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Solitary excitations in one-dimensional spin chains
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We study the real-time evolution of solitary excitations in one-dimensional quantum spin chains using exact
diagonalization and the density-matrix renormalization group. The underlying question of this work is the
correspondence between classical solitons and solitons in quantum mechanics. While classical solitons as
eigensolutions of nonlinear wave equations are localized and have a sharp momentum, this is not possible
in the corresponding quantum case due to the linearity of the Schrödinger equation or, seen in a more pictorial
way, because of the uncertainty relation. For the case of the XXZ model it is shown that the real-time evolution
of quantum wave packets accompanied by spreading is in qualitative accordance with that predicted by classical
solitons.
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I. INTRODUCTION

Solitons, first mentioned by John Scott Russel in 1844, are
outstanding objects in the field of nonlinear physics.1 Their
description as solutions of nonlinear wave equations needs
to take into account the full nonlinearity of the problem.
Based on the numerical findings by Zabusky and Kruskal,2

the inverse scattering transform3 (IST) was the first major
framework used to systematically research the solutions and
spectra of integrable4 classical nonlinear wave equations
like the sine-Gordon equation or the nonlinear Schrödinger
equation. These soliton solutions are usually characterized by
a constant shape and velocity which is due to the cancellation
of dispersion and nonlinearity.

The extension of the term “soliton” to the quantum regime
is not straightforward. On the one hand there are technical
problems in quantizing a classical nonlinear wave equation to
a quantum field theory. For classical models amenable to the
IST a direct canonical quantization is possible5 because the IST
can be seen as a nonlinear canonical mapping to action-angle
variables which can be directly quantized. Quasiclassical
quantization6 has also been used for identifying classical with
quantum systems. But still an obvious problem seems to exist
in the quantum case. This is the interpretation of a quantum
soliton, because a quantum soliton should not have a constant
shape and velocity (due to the uncertainty relation) as is the
case for a classical soliton. Another point of view on this prob-
lem is that classical solitons are eigensolutions of nonlinear
wave equations. These eigensolutions are localized by means
of some observable like density or magnetization in space even
if the system is translationally invariant. In the quantum case
this is not possible,7 because the eigensolutions are completely
delocalized. Still, the construction of localized wave packets,
consisting of eigensolutions peaked around a specific momen-
tum, is possible. These wave packets will spread due to the
(in general) nonlinear dispersion relation. Notice that now, as
opposed to the classical wave equation, there is no nonlinearity
(the Schrödinger equation is linear) that could cancel the effect
of dispersion. Thus in accordance with the uncertainty relation,

the initial wave packet will spread. As is the case for the
free particle in quantum mechanics, the transition to classical
mechanics means that the spreading goes to zero.

Recent work8–14 on the quantum dynamical aspects of
solitons pursues the path of comparing mean-field approxi-
mations with the quantum model. The mean-field approach
basically leads to a classical nonlinear equation of motion
for some operator expectation value restricted to a subset of
carefully chosen states (mainly product states). This classical
nonlinear equation for an operator expectation value, e.g., 〈â〉
for the condensate density in a Bose-Einstein condensate,
might exhibit soliton solutions. Its time evolution is then
compared for both the mean-field approximation as well for
the quantum evolution on the full Hilbert space. One intrinsic
problem of this approach is that it has to be justified that the
mean-field approximation is still valid for the time evolution
and not just for its initial state. We take a different route in
that we identify directly a classical nonlinear model with a
quantum model using direct canonical quantization. Therefore
we will get a one-to-one correspondence between classical
soliton solutions and their quantum mechanical counterparts,
or vice versa. Thus, in our description, both the classical and
the quantum models exhibit the same soliton solutions, and
there is no intrinsic quantum soliton that does not exist in
the classical theory or the other way round. In that sense we
define the term “quantum soliton” as a state that corresponds
up to the uncertainty relation to a classical soliton state. It is an
interesting question if there exist models that exhibit intrinsic
quantum solitons which do not occur in the corresponding
classical theory. But before answering this question, a scheme
for describing or defining an intrinsic quantum soliton must be
found.

The simulation of real-time dynamics in quantum systems
is a numerically hard problem due to the exponential increase
of the Hilbert space with system size. The development of the
density-matrix renormalization group15,16 (DMRG) algorithm
and its real-time variant the time-dependent DMRG (t-DMRG)
(Refs. 16–18) has opened up new perspectives in simulating

184433-11098-0121/2012/85(18)/184433(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.184433
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one-dimensional (1D) systems, whose size is far beyond those
that are reachable by exact diagonalization (ED) (see, for
example, Refs. 8,14,19–21). Both methods allow us to create
wave packets for larger systems.

In the following we will show that quantum wave packets
can be constructed whose time evolution is in agreement (de-
spite the quantum mechanical spreading) with their classical
soliton counterparts.

II. THE MODEL

To investigate the correspondence between classical and
quantum mechanical solitons, we use a 1D spin chain as
our model. For the ferromagnetic easy-axis spin chain, as
described in the following paragraphs, exact solutions for the
energy spectra of the low-lying solutions exist. Both models
are integrable, the classical in the sense of the inverse scattering
transform3 and the s = 1

2 quantum model in the sense of the
Bethe ansatz.22 Furthermore, a clear mapping between the two
models exists, and thus facilitates the comparison between
classical and quantum eigensolutions and their spectra.

A. Quantum model

The quantum model is described by the anisotropic Heisen-
berg Hamiltonian

Ĥ = −J
∑

i

[
1

2
(Ŝ+

i Ŝ−
i+1 + Ŝ+

i+1Ŝ
−
i ) + �Ŝz

i Ŝ
z
i+1

]
. (1)

We assume a ferromagnetic coupling J > 0 and easy-axis
anisotropy 1 < � = 1 + �z = cosh �. Our reason for taking
easy-axis anisotropy (1 < �) is that in this case the analytical
treatment of both the quantum and the classical models
is simplest.23,24 The ground state of this model is twofold
degenerate (all spins pointing up or down). In the following
we will take the state |↓↓ . . . ↓↓〉 as the reference ground
state. Note that the s = 1

2 version of Eq. (1) is equivalent to a
hard-core Bose-Hubbard model.25 Consequently, each flipped
spin with respect to the references state can be interpreted as
occupation by one boson.

The energy for the lowest-lying excitations with momentum
−π � k � π and magnetization m (number of flipped spins)
for s = 1

2 is given by23

Em(k) = J (cosh m� − cos k)
sinh �

sinh m�
(2)

in the thermodynamic limit. These excitations are also called
m-magnon bound states and are completely delocalized over
the whole system. To get localized excitations (i.e., where
the magnetization is distributed over a region of a few sites),
which could correspond to localized classical solitons, it is
necessary to construct wave packets. These wave packets will
consist of m-magnon bound states with different momenta. If
this momentum distribution is peaked around k, we expect a
group velocity given by the derivative of (2):

vG (m,k) = J sin k
sinh �

sinh m�
. (3)

The maximum velocity of these wave packets is hence given
by

vmax(m) = vG

(
m, ± π

2

)
= ±J

sinh �

sinh m�
. (4)

B. Classical model

The classical model is described by the Landau-Lifshitz
equation (LLE).26 It can be derived from (1) by two approxi-
mations:

(1) Ŝ → S = s (sin θ cos ϕ, sin θ sin ϕ, cos θ )t, the classi-
cal treatment of spins which leads to an error of order 1

s
.

(2) Si → S(xi), the continuum treatment via the long-
wavelength approximation with an error of order �2

z for
low-lying excitations.

The classical Hamiltonian is then given by

H = J

∫
dx

[
1

2

(
∂ S
∂x

)2

+ �z

(
s2 − S2

z

)]
. (5)

For the low-energy excitations of this Hamiltonian (one-soliton
solutions), the quasiclassical quantization27 gives an energy
dispersion6

E(m,k) = 4s2J
√

2�z

(
cosh m

√
2�z/2s − cos k

sinh m
√

2�z/2s

)
. (6)

It can be seen that for s = 1
2 (6) is exactly the same as (2) to

first order in �z. Hence, even for the “most” quantumlike case
(s = 1

2 ), the energy spectra of the low-energy excitations are
identical for both the quantum and the classical models. This
leads naturally to an identification between classical and quan-
tum solutions. But it is anyway an oddity that the classical spin
profile S(x) is localized in space and the quantum profile 〈Ŝi〉
is completely delocalized. So in order to get a classical profile
coming from the quantum model, it seems natural to build
wave packets as in the well-known problem of a free particle.

III. NUMERICAL INVESTIGATIONS

In the following simulations we assume J = 1 and s = 1
2 .

The DMRG and t-DMRG algorithms were used for Figs. 1
and 5 using open boundary conditions and a discarded weight
of 10−9 for the time evolutions.28 Exact diagonalization for
calculating the time evolution was used in Figs. 2, 3, and
4. Here, periodic boundary conditions were used in order to
calculate the weights in Eq. (8) below in the basis of mo-
mentum eigenstates. For both methods a second-order Trotter
decomposition29 with �t = 0.01 was used for time evolution.

A. Single spin flips

A very crude way to create wave packets is by flipping
single spins from the ground state. This will lead to a very broad
distribution in momentum space, meaning that excitations with
different momenta and magnetization will be created. This
can be seen clearly in Fig. 1. Three spins are flipped in the
middle of the chain. The lines correspond to excitations with
maximum group velocity vmax according to (4) for different
m (= 3,2,1 from left to right) and �. Thus, it can be seen
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FIG. 1. (Color online) Time evolution of Fock state |↓↓ . . . ↓↑↑↑↓ . . . ↓↓〉 for s = 1
2 and � = 1.05 (left) and � = 2 (right). Lines show

the expected movement with maximum group velocity vmax [see (4)].

that also one-magnon (spin waves) and two-magnon bound
states are excited by a simple three-spin flip. This is consistent,
because for m = 3 there exist higher excitations consisting of
m = 2 bound states plus one m = 1 scattering state as well
as 3 × (m = 1) scattering states. From the point of view of
classical integrability, meaning that excitations will go through
each other without interaction, this dissection of the spectra
is also necessary. If, for example, our initial state consists of
2 × three-magnon wave packets, these will not disperse into
3 × two-magnon wave packets during a collision because the
time evolution will always stay in the initial 2 × three-magnon
bound-state sector.

B. Constructing wave packets

The following way to create specific excitations is based on
the ideas of Ref. 30 to create dark solitons in Bose-Einstein

condensates. Our scheme is very similar and consists of three
main steps:

(1) Instead of flipping m spins in the middle of the chain, a
more delocalized (in real space) wave packet will be created
by adding a magnetic field Bloc to the Hamiltonian (1) which
will attract the flipped spins to the middle. Thus, numerical
methods will yield a ground state where the flipped spins
(whose number can be set by the initial magnetization) rest at
the center.

(2) Because of the symmetry, in momentum space the wave
packet will be localized around k = 0. In order to kick this
wave packet an additional time evolution is done just with a
specific magnetic field Bphase.

(3) After this initial preparation of the wave packet, its free
time evolution under the Hamiltonian (1) can be investigated.

Previous numerical work using this method has been done
in Refs. 8–10.

π

FIG. 2. (Color online) Left: Schematic profile of the magnetic fields for localizing the excitation and for shifting its momentum distribution.
Right: Time evolution of a localized excitation (m = 1, � = 1.05) and its momentum distribution before application of Ĥphase. Its initial width
is bigger than in Fig. 1 but it spreads only slightly because of the sharp momentum distribution around k = 0.
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FIG. 3. (Color online) Time evolution for m = 1, � = 1.05 using different Ĥloc and Ĥphase (see Table I) and its momentum distribution.
White lines show the expected movement with group velocity vg(kP ), where kP is the momentum with maximum weight.

1. Localizing the wave packet

Because a simple spin flip creates a completely localized
excitation, the momentum distribution will be completely
smeared out and the localized excitation will dislocate very
quickly. To get an initial state which is also localized in mo-
mentum space it is thus necessary to have some delocalization
in real space. To create such a state, we add a magnetic field for
localization (see Fig. 2) to the Hamiltonian (1) of the following
form:

Ĥloc =
∑

i

1

s
Bloc[i] · Ŝz

i

with Bloc[i] = − BlocA

cosh
(

x0−i

BlocW

) . (7)

Fixing the magnetization m (i.e., the number of flipped spins)
and calculating the ground state will result in a magnetization
profile as can be seen in the right part of Fig. 2. The term Ĥloc

is used only for the initial state. Time evolution is done just
with (1). The parameters BlocA and BlocW control the depth and
width of the magnetic field and therefore the localization of
the wave packet.

Using exact diagonalization in momentum space, the
projection of the initial state onto the momentum eigenstates
of (1) can be calculated as well as their weight:

weight (k,α) = |〈ψexcited|kα〉|. (8)

The index α runs through the number of eigenstates with
momentum k. For m = 1, there is just one such eigenstate
for each k. This weight distribution is shown below the
time evolutions in Figs. 2 and 3. The peaked momentum

distribution around k = 0 in Fig. 2 clarifies the stability of
the magnetization profile.

2. Kicking the wave packet

To get the localized wave packet into movement it is
necessary to shift the momentum distribution to a k �= 0.
Changing the phase of each Fock state in real space that
the initial state consists of will not change the magnetization
profile but the momentum distribution. This phase change can
be implemented by a time evolution of the initial state with the
following Hamiltonian:

Ĥphase =
∑

i

1

s
Bphase[i]Ŝz

i

with Bphase[i] = BphA tanh

(
x0 − i

BphW

)
. (9)

The magnetic field Bphase[i] (sketched in Fig. 2) would also
suggest that the wave packet would slide down to the right
corresponding to a momentum shift to k > 0. This is indeed
the case as can be seen in Fig. 3. BphA and BphW modify the

TABLE I. Parameters for Ĥloc and Ĥphase to generate the excita-
tions shown in Figs. 3 and 4.

Case BlocA BlocW BphA BphW

(a) 0.0075 20 5 60
(b) 0.02 7 22.5 30
(c) 0.15 50 85.5 60
(d) 0.05 10 15 40
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−π π

→

−π π

(d)

FIG. 4. (Color online) Left: Time evolution for m = 2, � = 1.05 using Ĥloc and Ĥphase as specified for case (d) in Table I. A faster ray to
the right of the main m = 2 moving bound excitation can be seen, which is attributed to the weight in the m = 1 + 1 scattering sector of the
momentum distribution. Right: By projecting out the states with the weight in the m = 1 + 1 scattering sector, the faster ray disappears.

amplitude and width of the phase-imprinting magnetic field.
Concerning the length tphase of the time evolution with Ĥphase

it should be noted that the phase-imprinted state depends only
on the product tphaseBphA. That is why we fixed tphase = 1 and
varied BphA. Figure 3 shows thus that the picture of moving
wave packets with specific group velocity (defined by the peak
in their momentum distribution) is consistent. The parameters
for Ĥloc and Ĥphase were found31 by trial and error and are
given in Table I.

Use of this scheme for creating wave packets with m > 1
will of course result also in other higher excitations. This
is shown in Fig. 4 for m = 2. The slower-moving excitation

in the left part corresponds to a two-bound wave packet,
while the faster light one corresponds to a spin wave. The
distribution in momentum space also shows this. By using
exact diagonalization in momentum space it is possible to
project out these spin wave excitations from the 2 × (m = 1)
sector of the excitation spectra. The result of this projection
(the disappearance of the faster spin-wave excitation) is seen
in the right part of Fig. 4.

3. Colliding wave packets

Using the methods described before it is also possible to
create two wave packets on a chain.32 Various scenarios can

(a) (b) (c)

FIG. 5. (Color online) Top: Time evolution of different combined excitations (� = 1.05; for other parameters see Table II). (a) Spin-wave
packet (m = 1) running through a large static magnon complex consisting of two bound domain walls (m = 20) and shifting it by one site
to the right. (b) Two spin-wave packets (m = 1) running through each other. (c) Two magnon packets (m = 2) running through each other.
Bottom: Corresponding initial magnetization profile.
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TABLE II. Parameters for Ĥloc and Ĥphase to generate the
excitations shown in Fig. 5.

Case BlocA BlocW BphA BphW

(a) Left: NM = 20, x0 = 60 0.05 5 0 25
Right: NM = 1, x0 = 120 0.02 5 −20 25

(b) Left: NM = 1, x0 = 30 0.02 5 20 25
Right: NM = 1, x0 = 70 0.02 5 −20 25

(c) Left: NM = 2, x0 = 30 0.05 10 15 40
Right: NM = 2, x0 = 90 0.05 10 −15 40

be obtained this way. Figure 5 shows three types of collision.
The first (a) shows the passing of an m = 1 spin wave through
a resting m = 20 bound state (which can be considered as two
bound domain walls). The movement of the domain wall by
exactly one site (corresponding to one unit of magnetization
m = 1) was predicted earlier in Ref. 33 and can be seen here.
The other two settings (b) and (c) show the collision of two m =
1 and m = 2 wave packets, propagating in opposite directions.
As known from classical integrability, these excitations should
just go through each other, because their characteristics (i.e.,
momentum and magnetization) represent integrals of motion.
The parameters used for these calculations are given in Table II.

IV. CONCLUSION

Based on the analytical findings of Ref. 24, we investigated
the real-time evolution of quantum wave packets in the ferro-
magnetic easy-axis Heisenberg model. They were constructed
in a way close to their classical soliton counterparts by using
additional magnetic fields to localize them and to give them a
momentum kick. The time evolution is consistent with the
classical picture of the integrable LLE and in the case of
the setting shown in Fig. 5(a) explicitly shows the analytical
predictions of Ref. 33.

This method of constructing localized wave packets might
also be used for nonintegrable quantum systems, where
colliding wave packets might excite each other or slow down
and create new excitations from the background. Furthermore,
it might be used for examining transport properties in spin
systems.
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