
we tacitly tie a regularization procedure to the coordinate grid
rather than to some intrinsic property such as the metric.

An equivalent Lorentz anomaly can also occur in theories
when we use a frame field e

μ
a rather than the metric to encode

the geometry. This anomaly manifests itself as a failure of the
energy-momentum tensor (now defined in terms of a functional
derivative with respect to e

μ
a ) to be symmetric.

We will focus on two-dimensional systems expressed in
terms of Euclidean signature isothermal coordinates x,y, in
which ds2 = eφ(dx2 + dy2). It is convenient to set z = x + iy,
z̄ = x − iy so that ds2 = eφdzdz̄. The nonzero component of
the metric tensor and its inverse are then gz̄z = gzz̄ = (1/2)eφ ,
and gz̄z = gzz̄ = 2e−φ . In these complex isothermal coordi-
nates, the only nonzero entries in the Levi-Civita connection
are

�z
zz = ∂zφ,

�z̄
z̄z̄ = ∂z̄φ. (42)
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The curvature is completely encoded in the Ricci scalar

R = Rμν
μν = Rz̄z

z̄z + Rzz̄
zz̄ = −4e−φ∂2

zz̄φ. (43)

In our convention, R is twice the Gaussian curvature, and
hence positive for a sphere.

The effective action for a left-right symmetric theory with
conformal central charge c was obtained by Polyakov33 as

SPolyakov[g] = − c

96π

∫
d2x (∂φ)2

= − c

24π

∫
d2x ∂zφ∂z̄φ. (44)

Here d2x denotes dx ∧ dy = dz̄ ∧ dz/2i. To evaluate (44)
for a given geometry, we must select a system of isothermal
coordinates, and this choice is not unique. It is therefore not
immediately obvious that SPolyakov[g] is coordinate indepen-
dent. To verify that it is so, we must examine the conservation
of the energy-momentum tensor.

Now to make use of the Hilbert definition of T μν , we
must be free to make an arbitrary infinitesimal variation in
the metric. A general variation, however, will take us away
from the class of isothermal metrics. We therefore make a
variation δgμν and follow if with a change of coordinates,

z → z′ = z + ε(z,z̄),

z̄ → z̄′ = z̄ + ε̄(z,z̄), (45)

so as to return to the isothermal gauge. Now

δ(ds2) = [eφ(ε∂zφ + ε̄∂z̄φ + ∂zε + ∂z̄ε̄) + δgz̄z + δgzz̄)]dz̄dz

+(δgzz + eφ∂zε̄)dzdz + (δgz̄z̄ + eφ∂z̄ε)dz̄dz̄. (46)

The required coordinate change is obtained by solving

eφ∂zε̄ = −δgzz,
(47)

eφ∂z̄ε = −δgz̄z̄.

Let us assume for the moment that given δgzz and δgz̄z̄, we can
always solve these equations for ε and ε̄. Then, comparing with
δ(ds2) = eφδφdz̄dz, we find that the metric variation leads to

δφ = ε∂zφ + ε̄∂ε̄φ + ∂zε + ∂z̄ε̄ + e−φ(δgz̄z + δgzz̄). (48)

We insert this variation of φ into Eq. (44), and, assuming
that integration by parts is legitimate, reduce the terms involv-
ing ε to

− c

12π

∫
d2x ∂z̄ε

[
1
2 (∂zφ)2 − ∂2

zzφ
]

= − c

12π

∫
d2x e−φδgz̄z̄

[
∂2
zzφ − 1

2 (∂zφ)2
]
. (49)

On comparing with

δSPolyakov[g] = −1

2

∫
d2x

√
gδgμνT

μν

= −1

2

∫
d2x

√
gδgz̄z̄T

z̄z̄, (50)

where
√

g d2x = eφdxdy, we read off that

c

6π
e−2φ

[
∂2
zzφ − 1

2
(∂zφ)2

]
= T z̄z̄ = gz̄zgz̄zTzz

= 4e−2φTzz. (51)

Thus

Tzz = c

24π

[
∂2
zzφ − 1

2 (∂zφ)2
]
. (52)

Similarly we find that

Tz̄z̄ = c

24π

[
∂2
z̄z̄φ − 1

2 (∂z̄φ)2
]
. (53)

Next, examining the effects of δgz̄z + δgzz̄, we have

δSPolyakov[g] = − c

12π

∫
d2xe−φ(δgz̄z + δgzz̄)

( − ∂2
zz̄φ

)
.

(54)

From this, we read off that

T zz̄ = T z̄z = − c

6π
e−2φ∂2

zz̄φ = − c

24π
e−2φ∂2φ, (55)

and

Tzz̄ = − c

24π
∂zz̄φ. (56)

We also recover the well-known trace anomaly34

T μ
μ = gz̄zT

z̄z + gzz̄T
z̄z = eφT zz̄ = c

24π
R. (57)

This is a comforting consistency check, as Polyakov de-
rived (44) by working backward from (57).

We can now verify that Tμν is covariantly conserved:

1
2eφ(∇zTzz + ∇ z̄Tz̄z) = ∇z̄Tzz + ∇zTz̄z

= ∂z̄Tzz + ∂zTz̄z − �z
zzTz̄z

= ∂z̄Tzz + ∂zTz̄z − ∂zφTz̄z

= 0. (58)

This is evidence that SPolyakov[g] is indeed coordinate in-
dependent. There is a problem, however: if SPolyakov is
coordinate independent, then its functional derivative Tμν

must transform as a tensor. When we make a holomorphic
change of variables z = z(ζ ), z̄ = z̄(ζ̄ ), however, we have
ds2 = eχdζdζ̄ = eφdzdz̄, and so

φ = χ + ln

(
∂ζ

∂z

)
+ ln

(
∂ζ̄

∂z̄

)
. (59)

Consequently,

Tzz = c

24π

[
∂2
zzφ − 1

2
(∂zφ)2

]
= c

24π

(
∂ζ

∂z

)2[
∂2
ζ ζ χ − 1

2
(∂ζχ )2

]
+ c

24π

[
ζ ′′′

ζ ′ − 3

2

(
ζ ′′

ζ ′

)2]
=

(
∂ζ

∂z

)2

Tζζ + c

24π
{ζ,z}, (60)

where Tζζ is the energy-momentum tensor component eval-
uated in the ζ , ζ̄ coordinates, and {ζ,z} is the Schwarzian
derivative in whose definition the primes denote differentiation
with respect to z. Our Tμν does not transform as a tensor
therefore. The paradox is resolved by looking back at the first
line in Eq. (49). We see that if we are allowed to integrate
by parts, we can take the ∂z̄ derivative off of ε and onto
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Tzz. Thus any holomorphic addition to Tzz is invisible to the
variation δgz̄z̄. Another way of saying this is that there can
be metric variations δgz̄z̄ that cannot be written in the form
δgz̄z̄ = −∂z̄ε = −2∇z̄εz̄. (The displacements ε and ε̄ should
really be written as εz and εz̄ as they are the components
of a contravariant vector.) The solvability of (47) depends
on the global topology or on boundary conditions. On a
torus, for example, metric variations due to change in the
modular parameter τ are not expressible in this way. On a
closed manifold of genus g � 2, there will be 3(g − 1) linearly
independent unobtainable metric variations.

The addition of a purely holomorphic term is indeed
required. The full operator energy momentum tensor is

T̂zz = T̂ (z) + c

24π

[
∂2
zzφ − 1

2 (∂zφ)2
]
,

T̂z̄z̄ = ˆ̄T (z̄) + c

24π

[
∂2
zzφ − 1

2 (∂zφ)2
]
, (61)

T̂z̄z = − c

24π
∂2
zz̄φ,

where, for a free c = 1 boson field, ϕ(z,z̄) = ϕ(z) + ϕ(z̄), for
example,

T̂ (z) = : ∂zϕ(z)∂zϕ(z) :

= lim
δ→0

[
∂zϕ(z + δ/2)∂zϕ(z − δ/2) + 1

4πδ2

]
. (62)

(Note that conformal field theory papers often define T̂ (z) to
be −2π times (62) so as to simplify the operator product
expansion.) The operator T̂ (z) has been constructed to be
explicitly holomorphic, but at a price of tying its definition to
the z, z̄ coordinate system—both in the mode normal ordering
expression in the first line and by the explicit counterterm in the
second. It is not surprising, therefore, that under a holomorphic
change of coordinates, the operator T̂ (z) does not transform
as a tensor. It is well known that instead

T̂ (z) =
(

∂ζ

∂z

)2

T̂ (ζ ) − c

24π
{ζ,z}. (63)

We see that the inhomogeneous Schwarzian derivative terms
cancel in the transformation of the energy-momentum tensor
T̂μν defined in (61). Thus T̂μν transforms as a tensor and is still
covariantly conserved. It is notable that both the covariant
conservation and the trace anomaly in T̂μν are accounted
for by the c-number terms. These properties are therefore
independent of the quantum state in which the expectation
is taken. This quantum state only influences the holomorphic
part of 〈T̂zz〉 and an antiholomorphic part of 〈T̂z̄z̄〉.

In a chiral theory, we might constrain both T̂z̄z̄ and T̂z̄z to
be zero, while keeping the covariant form of T̂zz defined in
the first line of (61). The term ∇ z̄T̂z̄z needed for the continued
mathematical validity of (58) would then be interpreted as

∇ z̄Tz̄z → − c

12π
∂ze

−φ∂2
zz̄φ

= c

48π
∂zR, (64)

so that conservation law (58) is reinterpreted as the anomaly
equation appearing in Ref. 15,

∇zT̂zz = − c

48π
∂zR. (65)

By adding in an identically zero term, we can write this as

∇zT̂zz + ∇ z̄T̂z̄z = − c

48π
∂zR, (66)

which at first glance looks like a covariant tensor equation. It
is is not, however, because replacing the free index z with z̄

leads to

∇zT̂zz̄ + ∇ z̄Tz̄z̄
?= − c

48π
∂z̄R, (67)

on which the left-hand side is identically zero, but the right
need not be. Thus (66) is not the covariant anomaly.

A more symmetric treatment35 divides the trace anomaly
between the left and right chiral sectors and constrains one of
them to zero. Then T̂z̄z̄ remains zero, but

T̂zz̄ → − c

48π
∂2
zz̄φ, (68)

so that

ˆT μ
μ = c

48π
R. (69)

This physical reinterpretation makes the (still mathematically
valid) Eq. (58) read

∇zT̂zz + ∇ z̄T̂z̄z = − c

96π
∂zR, (70)

∇zT̂zz̄ + ∇ z̄T̂z̄z̄ = + c

96π
∂z̄R, (71)

where the second term on the left-hand side of the second
equation is constrained to be zero.

In our z, z̄ coordinates system, we have
√

g = √−gz̄zgzz̄ =
−ieφ/2, and we can write these last two equations in a
covariant manner as

∇zT̂zz + ∇ z̄T̂z̄z = i
c

96π

√
|g|εzz̄∂

z̄R, (72)

∇zT̂zz̄ + ∇ z̄T̂z̄z̄ = i
c

96π

√
|g|εz̄z∂

zR. (73)

In general Euclidean coordinates, we therefore have36

∇μT̂μν = i
c

96π

√
gενσ ∂σR. (74)

The factor “i” appears in (74) because it is only the imaginary
part of the Euclidean effective action that can be anomalous.6,37

It is absent when we write the equation in Minkowksi signature
space time, where

∇μT̂ μν = c

96π

1√|g|ε
νσ ∂σR. (75)

Note that (75) can be rewritten as ∇μT̃ μν = 0 where

T̃ μν = T̂ μν − c

96π

1√|g|ε
νσR. (76)

The new tensor T̃ μν is conserved, but not symmetric. We have
therefore exchanged a reparametrization anomaly for a Lorentz
anomaly.

We now show that the manifestly covariant anomaly (75)
is that expected from the anomaly inflow.
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V. GRAVITATIONAL CHERN-SIMONS TERMS

In this section we will use both the coordinate and frame-
field (vielbein) description of geometric quantities. Thus e

μ
a are

the components of the frame field ea = e
μ
a ∂μ, and e∗b

μ are the
components of the coframe e∗a = e∗a

μ dxμ, with δa
b = e∗a

μ e
μ

b .
The frame metric

ηab = gμνe
μ
a eν

b (77)

is diag(1,1,1) and diag(1, − 1, − 1) in Euclidean and
Minkowski space, respectively.

A gravitational (2 + 1)-dimensional Chern-Simons func-
tional can be written either in terms of the Christoffel-symbol
form �μ

ν = �μ
νσ dxσ as

C[�] = c

96π

∫
M

tr
{
�d� + 2

3�3
}
, (78)

or in terms of the spin connection ωa
b = ωa

bμdxμ as

C[ω] = c

96π

∫
M

tr
{
ωdω + 2

3ω3
}
. (79)

The integrands in these two functionals have the same exterior
derivative,

d tr
{
�d� + 2

3�3
} = d tr

{
ωdω + 2

3ω3
} = tr {R2}, (80)

and so they coincide when M = ∂N is a boundary, but they
are no longer equal when M itself has a boundary. Their
normalization is related to the index

Index(DDirac) = DimKer(DDirac) − DimKer(D†
Dirac)

= 1

192π2

∫
N

tr {R2} (81)

of the four-dimensional Dirac operator. The Dirac index is an
even integer for any four-dimensional manifold possessing a
spin structure.

The spin connection is related to the Christoffel form by a
GL(3) gauge transformation

ωi
jμ = e∗i

ν �ν
λμeλ

j + e∗i
ν ∂μeν

j , (82)

and so

C[ω] = C[�] − c

96π

∫
∂M

tr {(dee∗)�}

− c

288π

∫
M

tr {(e∗de)3}. (83)

Here the matrix-valued one-forms dee∗ and e∗de are defined
by (dee∗)μν ≡ (∂σ e

μ
a )e∗a

ν dxσ and (e∗de)ab ≡ e∗a
μ ∂σ e

μ

b dxσ .
The functional C[�] is invariant under reparametrization

xμ → Xμ(x) up to boundary terms. To obtain an energy-
momentum conserving theory, it has to be attached to a suitable
boundary theory with compensating transformation properties.
We do not have to write down the corresponding Wess-Zumino
action W (�,X) to know the boundary-theory anomaly. All we
need to do is calculate the outflowing bulk energy-momentum
flux by computing the response of C[�] to a change in the
metric.

The variation of the Chern-Simons functional due to a
change in � is

δC[�] = c

48π

∫
M

tr {δ�R} + c

96π

∫
∂M

tr {δ�d�}. (84)

To compute the contribution to the energy-momentum tensor,
we also need

δ�μ
νσ = 1

2gμλ(∇νδgλσ + ∇σ δgσλ − ∇λδgνσ ). (85)

Then, making use of properties of the Riemann tensor that are
unique to three dimensions (see Refs. 38,39 for more details),
we find

δC[�] = c

48π

∫
M

d3x
√

|g|Cμνδgμν + boundary terms,

(86)

where

Cμν = − 1

2
√|g|

(
ερσμ∇ρR

ν
σ + ερσν∇ρR

μ
σ

)
(87)

is the Cotton tensor. We read off the bulk energy-momentum
tensor to be

T μν = − c

24π
Cμν. (88)

In deriving this result, we have had to integrate by parts
a second time so as to remove the derivatives from the
metric variations. Consequently the boundary terms are more
complicated than the usual ones arising from the variation of
gauge-field Chern-Simons functionals. We are, however, con-
fident that these boundary terms provide the same conversion
of the consistent anomaly of the boundary theory into the
covariant anomaly that we saw with the gauge anomalies.

We restrict ourselves to product metrics of the form

ds2 = (dx2)2 + gab(x0,x1)dxadxb, a,b = 0,1, (89)

with the boundary being at x2 = 0. The Ricci tensor appearing
in (87) then coincides with the Ricci tensor of the two-
dimensional boundary, and can be written as

Ra
b = 1

2δa
bR(x0,x1), a,b = 0,1. (90)

The flux of the a = 0,1 energy-momentum components into
the boundary becomes

T 2a = c

96π

1√
g

ερa2∂ρR. (91)

The energy-momentum inflow into the boundary therefore
precisely accounts for the gravitational anomaly (75). The
“suitable boundary theory” is thus exactly the chiral theory
whose anomaly we obtained in the previous section.

In contrast to C[�], the Chern-Simons functional C[ω] is
reparametrization invariant, but it fails by boundary terms to
be invariant under rotations (or Lorentz transformations) of
the frame field:

ea → eO
a = eb Ob

a,

ωa
b → (ωO)ab = (O−1)acω

c
dO

d
b + (O−1)acdOc

b. (92)

To obtain the energy-momentum flow associated with C[ω],
we should remember that ω is linked to the metric through the
torsion-free condition

de∗a + ωa
b ∧ e∗b = 0, (93)

and through gμν = ηabe
∗a
μ e∗b

ν . We therefore define a tensor Tbc

and its contravariant version T da = ηdbηacTbc by varying the
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vielbein:

δSeff =
∫

dnx
√

g

(
δS

δe
μ
a

)
δeμ

a ≡
∫

dnx
√

g
(
Tbcη

cae∗b
μ

)
δeμ

a

=
∫

dnx
√

g T daδeda. (94)

The last line introduces the useful quantity, δeda = ηdbe
∗b
μ δe

μ
a .

As defined, there is no immediate reason for Tbc to be
symmetric. However, when the functional S is invariant under
an infinitesimal local rotation δe

μ
a = e

μ

b θb
a , we have

0 = δSeff =
∫

dnx
√

g Tbc ηcae∗b
μ e

μ

d θd
a

=
∫

dnx
√

g Tbc ηcaθb
a =

∫
dnx

√
g T da θda.

Since θda is an arbitrary skew symmetric matrix, we see that
T da = T ad . Accepting this symmetry, we can now set

δSeff = 1

2

∫
dnx

√
g Tbc

(
ηcae∗b

μ δeμ
a + ηbae∗c

μ δeμ
a

)
= 1

2

∫
dnx

√
g Tαβ

(
eβ
c ηcaδeα

a + eα
b ηbcδeβ

c

)
= 1

2

∫
dnx

√
g Tαβ δgαβ.

Here Tαβ = eb
αec

βTbc. Thus, for rotation invariant actions, the
vielbein variation leads to the same energy-momentum tensor
as Hilbert’s metric variation.

Now we have

δC[ω] = c

48π

∫
M

tr {δωR} + c

96π

∫
∂M

tr {δωdω}, (95)

and we can use

(δωijμ)eμ

k = − 1
2 {(∇j δeik − ∇kδeij ) + (∇kδeji − ∇iδejk)

− (∇iδekj − ∇j δeki)}
to compute Tab. We do not have to perform this rather tedious
computation, however. We know that the variations of C[�]
and C[ω] differ only by boundary terms. The bulk energy-
momentum tensors for the two actions must therefore coincide.
The boundary variations will differ though. Because C[ω] is
reparametrization invariant, the Wess-Zumino term

W [ω,O]
def= C[ωO] − C[ω], (96)

that together with C[ω] gives the rotation and reparametriza-
tion invariant action C[ωO], must give rise to a conserved
boundary-theory energy-momentum tensor T ab

WZ. This tensor

must also be covariant under coordinate changes, but will not
be symmetric. There is only one possibility—the frame-field
version of (76):

T ab
WZ = T̃ ab = T̂ ab − c

96π

1√
g

εabR. (97)

The contribution Xab that comes from the boundary part of
the variation of C[ω] will then repair the asymmetry. This
contribution is easily computed, and is

Xab = c

96π

1√
g

εabR. (98)

The net effect is that we get the same boundary-theory
energy-momentum tensor T̂ μν = T

μν

WZ + Xμν , and the same
anomaly equation, independent of whether we write the
gravitational Chern-Simons function in terms of � or in terms
of ω. The only difference between the two formulations lies
in the manner in which the boundary energy-momentum is
apportioned between the bulk Chern-Simons contribution Xμν

and the boundary Wess-Zumino part T
μν

WZ.

VI. CONCLUSIONS

We have seen that it is most likely that the thermal Hall
currents on the surface of topological insulators are confined
to one-dimensional domain walls, and cannot flow in the
two-dimensional surface. To confirm this idea, we computed
the energy-momentum flux associated with a gravitational
Chern-Simons term in the boundary effective action. We found
that the energy-momentum flux is proportional to gradients of
the Ricci curvature, and therefore needs tidal forces to be
nonzero. We related this flux to the gravitational anomaly
experienced by modes localized on one-dimensional domain
walls within the surface, and showed that this anomaly takes
the same covariant form independently of whether we write
the gravitational Chern-Simons functional in terms of the
Christoffel symbol � or the spin connection ω.
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